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Abstract

Given a set of n points P ⊂ R
2, the Delaunay graph of P for a family of geometric

objects C is a graph defined as follows: the vertex set is P and two points p, p′ ∈ P

are connected by an edge if and only if there exists some C ∈ C containing p, p′ but no

other point of P . Delaunay graph of circle is often called as Delaunay triangulation as

each of its inner face is a triangle if no three points are co-linear and no four points are

co-circular. The dual of the Delaunay triangulation is the Voronoi diagram, which is

a well studied structure. The study of graph theoretic properties on Delaunay graphs

was motivated by its application to wireless sensor networks, meshing, computer vision,

computer graphics, computational geometry, height interpolation, etc.

The problem of finding an optimal vertex cover on a graph is a classical NP-hard

problem. In this thesis we focus on the vertex cover problem on Delaunay graphs for

geometric objects like axis-parallel slabs and circles (Delaunay triangulation).

1. We consider the vertex cover problem on Delaunay graph of axis-parallel slabs. It

turns out that the Delaunay graph of axis-parallel slabs has a very special property

— its edge set is the union of two Hamiltonian paths. Thus, our problem reduces

to solving vertex cover on the class of graphs whose edge set is simply the union

of two Hamiltonian Paths. We refer to such a graph as a braid graph.

Despite the appealing structure, we show that deciding k-vertex cover on braid

graphs is NP-complete. This involves a rather intricate reduction from the problem

of finding a vertex cover on 2-connected cubic planar graphs.

2. Having established the NP-hardness of the vertex cover problem on braid graphs,

iv



v

we pursue the question of improved fixed parameter algorithms on braid graphs.

The best-known algorithm for vertex cover on general graphs has a running time

of O(1.2738k + kn) [CKX10]. We propose a branching based fixed parameter

tractable algorithm with running time O⋆(1.2637k) for graphs with maximum de-

gree bounded by four. This improves the best known algorithm for this class,

which surprisingly has been no better than the algorithm for general graphs. Note

that this implies faster algorithms for the class of braid graphs (since they have

maximum degree at most four).

3. A triangulation is a 2-connected plane graph in which all the faces except possibly

the outer face are triangles, we often refer to such graphs as triangulated graphs. A

chordless-NST is a triangulation that does not have chords or separating triangles

(non-facial triangles).

We focus on the computational problem of optimal vertex covers on triangula-

tions, specifically chordless-NST. We call a triangulation Delaunay realizable if it

is combinatorially equivalent to some Delaunay triangulation. Characterizations of

Delaunay triangulations have been well studied in graph theory. Dillencourt and

Smith [DS96] showed that chordless-NST s are Delaunay realizable. We show that

for chordless-NST, deciding the vertex cover problem is NP-complete. We prove

this by giving a reduction from vertex cover on 3-connected, triangle free planar

graph to an instance of vertex cover on a chordless-NST.

4. If the outer face of a triangulation is also a triangle, then it is called a maximal

planar graph. We prove that the vertex cover problem is NP-complete on maximal

planar graphs by reducing an instance of vertex cover on a triangulated graph to

an instance of vertex cover on a maximal planar graph.
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Chapter 1

Introduction

Given a set of n points P ⊂ R
2, the Delaunay graph of P for a family of geometric objects

C is a graph defined as follows: the vertex set is P and two points p, p′ ∈ P are connected

by an edge if and only if there exists some C ∈ C containing p, p′ but no other point of

P . The study of graph theoretic properties on Delaunay graphs was motivated by its

application to wireless sensor networks, meshing, computer vision, computer graphics,

computational geometry, height interpolation, etc.

Delaunay graph of circles is often called as Delaunay triangulation as each of its

inner face is a triangle if no three points are co-linear and no four points are co-circular.

The problem of triangulating the point set is an important problem in computational

geometry. A Delaunay triangulation is a particular triangulation of the point set with

the property that the circumcircle of any triangle does not contain any other point in

its interior. It has been shown that among all possible triangulations, the Delaunay

triangulation maximizes the minimum angle [Sib78] and hence it avoids long, skinny

triangles.

The dual of the Delaunay triangulation is the Voronoi diagram, which is a well studied

structure (see the book by Okabe et al. [OBSC09]). Delaunay triangulation contains

important subgraphs like Gabriel graphs, Relative neighborhood graphs and Euclidean

minimum spanning trees. Dillencourt [Dil96] showed that finding Hamiltonian cycle

in Delaunay triangulation is NP-complete. Dillencourt [Dil90b] showed that Delaunay
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triangulations are 1-tough and hence have a perfect matching. Efficient algorithms for

constructing a Delaunay triangulation for a given point set are known [GKS92, CS89].

Even et al. [ELRS02] introduced the notion of conflict free coloring in various geo-

metrically defined hypergraphs to solve the frequency assignment problems in cellular

telephone networks. The estimation of minimum number of colors in a conflict-free col-

oring leads to the question of finding large independent sets in the Delaunay graph for

the corresponding geometric object. The Delaunay graph of circles is a planar graph

and hence has an independent set of size at least n/4. Chen et al. [CPST09] showed

that there are n element point sets in the plane whose Delaunay graph of axis-parallel

rectangle has independent set of size at most O(n log2 logn
logn

).

The problem of finding an optimal vertex cover on a graph is a classical NP-hard prob-

lem. The dual of the vertex cover problem is the independent set problem. Vertex cover

problem is a well studied problem even on restricted graphs classes. For some restricted

graph classes like chordal graphs [Gav72], apple-free graphs [BLM10], (hole, dart)-free

graphs [BCK12], etc. vertex cover is polynomial time solvable. Unfortunately, for many

graph classes the problem remains NP-hard, like for 2-connected cubic graphs [Moh01],

triangle-free graphs [Ueh96], etc.

The problem of finding a vertex cover is a special case of the hitting set question,

when each set contains exactly two elements. We describe the hitting set problem for

geometric objects induced by a point set. Let P be a set of n points in R
2 and let R be

the family of all distinct objects of a particular kind (disks, rectangles, triangles, . . . ),

such that each object in R has a distinct tuple of points from P on its boundary. For

example, R could be the family of
(

n
2

)

axis parallel rectangles such that each rectangle

has a distinct pair of points of P as its diagonal corners. R is called the set of all objects

induced (spanned) by the point set P . An interesting question is to compute a minimum

set of points in P that “hits” all the objects in R, i.e. a minimum sized subset Q ⊆ P

such that for each R ∈ R, R ∩Q 6= ∅.

Various questions related to geometric objects induced by a point set have been stud-

ied in the last few decades. A classical result in discrete geometry is the First Selection
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Lemma [BF84] which shows that there exists a point that is present in a constant frac-

tion of triangles induced by P . Another interesting question is to compute a minimum

set of points in P that “hits” all the objects in R, i.e. a minimum sized subset Q ⊆ P

such that for each R ∈ R, R ∩Q 6= ∅. This is a special case of the classical Hitting Set

problem, which we will refer to as Hitting Set for Induced Objects. For most geometric

objects, it is not known if the Hitting Set for induced objects problem is polynomial time

solvable. It is known to be polynomial time solvable for special objects skyline rectangles

and halfspaces [CG14]. Recently, Rajgopal et al. [RAG+13] showed that this problem

is NP-complete for lines. On the other hand, the hitting set problem, when asked in

the context of induced geometric objects, often turns out to be exactly the vertex cover

problem on Delaunay Graph for the corresponding geometric object.

In this thesis, we show that the vertex cover problem on Delaunay graphs for ge-

ometric objects like axis-parallel slabs and circles is NP-complete. Having known the

problem to be NP-complete, there are several methods to cope with computational in-

tractability like approximation algorithms, average-case analysis, randomized algorithms

and heuristic methods, etc. A direct way of attacking NP-hard problems is providing a

deterministic, exact algorithm. However, in this case, one has to deal with exponential

running times. There have been increasing interest in faster exact solutions for NP-hard

problems. Despite their exponential running times, these algorithms may be interesting

from a theoretical as well as a practical point of view. Fixed parameter tractable algo-

rithms is one of the approach to deal with the exponential running time which form a

variant of exact, exponential time solutions mainly for NP-hard problems. In the next

section we describe the Fixed parameter tractable algorithms more formally.

1.1 Fixed parameter tractable algorithms

A parameterization of a decision problem is a function that assigns an integer parameter

k to each input instance x. A parameterized problem is fixed parameter tractable (FPT)

if it admits an algorithm with running time f(k) · |x|c on input x and parameter k, where
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f is an arbitrary function depending only on k and c is a constant. Fixed parameter

tractability has been studied for various NP-complete problems [Nie06] like vertex cover,

feedback vertex cover, graph bipartization, edge bipartization, graph crossing number,

etc.

For instance, the NP-complete vertex cover problem is: given an undirected graph

G = (V,E) and a nonnegative integer k, does G have a vertex cover of size at most k? In

parameterized complexity theory, k is called the parameter. The vertex cover problem

is known to be fixed parameter tractable [Nie06]. So for the vertex cover problem, the

goal is to find a vertex cover of size at most k in time O(ck), and the “race” involves

exploring algorithms that reduce the value of the constant c.

Vertex cover is one of the most well-studied problems in the context of fixed parameter

algorithm design. The best-known algorithm for vertex cover on general graphs has a

running time of O(1.2738k + kn) [CKX10]. It enjoys a long list of improvements even

on special graph classes. In particular, even for sub-cubic graphs (where the maximum

degree is at most three, and the problem remains NP-complete), Xiao [Xia10] proposed

an algorithm with running time O⋆(1.1616k), improving on the previous best record of

O⋆(1.1864k) by Razgon [Raz09] and O⋆(1.1940k) by Chen, Kanj and Xia [CKX03].

The standard parameterization of vertex cover uses k as the parameter. However, in

settings where we know a-priori that the value of k is guaranteed to be large, then the

standard parameter is not the ideal choice for parameterization. It is more reasonable

to ask the so-called above-guarantee question, which is the following: is there a vertex

cover of size at most µ(G) + δ? Here, µ(G) is an appropriate lower bound on the size

of the vertex cover, for instance, the size of a maximum matching in G. We treat the

difference between the optimal vertex cover and the known lower bound, namely δ, as the

parameter. We refer the reader to [NRRS12] for the state of the art. Apart from being

a very natural question, it has turned out to be a particularly central problem when it

was discovered that a number of problems (including, notably, Odd Cycle Transversal

and Almost 2-SAT) reduce to Above Guarantee Vertex Cover.
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1.2 Delaunay graph of axis-parallel slabs

Axis-parallel slabs are a special class of axis-parallel rectangles where two horizontal or

two vertical sides are unbounded. Each pair of points (x1, y1), (x2, y2) ∈ R
2 induces two

axis-parallel slabs of the form (−∞,+∞)× [y1, y2] and [x1, x2]× (−∞,+∞). The Delau-

nay graph of axis-parallel rectangle is a well studied structure [AP13, Cha12, CPST09,

ELRS02].

We focus on the computational problem of vertex cover on Delaunay graph of axis-

parallel slabs. Note that this is even more structured than general axis-parallel rectangles,

as it turns out that the corresponding Delaunay graph has a very special property —

its edge set is the union of two Hamiltonian paths (refer Section 3.1) which we call as a

braid graph. Thus, our problem reduces to solving vertex cover on braid graphs.

Despite the appealing structure, we show that – surprisingly – deciding k-vertex cover

on this class of graphs is NP-complete. This involves a rather intricate reduction from

the problem of finding a vertex cover on 2-connected cubic planar graphs. The reduction

is a two step process. We transform the 2-connected cubic planar graph to a four regular

graph with some special structure. We also appeal to the fact that the edge set of

four-regular graphs can be partitioned into two two-factors, and the main challenge in

the reduction involves stitching the components of the two-factors into two Hamiltonian

paths while preserving the size of the vertex cover in an appropriate manner.

Having established the NP-hardness of the problem, we pursue the question of im-

proved fixed parameter algorithms on this special case. Typically, these algorithms in-

volve extensive case analysis on a cleverly designed search tree. We propose a branching

algorithm with a running time O⋆(1.2637k) for graphs with maximum degree at most

four. This improves the best known algorithm for this class, which surprisingly has been

no better than the algorithm for general graphs. Note that this implies faster algorithms

for the class of braid graphs.

An application of computing vertex covers on Delaunay graph of axis-parallel slabs

is the hitting set problem for induced axis-parallel slabs: Let P be a set of points in the

plane and C be the family of all axis-parallel slabs that contains some two points of P .
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We would like to find a minimum sized subset Q ⊆ P such that for each axis-parallel

slab C ∈ C, C ∩ Q 6= ∅. We show in Section 3.1 that hitting all axis-parallel slabs in C

is equivalent to the vertex cover problem on Delaunay graph of axis-parallel slabs for P .

1.3 Delaunay triangulations

A triangulation is a 2-connected plane graph in which all the faces except possibly the

outer face are triangles, we often refer to such a graph as a triangulated graph. If the

outer face is also a triangle, then it is called a maximal planar graph. Delaunay graph

of circles is often called as Delaunay Triangulations, since each face is a triangle when

the points are in general position (no four points co-circular and no three points co-

linear). A chordless-NST is a triangulation that does not have chords or separating

triangles (non-facial triangles) [DS96]. Triangulations and maximal planar graphs are

important subclasses of planar graphs that have been studied with respect to various

graph theoretic parameters [Dil90a, KP10, TW11]. Delaunay triangulation is another

important subclass of triangulations.

Maximal independent set, connected dominating set on local Delaunay graphs (a vari-

ant of Delaunay triangulation) finds applications in network routing and design of net-

work backbone [ALW+03]. Deletion of independent set of vertices is used for decimation

of points for terrain simplification where the underlying triangulations used for model-

ing are generally Delaunay triangulations [JS98]. Minimum vertex cover on 3-connected

planar graphs finds application in the illumination problem of three dimensional convex

polyhedra [DG95].

We focus on the computational problem of optimal vertex covers on triangulations,

specifically chordless-NST s. Surprisingly, not much is known on the computational

complexity of computing optimal vertex covers, dominating sets, etc. on triangulations

or Delaunay triangulation. We call a triangulation Delaunay realizable if it is combi-

natorially equivalent to some Delaunay triangulation. Characterizations of Delaunay

triangulations have been well studied in graph theory. Determining if a triangulation is
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Delaunay realizable can be done in polynomial time [HMS00]. However, it is not known

if the triangulation can be realized (embedded on R
2) as a Delaunay triangulation of

a point set in polynomial time. Dillencourt and Smith [DS96] showed that chordless-

NST s are Delaunay realizable. We show that for chordless-NSTs, deciding the vertex

cover problem is NP-complete. We prove this by giving a reduction from vertex cover on

3-connected, triangle free planar graph to an instance of vertex cover on a chordless-NST.

Note this implies that the vertex cover problem on graphs realizable as Delaunay trian-

gulation and vertex cover on triangulations is NP-complete. We extend this reduction to

show that the problem of vertex cover on maximal-planar graphs is also NP-complete.

1.4 Organization of rest of the thesis

Chapter 2 sets up the basic notations and terminologies used in this thesis. Chapter 3

gives the proof of NP-completeness of vertex cover problem on Delaunay graph for axis-

parallel slabs and a fixed parameter tractable algorithm for the vertex cover problem on

graphs with maximum degree four. Chapter 4 gives the proof of NP-completeness of

vertex cover problem on chordless-NST and on maximal planar graphs.



Chapter 2

Preliminaries

We establish some of the basic notations and terminologies that will be used in the

thesis. We refer the reader to [Die12] for details on standard graph theoretic notation

and terminology we use in this thesis.

We denote the set of natural numbers by N and set of real numbers by R. For a

natural number n, we use [n] to denote the set {1, 2, . . . , n}. For a finite set A we denote

by SA the set of all permutations of the elements of set A. To describe the running times

of our algorithms, we will use the O∗ notation. Given f : N → N, we define O∗(f(k))

to be O(f(k) · p(n)), where p(·) is some polynomial function. That is, the O∗ notation

suppresses polynomial factors in the running-time expression.

Graphs. In the following, let G = (V,E) be a graph. For any non-empty subset

W ⊆ V , the subgraph of G induced by W is denoted by G[W ]; its vertex set is W and

its edge set consists of all those edges of E with both endpoints in W . For W ⊆ V , by

G \W we denote the graph obtained by deleting the vertices in W and all edges which

are incident to at least one vertex in W . For a graph G we denote the set of vertices of

G by V (G) and set of edges by E(G). We denote a subgraph H of G by H ⊆ G, where

V (H) ⊆ V (G) and E(H) ⊆ {(u, v) ∈ E(G)|u, v ∈ V (H)}.

For v ∈ V , we denote the open-neighborhood of v by N(v) = {u ∈ V |(u, v) ∈

E}, closed-neighborhood of v by N [v] = N(v) ∪ {v}, second-open neighborhood by

8
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N2(v) = {u ∈ V |∃u′ ∈ N(v) s.t. (u, u′) ∈ E} and second-closed neighborhood by

N2[v] = N2(v)∪N [v]. For a pair of vertices u and v, the common neighborhood of u and

v is the set of vertices that are adjacent to both u and v. In this context, a vertex w is

called a private neighbor of u if (w, u) is an edge and (w, v) is not an edge. We denote

the degree of a vertex v in graph G by dG(v) and drop the subscript G when the context

is clear. A simplicial vertex is a vertex whose neighborhood forms a clique. By Kn we

denote the complete graph on n vertices.

Definition 1 (Vertex cover). A vertex cover is a subset of vertices S ⊆ V such that

G \ S has no edges.

The parameterized Vertex Cover problem is as follows:

Input: A graph G = (V,E) and a nonnegative integer k.

Question: Is there a subset S ⊆ V with |S| ≤ k such that S is a vertex cover of G?

Definition 2 (Path). A path in a graph is a sequence of distinct vertices v0, v1, . . . , vk−1

such that (vi, vi+1) is an edge for all 0 ≤ i < k − 1.

Definition 3 (Hamiltonian Path). A Hamiltonian path of a graph G is a path featuring

every vertex of G.

Definition 4 (Cycle). A cycle in a graph is a sequence of distinct vertices v0, v1, . . . , vk−1

such that (vi, vi+1) is an edge for all 0 ≤ i ≤ k − 1 (index computed modulo k).

Definition 5 (n-Wheel). A graph W on n ≥ 4 vertices is an n-wheel if there is a

special vertex s called the center of the wheel, such that W \ {s} is an induced cycle and

(s, w) ∈ E, ∀w ∈ V (W ) \ {s}.

Definition 6 (k-factor). A k-regular spanning subgraph of graph G is called a k-factor

of G.

Definition 7 (Delaunay Graph). Given a set of n points P ⊂ R
2, the Delaunay graph

of P for a family of geometric objects C is a graph defined as follows: the vertex set is P

and two points p, p′ ∈ P are connected by an edge if and only if there exists some C ∈ C

containing p, p′ but no other point of P .
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Definition 8 (Triangulation). A 2-connected plane graph is called as a triangulation or

a triangulated graph if all its faces except possibly the outer face are triangles.

Definition 9 (Maximal planar graph). A triangulation with the outer face as a triangle

is called as a maximal planar graph.

For a plane graph G with outer-face f , an edge (v, v′) with v, v′ ∈ V (f) is called a

chord if (v, v′) is not an edge of the outer-face. We call an outer-face vertex v to be

chordal if ∃v′ ∈ V (f) s.t. (v, v′) ∈ E is a chord, otherwise it is a non-chordal vertex.

Definition 10 (Chordless-NST). A chordless-NST is a triangulation that does not have

chords or separating triangles (non-facial triangles).

Definition 11 (Braid graphs). A graph G on the vertex set [n] is a braid graph if

the edges of the graph is the union of two Hamiltonian paths. In other words, there

exist permutations σ, τ of the vertex set for which E(G) = {(σ(i), σ(i + 1)) | 1 ≤ i ≤

n− 1} ∪ {(τ(i), τ(i+ 1)) | 1 ≤ i ≤ n− 1}.

Parameterized Complexity. A parameterized problem Π is a subset of Γ∗×N, where

Γ is a finite alphabet. An instance of a parameterized problem is a tuple (x, k), where

x is a classical problem instance, and k is called the parameter. A central notion in

parameterized complexity is fixed parameter tractability (FPT) which means, for a given

instance (x, k) of a problem, we can decide it in time f(k) ·p(|x|), where f is an arbitrary

function of k and p is a polynomial in the input size.

A branching based algorithm is an algorithm in which at each of the steps we make

alternative choices regarding some of the items of the solution to a given problem. We

split the problem instance into several instances (branches) that are further processed

independently and recursively, resulting in a tree of instances. The branching rules are

designed in such a way that the parameter value drops (reduces) in every branch. A

branching vector is a vector indicating the drop in the parameter in each of the branch.

We will be using the standard notation with regards to branching vectors as described

in [Nie06].
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The algorithm for vertex cover that we propose is a branching based algorithm. When

we say that we branch on a vertex v, we mean that we recursively generate two instances,

one where v belongs to the vertex cover, the other where v does not belong to the vertex

cover. This is a standard method of exhaustive branching, where the size of the vertex

cover drops respectively, by one and d(v) in the two branches (since the neighbors of v

are forced to be in the vertex cover when v does not belong to the vertex cover).

Preprocessing a simplicial vertex. For a vertex v, if the graph induced by N [v] is

a clique, then it is easy to see that there is a minimum vertex cover containing N(v) and

not containing v (by a standard shifting argument). We can therefore, preprocess the

graph in such a situation by deleting N [v] and reducing the size of the vertex cover by

|N(v)|.

Folding a degree two vertex. In our algorithms we make extensive use of the folding

technique, as described in past work [CKJ99, CKX06]. This allows us to preprocess

vertices of degree two in polynomial time, while also reducing the size of the vertex

cover sought by one. We briefly describe how we might handle degree two vertices in

polynomial time. Suppose v is a degree two vertex in the graph G with two neighbors u

and w such that u and w are not adjacent to each other. We construct a new graph G′ as

follows: remove the vertices v, u, and w and introduce a new vertex v⋆ that is adjacent

to all neighbors of the vertices u and w in G (other than v). We say that the graph G′

is obtained from the graph G by “folding” the vertex v, and we say that v⋆ is the vertex

generated by folding v, or simply that v⋆ is the folded vertex (when the context is clear).

It turns out that the folding operation preserves equivalence, as shown below.

Proposition 1. [CKJ99, Lemma 2.3] Let G be a graph obtained by folding a degree two

vertex v in a graph G, where the two neighbors of v are not adjacent to each other. Then

the graph G has a vertex cover of size bounded by k if and only if the graph G′ has a

vertex cover of size bounded by (k − 1).



Chapter 3

Vertex cover on Delaunay graphs of

axis-parallel slabs

In this chapter, we focus on the problem of vertex cover on Delaunay graph of axis-

parallel slabs. We show that the hitting set for the class of axis-parallel slabs induced by

a point set P is exactly the vertex cover of the Delaunay graph of axis-parallel slabs for

P . It turns out that the Delaunay graph of axis-parallel slab has a very special property

— its edge set is the union of two Hamiltonian paths. Thus, our problem reduces to

solving vertex cover on the class of Braid graphs (refer Definition 11).

We show that deciding the vertex cover on this class of graphs is NP-complete.

Having established the NP-completeness of the problem, we pursue the question of fixed

parameter tractable algorithms on graphs with maximum degree bounded by four which

includes the family of Braid graphs. Typically, these algorithms involve extensive case

analysis on a cleverly designed search tree. We propose a branching based fixed parameter

tractable algorithm with a running time O⋆(1.2637k) for graphs with maximum degree

bounded by four.

12
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3.1 Hitting set for induced axis-parallel slabs

Consider a point set P , if an axis-parallel slab (say horizontal axis-parallel slab) induced

by p, q ∈ P contains another point, say r ∈ P , then hitting the horizontal axis-parallel

slabs induced by p and r will hit the axis-parallel slab induced by p and q. An analogous

argument can be given for a vertical axis-parallel slab induced by p, q ∈ P containing

another point r ∈ P . Therefore, it is sufficient to hit only empty horizontal and vertical

axis-parallel slabs. In the above setting this amounts to hitting all consecutive slabs

in the horizontal and vertical directions. Note that the Delaunay graph of axis-parallel

slabs has an edge (p, q) ∈ E if and only if there is an empty axis-parallel slab passing

through p and q. Thus minimum hitting set for all axis-parallel slabs is exactly the same

as computing a minimum vertex cover on the Delaunay of axis-parallel slabs for the point

set P .

In Lemma 2 and Lemma 3 we show that the problem of finding an optimal hitting

set for the family of all axis-parallel slabs induced by a point set is equivalent to the

problem of finding a vertex cover of a braid graph with the associated permutation σ

and τ defining the two Hamiltonian paths.

Lemma 2. The problem of finding a vertex cover on a braid graph G, with V (G) = [n]

and the associated permutations σ, τ can be reduced to an instance of hitting set for the

collection of all axis-parallel slabs induced by a point set.

Proof. Given an instance of vertex cover on a braid graph G, with V (G) = [n] and

permutations σ and τ , we create n points in R
2 in an (n×n)-grid as follows. We assume,

by renaming if necessary, that σ is the identity permutation. For every 1 ≤ i ≤ n, we

let pi = (i, τ−1(i)).

pi, pj are adjacent to each with respect to x-coordinates if and only if i and j are

adjacent to each other in σ. Similarly pi, pj are adjacent to each with respect to y-

coordinates if and only if i and j are adjacent to each other in τ . This implies that

(i, j) ∈ E(G) if and only if there exists an empty axis-parallel slab containing pi and pj.

Thus for the braid graph G, we have an instance of hitting all axis-parallel slabs induced
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by a point set.

Lemma 3. The problem of finding a hitting set for all induced axis-parallel slabs by a

point set P can be reduced to the problem of finding a vertex cover on a braid graph.

Proof. From the given point set P , we sort the points in P according to their x-

coordinates to obtain a permutation σ of the point set. Similarly, we sort with respect

to y-coordinate to get a permutation τ . Note that there exists a empty axis-parallel slab

between two points if and only if they are adjacent with respect to at least one of the x-

or y-coordinates. These are, on the other hand, precisely the edges in the braid graph

with σ and τ as the permutations.

3.2 NP-completeness of vertex cover on Braid graphs

In this section, we show that the problem of determining a vertex cover on the class of

braid graphs is hard even when the permutations of the braid graph are given as the

input.

The intuition for the hardness is the following. Consider a four-regular graph. By

Corollary 2.1.5(Petersen 1891) [Die12], we know that the edges of a four-regular graph

can be partitioned into two sets, each of which would be a 2-factor (refer Definition 6)

in the graph. A 2-factor is a two-regular graph which is essentially disjoint union of

cycles. In other words, every four-regular graph can be thought of as an union of two

collections of disjoint cycles, defined on the same vertex set. It is conceivable that these

cycles can be patched together into paths, leading us to a braid graph. As it turns out,

for such a patching, we need to have some control over the cycles in the decomposition to

begin with. So we start with an instance of vertex cover on a 2-connected cubic planar

graph, morph such an instance to a four-regular graph while keeping track of a special

cycle decomposition, which we later exploit for the “stitching” of cycles into Hamiltonian

paths.
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Formally, therefore, the proof is by a reduction from vertex cover on a 2-connected

cubic planar graph to an instance of vertex cover on a braid graph, noting that [Moh01]

shows the NP-hardness of vertex cover on 2-connected cubic planar graphs. We describe

the construction in two stages, first showing the transformation to a four-regular graph

and then proceeding to illustrate the transformation to a braid graph.

3.2.1 2-connected cubic planar graphs to 4-regular graphs

Consider an instance of vertex cover on a 2-connected cubic planar graph G = (V,E),

where |V | = n. We transform this graph to a four-regular graph in two steps. This

transformation is important because for turning a four-regular graph into an union of

two Hamiltonian paths, we need the underlying decomposition into 2-factors to have

certain properties, which we will ensure in the first half of the reduction.

The transformation from 2-connected cubic planar graphs to four-regular graphs hap-

pens in two stages. First, we replace certain edges with gadgets that only serve to elon-

gate certain paths in the graph. This is a technical artifact that will be useful later. Next,

we add gadgets that increase the degree of every vertex so as to obtain a four-regular

graph.

We begin by making two copies of G, say, Gu and Gv. We let Gu = (Vu, Eu), Gv =

(Vv, Ev) where, Vu = {u0, u1, ..., un−1}, Vv = {v0, v1, ..., vn−1}. We take two copies of G

to make the number of vertices multiple of four which will be useful in the later stages.

b b b b b bb b
xi x′

i
sxi

axi bxi
b′
xi

a′
xi

txi

Figure 3.1: Gadget Jxi
with solid lines showing gadget edges and dotted lines its con-

nection to outside vertices.

It is shown in [CS12] that a planar cubic graph with no cut edge has exponentially

many perfect matchings. Since we have a 2-connected cubic planar graph, there are
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evidently no cut edges and maximum matching is known to be polynomial time com-

putable by [MV80]. Let Mu = {(u0, u
′
0), (u1, u

′
1), . .., (un

2
−1, u

′
n
2
−1)} be a perfect matching

of Gu (after renaming of vertices if necessary). Let the corresponding matching of Gv be

Mv = {(v0, v
′
0), (v1, v

′
1), ..., (vn

2
−1, v

′
n
2
−1)}.

For x ∈ {u, v} we now describe how to construct Ĝx from Gx. We use gadget

Jxi
shown in Figure 3.1, where the subscript xi, i corresponds to the numbering of

edge (xi, x
′
i) in the matching Mx of graph Gx. We define the sequence ρ(Jxi

) :=

(sxi
, axi

, bxi
, b′xi

, a′xi
, txi

), notice that this is a path in Jxi
and we also have the sequence

ρ′(Jxi
) := (sxi

, txi
, bxi

, a′xi
, axi

, b′xi
, sxi

), which is a cycle in Jxi
. It is easy to see that

all edges in Jxi
is either in the path ρ(Jxi

) or in the cycle ρ′(Jxi
). We will refer to

these sequences later, when we are specifying how the reduced graph is an union of two

Hamiltonian paths.

We construct Ĝx from Gx as follows: Fix a matching Mx = {(x0, x
′
0),(x1, x

′
1),...,(xn

2
−1,

x′
n
2
−1 )}. Replace every edge in this matching with the gadget Jxi

. More formally, we

have:

V (Ĝx) = V (Gx) ⊎





⋃

0≤i<n/2

V (Jxi
)



 ,

E(Ĝx) =



E(Gx)r





⋃

0≤i<n/2

{(xi, x
′
i)}







 ⊎





⋃

0≤i<n/2

(E(Jxi
) ⊎ {(xi, sxi

), (txi
, x′

i)})



 .

In Lemma 4 we show the minimum number of vertices required to cover edges in

E(Jxi
) ∪ {(xi, sxi

), (x′
i, txi

)} based on whether xi, x
′
i are included in the vertex cover or

not.

Lemma 4. Consider the graph Ji = (V (Jxi
) ⊎ {xi, x

′
i}, E(Jxi

) ⊎ {(xi, sxi
), (txi

, x′
i)}) de-

scribed above. Let S be an optimal vertex cover of Ji, and let Si denote S ∩ V (Jxi
). If S

includes none of xi, x
′
i, then |Si| = 5, otherwise |Si| = 4.

Proof. The vertices axi
, bxi

, b′xi
, a′xi

induces a K4, therefore any vertex cover includes at

least 3 vertices among them. The following cases arise depending on whether xi, x
′
i is

included in S or not.
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Case 1 If xi, x
′
i /∈ S then we are forced to include sxi

, txi
in Si. So we need at least five

vertices in Si and note that X := {sxi
, txi

, axi
, a′xi

, bxi
} is a set of five vertices

that covers all edges in E(Ji).

Case 2 Suppose S picks exactly one of xi and x′
i. In particular, let us say that xi /∈ S,

then we have sxi
in Si. Therefore, we need at least four vertices in Si. Note that

X := {sxi
, axi

, bxi
, a′xi

} is a set of four vertices that covers all edges in E(Ji).

Case 3 Finally, let xi, x
′
i ∈ S. Since (sxi

, txi
) ∈ E(Ji), at least one of sxi

, txi
should be in

S. The rest of the argument is analogous to the previous case.

In Lemma 5, we establish the relation between the vertex cover of Gx and vertex

cover of Ĝx.

Lemma 5. For x ∈ {u, v}, the graph Gx admits a vertex cover of size p if and only if

the graph Ĝx has a vertex cover of size (p+ 2n).

Proof. In the forward direction, consider a vertex cover S of Gx. Note that for every

matching edge (xi, x
′
i) ∈ Mx, S∩{xi, x

′
i} 6= ∅. So for each Jxi

corresponding to (xi, x
′
i) ∈

Mx we need four more vertices to cover E(Jxi
) ∪ {(xi, sxi

), (txi
, x′

i)} by Lemma 4. But

|Mx| = n/2, so p+ 4n
2
= p+ 2n vertices are sufficient to cover E(Ĝx).

In the reverse direction, let S be a vertex cover of size (p + 2n) for Ĝx, and let

S ′ = S ∩ V (Gx). For each gadget Jxi
, 0 ≤ i < n/2, we require at least four vertices

from V (Jxi
) by Lemma 4. Therefore, for S to cover all other edges (except the matching

edge) of Gx in Ĝx we are left with at most p vertices. Note that S ′ covers all edges in Gx

except possibly edges (xi, x
′
i) ∈ Mx. For each gadget Jxi

inserted between (xi, x
′
i) ∈ Mx

we know if both of xi, x
′
i /∈ S then from Lemma 4 we require five additional vertices

to cover E(Jxi
) ∪ {(xi, sxi

), (txi
, x′

i)} ⊂ E(Ĝx). For covering the edge (xi, x
′
i) in Gx we

need at least one of xi, x
′
i. We can modify S to include any one of xi, x

′
i and four more

vertices from V (Jxi
) (note that the size of the vertex cover remains unchanged after this
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b b

b b

b

b

b

b b

u′i

v′i

mi pi p′i m′
i

ni qi q′i n′
i

b

b

b

b ui+1

vi+1

Figure 3.2: Gadget J̃i with solid lines showing gadget edges and dotted lines its connec-

tion to outside vertices.

operation). After repeating this operation for all matching edges where it is necessary,

we have that S ′ forms a vertex cover of Gx of size at most p.

We now turn to the gadgets that add to the degree of every vertex in the graph,

turning it into a four-regular graph. For this we need a gadget, which we refer to as

J̃i (indexed by i), as shown in Figure 3.2. Vertices pi, qi, mi, ni and p′i, q
′
i, m

′
i, n

′
i respec-

tively induce two complete graphs. Therefore, irrespective of whether u′
i, v

′
i, ui+1, vi+1 is

included in the vertex cover or not, we require at least 6 vertices among the vertices of J̃i.

Further, we can include mi, ni, m
′
i, n

′
i, pi, p

′
i in vertex cover to cover edges incident to at

least one of the vertices in V (J̃i). Now we are ready to describe the actual construction.

We arbitrarily order the edges in matching, say Mu = {(u0, u
′
0), (u1, u

′
1), ..., (un

2
−1,

u′
n
2
−1 )} of Gu. The corresponding ordering of matching of Gv is Mv = {(v0, v

′
0), (v1

, v′1), ..., (vn
2
−1, v

′
n
2
−1)}.

We will follow this ordering in every step of reduction wherever required. Note that

all vertices of Gx in Ĝx are still degree three vertices, where x ∈ {u, v}. We insert

the gadget J̃i between edges (ui, u
′
i), (ui+1, u

′
i+1) ∈ Mu and (vi, v

′
i), (vi+1, v

′
i+1) ∈ Mv to

increase the degree of the vertices u′
i, ui+1, v

′
i and vi+1. We do this by adding edges

(u′
i, mi), (ui+1, n

′
i), (v

′
i, ni), (vi+1, m

′
i) for 0 ≤ i ≤ n

2
− 1, where the index is computed

modulo n/2. We refer to the graph constructed above as G̃. It is easy to see that G̃ thus

obtained is a 4-regular graph.

In Lemma 6, we establish the relation between vertex cover of G̃ and vertex cover of

Ĝu ⊎ Ĝv.
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Lemma 6. The graph Ĝ = Ĝu ⊎ Ĝv has a vertex cover of size p if and only if, G̃ has a

vertex cover of size (p+ 3n).

Proof. In the forward direction, suppose Ĝ has a vertex cover of size p. Since Ĝ ⊆ G̃,

only extra edges in G̃ are those adjacent to vertices of gadgets J̃i for 0 ≤ i < n/2. From

V (J̃i) if we include vertices {mi, m
′
i, ni, n

′
i, pi, p

′
i}, then they will cover all edges that are

adjacent to at least one vertex in V (J̃i), for all 0 ≤ i < n/2. This implies a p+ 3n sized

vertex cover for G̃.

In the reverse direction, let S be a vertex cover of size p + 3n for G̃, and let S ′ =

V (Ĝ) ∩ S. For each J̃i, 0 ≤ i < n/2, we need at least 6 vertices to cover edges adjacent

to V (Ji). Therefore |S ′| ≤ p. It is easy to see that S ′ is a vertex cover for Ĝ.

Again, for ease of describing paths at the end of this discussion, we define τ(J̃i) =

(mi, pi, ni, qi, p
′
i, m

′
i, q

′
i, n

′
i) and τ ′(J̃i) = (ni, mi, qi, pi, q

′
i, p

′
i, n

′
i, m

′
i) be the two paths that

cover all vertices and edges of J̃i. Combining the two steps of the reduction above, we

have the following.

Corollary 1. Let Guv = Gu ⊎Gv. The graph Guv admits a vertex cover of size p if and

only if the graph G̃ has a vertex cover of size (p+ 7n).

2-factor decomposition of G̃. From Corollary 2.1.5(Petersen 1891) [Die12], every

2k-regular graph has a 2-factor as a subgraph. Here, we give an explicit partition

of G̃ into two 2-factors, namely H,H ′. Initially, let H,H ′ be empty (no vertices).

We have fixed a matching Mu = {(u0, u
′
0), (u1, u

′
1), ..., (un

2
−1, u

′
n
2
−1)} of Gu and Mv =

{(v0, v
′
0), (v1, v

′
1), ..., (vn

2
−1, v

′
n
2
−1)} of Gv corresponding to which G̃ was constructed.

Recall that for the construction of G̃, we deleted the matching edge (xi, x
′
i) and

inserted gadget Jxi
, for 0 ≤ i < n

2
and x ∈ {u, v}. We increased the degree of each

vertices u′
j, uj+1 ∈ V (Gu) ⊂ V (G̃) corresponding to matching edges (uj, u

′
j), (uj+1, u

′
j+1)

and v′j , vj+1 ∈ V (Gv) ⊂ V (G̃) corresponding to matching edge (vj, v
′
j), (vj+1, v

′
j+1) by

connecting it to gadget J̃i, for 0 ≤ j < n
2
(index computed modulo n/2).

We will construct two 2-factors which will be convenient for us in the next phase of

the reduction. These 2-factors will be highly structured in the following sense. The first
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cycle in both 2-factors will involve all the vertices of Gu and Gv respectively, and some

vertices from the gadgets. The rest of the graph now decomposes into a collection of

cycles which get distributed in a natural way. We now describe this formally.

The first cycle C0 in H contains all vertices of Ĝu and J̃i, 0 ≤ i < n
2
that are in G̃.

Similarly the first cycle C ′
0 in H ′ contains all vertices of Ĝv and J̃i, 0 ≤ i < n

2
.

Specifically, the cycle C0 is u0 → ρ(Ju0
) → u′

0 → τ(J̃0) → u1 → ρ(Ju1
) → u′

1 →

τ(J̃1) → ... → un
2
−1 → ρ(Jun

2
−1
) → u′

n
2
−1 → τ(J̃n

2
−1) → u0. Similarly, the cycle C ′

0 is

v0 → ρ(Jv0) → v′0 → τ ′(J̃0) → v1 → ρ(Jv1) → v′1 → τ ′(J̃1) → ... → vn
2
−1 → ρ(Jvn

2
−1
) →

v′n
2
−1 → τ ′(J̃n

2
−1) → v0.

For H to be one of the factors we require cycles in H containing vertices of Ĝv

present in G̃, so we include the cycles Ci+1 = ρ′(Jvi), for 0 ≤ i < n/2 and let CJ =

{C1, C2, ..., Cn
2
}. Since we have already used two degrees of vertices of Gv we are left

with degree two from each vertex which forms a disjoint union of cycles, so we ar-

bitrarily order these cycles from Cn
2
+1, Cn

2
+2, ..., Ck and include them in H . We let

Cv = {Cn
2
+1, Cn

2
+2, ..., Ck}. Similarly we include in H ′ the cycles C ′

i+1 = ρ′(Jui
), for

0 ≤ i < n/2 and refer to them by C′
J and include the graph Ĝu after deleting al-

ready included edge in corresponding cycle and refer to cycles obtained after deletion by

Cu = {C ′
n
2
+1, C

′
n
2
+2, ..., C

′
k}.

3.2.2 4-regular graph with 2-factoring H,H ′ to a braid graph

Let CH ,CH′ be set of cycles in H and H ′ respectively. We will choose VH ⊆ V (G̃) such

that ∀C ∈ CJ ∪Cv, |V (C)∩VH | = 1 and ∀C ′ ∈ C′
J ∪Cu, |V (C ′)∩ VH | = 1. We will delete

vertices in VH and insert some other set of vertices, the aim is to break all cycles at some

vertices and stitch together the broken cycles in H to form one of the Hamiltonian path

and similarly form the other Hamiltonian path using the cycles in H ′.

Let V1 = {bxi
∈ V (Jxi

) |x ∈ {u, v} and 0 ≤ i < n
2
}. Observe that the cycles in Cu

and Cv are disjoint among them (no common vertex), so we select one vertex from each

cycle C ∈ Cu ∪ Cv and include it in V2. Let VH = V1 ⊎ V2. Note that the vertex selected

from the cycles in Cu and C′
J are present in the cycle C0, similarly vertex selected from
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Figure 3.3: (a) Cycles Ci ∈ CH , C
′
j ∈ CH′ , Ci, C

′
j containing ei. (b) Gadget Wi, with

dotted lines showing its connection to neighbors of ei.

cycles in Cv and CJ are present in the cycle C ′
0.

We let the vertices in VH from cycles C1, C2, ..., Ck to be e1, e2, ..., ek and the vertices

in VH from cycles C ′
1, C

′
2, ..., C

′
k to be ek+1, ek+2, ..., e2k. We give the gadgets that we

will use for breaking cycles that ensures the Hamiltonian property and relates the vertex

cover of G̃ to the vertex cover of new graph constructed.

Gadgets used for reduction. We use a gadget Wi as shown in Figure 3.3(b) (indexed

by i). The two paths from e′i to e′′i in Figure 3.4(a), 3.4(b), each cover all the vertices of

Wi and together cover all the edges of Wi.

We create graph GF as follows. Initially we have GF = G̃. We choose a vertex

ei ∈ VH . As G̃ is a 4-regular graph therefore ei has four neighbors say ei1 , ei2, ei3 and

ei4 in V (G̃). Let ei1 , ei2 be neighbor of ei in cycle Ci ∈ CH and ei3 , ei4 be neighbors of

ei in cycle C ′
j ∈ CH′. We delete ei from the graph GF and insert Wi and add edges

(ei1 , ci), (ei3 , ci), (ei2 , di) and (ei4, di) (refer Figure 3.3). Note that when ei is a vertex

in the cycle Ci then 1 ≤ i ≤ k. The proof for the construction for the case when

k + 1 ≤ i ≤ 2k is analogous to the case when 1 ≤ i ≤ k. Also note that for 1 ≤ i ≤ k, ei

is present in the cycle C ′
0 ∈ CH′, therefore we have j = 0.
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Figure 3.4: (a),(b) The two paths from e′i to e′′i each covering all the vertices of Wi and

together covering all the edges of Wi.

In G̃ if at least one of ei1 , ei2 , ei3 , ei4 is not chosen in vertex cover, we have to include

ei in the vertex cover. So by Wi we ensure that if at least one of ei1 , ei2, ei3 , ei4 is not

chosen in the vertex cover of GF , then at least one of ci or di has to be included in vertex

cover of GF . Lemma 7 says that if at least one of ci or di is included in the vertex cover

then the size of the vertex cover of GF increases exactly by one. This indicates that in

the vertex cover for G̃ we need to include vertex ei.

Lemma 7. The minimum vertex cover of Wi has size 9 and does not contain ci or di.

Any vertex cover of Wi containing ci or di has to be of size at least 10.

Proof. The vertex sets {e′i, xi, x
′
i}, {e

′′
i , yi, y

′
i}, {wi1, wi2, wi3}, {wi4 , wi5, wi6} forms K3’s

and (wi, ai) is an edge, therefore we require minimum of 9 vertices to cover edges of Wi.

If we have V ′ = {xi, x
′
i, yi, y

′
i, wi1 , wi2, wi4, wi6, wi} then we can cover all edges of Wi with

9 vertices.

If at least one of ci or di is forced in the vertex cover, say ci is forced then apart

from the K3’s present we have an edge (wi, di), so including ci we need at least 10

vertices. Similar argument holds if bi is forced in the vertex cover. If we have V ′ =

{xi, x
′
i, yi, y

′
i, wi1, wi2, wi4, wi6 , ci, di} then we can cover all edges ofWi with 10 vertices.

In Figure 3.5(b) we show the gadget W̃i used for reduction and in Figure 3.6 we show
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Figure 3.5: (a) Cycle Ci already broken and deletion of vertex ei needed to break C ′
j.

(b) Gadget W̃i, with dotted lines showing its connection to neighbors of ei.

that there are no extra edges other than the two paths covering all vertices of W̃i from ẽ′i

and ẽ′′i . The need of this gadget is when we have a cycle in which more than one vertex

is deleted (in our case the cycles C0 and C ′
0), and we do not have a path for at least one

neighbor of deleted vertex to attach to gadget Wi (refer Figure 3.5(a)).

Let ei ∈ VH be a vertex with neighbors ei1 , ei2 , ei3 and ei4 . The vertex ei is deleted

from GF and gadget W̃i is inserted as shown in Figure 3.7 to get a graph G′
F . If in the

vertex cover of GF one of ei1 , ei2 , ei3 or ei4 is not included in the vertex cover then we

need to include ei in the vertex cover of GF . By W̃i we ensure that if at least one of

ei1 , ei2 , ei3 or ei4 is not included in the vertex cover of G′
F , then one of ẽ′i, ẽ

′′
i , c̃i or d̃i has to

be included in the vertex cover of G′
F . In Lemma 8 we prove that the minimum number

of vertices required to cover edges of W̃i is 9 and if at least one ẽ′i, ẽ
′′
i , c̃i or d̃i is included

in the vertex cover then we require at least 10 vertices to cover all the edges of W̃i.

Lemma 8. The minimum vertex cover of W̃i has 9 vertices and does not contain any of

ẽ′i, ẽ
′′
i , c̃i or d̃i. Any vertex cover of W̃i containing at least one of ẽ′i, ẽ

′′
i , c̃i or d̃i has to be

of size at least 10.

Proof. The vertex sets {w̃i1, w̃i2, w̃i3} and {w̃i4, w̃i5, w̃i6} forms K3’s, so we require at
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Figure 3.6: (a),(b) The two paths from e′i to e′′i each covering all the vertices of W̃i and

together covering all the edges of W̃i.

least 4 vertices among them. Note that {(ẽ′i, x̃i),(ẽ
′′

i , ỹi),(z̃i, d̃
′
i), (d̃i, w̃i7), (c̃i, c̃

′
i)} are

vertex disjoint edges, so we require at least 9 vertices to cover all edges of W̃i. If V ′ =

{w̃i1 , w̃i2, w̃i4, w̃i6, w̃i7, x̃i, ỹi, c̃
′
i, d̃

′
i} then V ′ can cover all edges of W̃i with 9 vertices.

Following are the cases when at least one of ẽ′i, ẽ
′′
i , c̃i or d̃i is forced in the vertex cover.

Case 1 If ẽ′i is forced in the vertex cover then we have {(x̃i, c̃i), (c̃
′
i, z̃i), (w̃i, d̃

′
i), (d̃i, w̃i7),

(ỹi, ẽ
′′
i )} as vertex disjoint edges left to be covered.

Case 2 If ẽ′′i is forced in the vertex cover then we have {(x̃i,ẽ
′
i), (c̃

′
i, z̃i), (w̃i, d̃

′
i), (c̃i, w̃i7),

(ỹi, d̃i)} as vertex disjoint edges left to be covered.

Case 3 If c̃i is forced in the vertex cover then we have {(x̃i, ẽ
′
i), (c̃

′
iw̃i), (z̃i, d̃

′
i), (d̃i, w̃i7),

(ỹi, ẽ
′′
i )} as vertex disjoint edges left to be covered.

Case 4 Similarly, for d̃i forced in the vertex cover then we have {(x̃i, ẽ
′
i), (c̃

′
i, w̃i), (z̃i, d̃

′
i),

(c̃i, w̃i7), (ỹi, ẽ
′′
i )} as vertex disjoint edges left to be covered.

In each of the above case we require at least 6 more vertices. Moreover, V ′ = {ẽ′i, ẽ
′′
i , c̃i, d̃i,

w̃i, z̃i, w̃i1 , w̃i2, w̃i4, w̃i6}, can cover all edges of W̃i with 10 vertices when at least one of

ẽ′i, ẽ
′′
i , c̃i, d̃i is in the vertex cover.
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Figure 3.7: Schematic of connecting gadget Wl and W̃i in one cycle when a cycle has to

be broken at more than one point.

The overall connection. The vertex ek ∈ VH is present in cycle C ′
0 and the vertex

e2k ∈ VH is present in cycle C0. We delete vertex ek from G̃ and insert the gadget Wk.

Similarly we delete vertex e2k and insert gadget W2k appropriately as described in the

construction. Note that the path of the cycles C0, C
′
0 are used for the paths of Wk and

W2k. We also note that all the vertices ei ∈ VH , for 1 ≤ i ≤ k − 1 are present in the

broken cycle C ′
0. Similarly all the vertices ei ∈ VH , for k + 1 ≤ i ≤ 2k − 1 are present in

the broken cycle C0. So we do not have the path available to insert the gadget Wi. So

for all other vertices in VH except ek, e2k, we insert the gadget W̃i, for the corresponding

i. Refer Figure 3.7 for the illustration of inserting gadget Wl and W̃i in the same cycle.

For our case l is either k or 2k and 1 ≤ i < k or k + 1 ≤ i < 2k.

The final gadget used in the reduction is denoted by WCi
, and is shown in Figure 3.8.

We use this gadget for connecting broken cycles. It is easy to see that the gadget WCi

itself is an union of two Hamiltonian paths, and that we need four vertices to cover all

the edges. If we include ti1 , ti2, ti3 and ti5 in the vertex cover then we can cover all the

edges adjacent to at least one vertex of WCi
(these are the vertices to which we connect

other vertices in the graph to connect the broken cycles).

For cycle Ci ∈ CH let the vertex from which the specified path (the path that is
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Figure 3.8: Gadget WCi
, empty circle are the outside vertices to which WCi

is connected.

Hamiltonian with respect to Ci and inserted gadget to break cycle) starts be si and

where it ends be ei, similarly for cycles C ′
i ∈ CH′ let the start vertex be s′i and end

vertex be e′i. For a cycle Ci, Ci+1 ∈ CH and C ′
i, C

′
i+1 ∈ CH′ we insert the gadget WCi

and

add edges (ei, ti1), (si+1, ti2), (e
′
i, ti1), (s

′
i+1, ti2), for 0 ≤ i < k, where k is the number of

cycles in H . It is easy to see that after making these additions, the set of edges of the

graph is exactly a union of two Hamiltonian paths. One of the Hamiltonian paths starts

from s0 and ends at ek and second Hamiltonian path starts at s′0 and ending at e′k (refer

Figure 3.9). Note that in the Figure 3.9 the two Hamiltonian paths obtained from H

and H ′ respectively are defined on the same set of vertices, but for the sake of clarity

broken cycles of H and H ′ are shown separately. We call the final graph as G̃F after the

above modification to G̃.

Putting together all the constructions described above and using the translations of

the vertex cover at every stage, we have the following result.

Lemma 9. The graph G̃ admits a vertex cover of size p if and only if G̃F has a vertex

cover of size at most p+ 22k, where k + 1 is the number of cycles in H.

Proof. In the forward direction, consider a p-sized vertex cover S of G̃. If for some

vi ∈ VH , vi is not included in S, then by Lemma 7 and Lemma 8 we know 9 vertices

are sufficient to cover edges of Wi or W̃i (which ever is inserted). Similarly if vi is

included in S, we get a corresponding increase in the size of vertex cover for G̃F exactly

by one from Lemma 7 and Lemma 8. Also for covering edges of WCi
and all other edges

adjacent to vertices of WCi
, 4 vertices are necessary and sufficient. Therefore, we have a

p+ 9.2.k + 4.k = p + 22k sized vertex cover for G̃F . (|VH | = 2k).

In the reverse direction, for each of WCi
0 ≤ i < k, we require at least 4 vertices.

To cover the edges in each of Wi and W̃i we require at least 9 vertices by Lemma 7 and
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structed from cycles in H and H ′ (rectangles representing copies gadget of WCi
).

Lemma 8. Therefore to cover the edges of G̃ present in G̃F we are left with at most p

vertices. Consider the vertices ei that were deleted from G̃ to construct G̃F . If any one

of the neighbor of ei is not included in the vertex cover of G̃F , then by Lemma 7 and

Lemma 8 for the corresponding Wi (or W̃i) we need at least 10 vertices in the vertex

cover of G̃F , indicating that we need to include ei in the vertex cover of G̃.

Corollary 2. The graph Guv = Gu ∪Gv has a vertex cover of size at most p if and only

if G̃H has a vertex cover of size p+ 29k.

Theorem 10. The problem of finding a vertex cover of size at most k in a braid graph

is NP-complete.

Proof. Follows from the Corollary 2.

3.3 An improved branching algorithm

In this section we describe an improved FPT algorithm for the vertex cover problem

on graphs with maximum degree at most four. The algorithm is essentially a search

tree, and the analysis is based on the branch-and-bound technique. The input to the

algorithm is denoted by a pair (G, k), where G is a graph, and the question is whether

G admits a vertex cover of size at most k.

We work with k, the size of the vertex cover sought, as the measure — sometimes

referred to as the budget.
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Preprocessing. We begin by eliminating simplicial vertices (refer paragraph on Pre-

processing a simplicial vertex, Chapter 2). We delete N [v] and reduce the budget to

k − |N(v)|. Our algorithm makes extensive use of the folding technique, as described in

past work [CKJ99, CKX06] (refer paragraph on Folding a degree two vertex, Chapter 2).

Note that the new vertex generated by the folding operation can have more than four

neighbors, especially if the vertices adjacent to the degree two vertex have, for example,

degree four to begin with. We call a degree two vertex foldable if after folding, the folded

vertex has degree at most four and easily foldable if after folding the folded vertex has

degree at most three. In the preprocessing step we will fold only easily foldable vertices.

Typically, we ensure a reasonable drop on all branches by creating the following win-

win situation: if a vertex is foldable, then we fold it. If it is not, then there are sufficiently

many vertices in the second neighborhood of the vertex, and this usually leads to a good

branching vector. Also, during the course of the branching, we appeal to a couple of

simple facts about the structure of a vertex cover, which we state below.

Lemma 11. [CKJ99, First part of Lemma 3.2] Let v be a vertex of degree three in

a graph G. Then there is a minimum vertex cover of G that contains either all three

neighbors of v or at most one neighbor of v.

This follows from the fact that a vertex cover that contains v (where d(v) = 3) and

two of its neighbors can be easily transformed into one, of the same size, that omits v

and contains all of its neighbors.

Lemma 12. If x, a, y, b form a cycle of length four in G (in that order), and the degree

of a and b in G is two, then there exists an optimal vertex cover that does not pick a or

b and contains both x and y.

Proof. Let S be an optimal vertex cover. Any vertex cover must pick at least two

vertices among x, y, a, b. If x and y belong to S, then clearly S does not contain a and

b (otherwise S \ {a, b} would continue to be a vertex cover, contradicting optimality).

If S does not contain x (or y, or both), then S must contain both a and b. Note that
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(S \ {a, b}) ∪ {x, y} is a vertex cover whose size is at most |S|, and is a vertex cover of

the desired requirements.

Overall Algorithm. To begin with, the branching algorithm tries to branch mainly

on a vertex of degree three or two. If the input graph is four-regular, then we simply

branch on an arbitrary vertex to create two instances, both of which have at least one

vertex of degree at most three. We note that this is an off-branching step, in the future,

the algorithm maintains the invariant that at each step, the smaller graph produced has

at least one vertex whose degree is at most three. After this, we remove all the simplicial

vertices and then fold all easily-foldable vertices.

The branching algorithm that we propose assumes that we will always find a vertex

whose degree is bounded by three to branch on, therefore it is important to avoid the

situation where the graph obtained after folding all available degree two vertices is com-

pletely devoid of vertices of degree bounded by three (which is conceivable if all degree

three vertices are adjacent to degree two vertices that in turn get affected by the folding

operation). Therefore, we apply the folding operation somewhat tactfully− we apply it

only when the degree two vertex is foldable. We avert the danger of leading ourselves

to a four-regular graph recursively by explicitly ensuring that vertices of degree at most

three are created whenever a folded vertex has degree four.

Consider a degree two vertex that is not easily foldable. For any degree two vertex

v with neighbors u and w, note that there exists an optimal vertex cover that either

contains v or does not contain v and includes both its neighbors. Indeed, if an optimal

vertex cover S contains, say v and u, then note that (S \ {v})∪ {w} is a vertex cover of

the same size. So we branch on the vertex v:

1. When v does not belong to the vertex cover, we pick u, w in the vertex cover,

leading to a drop of two in the measure.

2. When v does belong to the vertex cover, we have that N(u) ∪ N(w) must belong

to the vertex cover, and we know that |N(u)∪N(w)\{v}| ≥ 4 (otherwise, v would

be easily-foldable), and this leads to a drop of at least five in the measure.
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So we either preprocess degree two vertices in polynomial time, or branch on them

with a branching vector of (2, 5). At the leaves of this branching tree, if we have a

sub-cubic graph, then we employ the algorithm of [Xia10]. Otherwise, we have at least

one degree three vertex which is adjacent to at least one degree four vertex. We branch

on these vertices next. The case analysis is based on the neighborhood of the vertex —

broadly, we distinguish between when the neighborhood has at least one edge, and when

it has no edges. The latter case is the most demanding in terms of a case analysis. For

the rest of this section, we describe all the scenarios that arise in this context.

For this part of the algorithm, we can always assume that we are given a degree three

vertex with a degree four neighbor. Let v be a degree three vertex, and let N(v) :=

{u, w, x}, where we let u denote a degree four vertex.

Degree three vertices with edges in their neighborhood. Note that u, w, x does

not form a triangle, otherwise v would be a simplicial vertex and we would have handled

it earlier. So, we deal with the case when N(v) is not a triangle, but has at least one

edge. If (w, x) is an edge, then we branch on u:

1. When u does belong to the vertex cover, we delete u from the graph, and we are

left with v, w, x being a triangle where v is a degree two vertex, and therefore we

may pick w, x in the vertex cover — together, this leads to a drop of three in the

measure.

2. When u does not belong to the vertex cover, we pick four of its neighbors in the

vertex cover, leading to a drop of four in the measure.

On the other hand, if (w, x) is not an edge, then there is an edge incident to u.

Suppose the edge is (u, w) (the case when the edge is (u, x) is symmetric). In this case,

we branch on x exactly as above. The measure may drop by three when x does not

belong to the vertex cover, if x happens to be a degree three vertex. Therefore, our

worst-case branching vector in the situation when N(v) is not a triangle, but has at least

one edge is (3, 3).
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Before going further on the case analysis, we describe a branching strategy for some

specific situations — these mostly involve two non-adjacent vertices that have more than

two neighbors in common, with at least one of them of degree four. This will be useful in

scenarios that arise later. We consider the case when a degree four vertex p non-adjacent

p q

a

b

c

x y

Figure 3.10: The case involving at least three common neighbors.

to a vertex q has at least three neighbors in common, say a, b, c and let x be the other

neighbors of p that may or may not be adjacent to q. Notice that there always exists an

optimal vertex cover that either contains both p and q or omits both p and q. To see this,

consider an optimal vertex cover S that contains p and omits q. Then, S clearly contains

a, b, c. Notice now that T := (S \{p})∪{x} is also a vertex cover, and T contains neither

p or q, and has the same size as S. This suggests the following branching strategy:

1. If p and q both belong to the vertex cover, then the measure clearly drops by two.

We proceed by deleting p and q from G. Now note that the degree of the vertices

{a, b, c} reduces by two and they become vertices of degree one or two (note that

they cannot be isolated because we always begin by eliminating vertices of degree

two by preprocessing or branching). If any one of these vertices is simplicial or

foldable then we preprocess it or fold it respectively. Otherwise, we branch on a:

(a) when a does not belong to the vertex cover, we pick its neighbors in the vertex

cover, leading to a drop of two in the measure.

(b) when a does belong to the vertex cover, we have that its second neighborhood

must belong to the vertex cover, and this leads to a drop of six in the measure

since a is not foldable.
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2. If p and q are both omitted from the vertex cover, then we pick N(p)∪N(q) in the

vertex cover and the measure drops by at least four.

Depending on the situations the branching vector can be one of the following:

• a is simplicial or foldable in G \ {p, q}. (3, 4)

• a is not foldable in G \ {p, q}. (4, 8, 4)

We refer to the branching strategies outlined above as the CommonNeighborBranch

strategy.

Degree three vertices whose neighborhoods are independent. Here we consider

several cases. Broadly, we have two situations based on whether u, w, x have any common

neighbors or not (apart from v).
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Figure 3.11: Scenario A, Case 1: The situation (left) and the suggested branching (right).

First, suppose there exists a vertex t that is adjacent to at least two vertices in N(v).

Here, let us begin by considering the situation when t is adjacent to u and one other

vertex. We will call this Scenario A.
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In this scenario, we distinguish two cases based on the degree of t, and whether t is

adjacent to a degree four vertex or not. Here after for ease in specification we will refer

to a degree one vertex also as a foldable vertex.

Case 1: The vertex t has degree four. Here, we branch on u as follows. We let

(t, w) to be an edge in the graph.

1. If u belongs to the vertex cover, then we delete u from G. Then, if v is foldable in

the resulting graph, then we fold v. Otherwise, we branch further on v:

(a) When v does belong to the vertex cover, we have that N(w) ∪ N(x) must

belong to the vertex cover, and we know that |N(w) ∪N(x) \ {v}| ≥ 5 (oth-

erwise, v would be foldable), and this leads to a drop of at least six in the

measure.

(b) When v does not belong to the vertex cover, we pick w, x in the vertex cover,

leading to a drop of two in the measure. Here, we delete v, w and x, after

which t becomes a degree two vertex. If t is foldable in the resulting graph,

then we fold t. Otherwise, we branch on t. Let t′, t′′ denote the two neighbors

of t.

When t does belong to the vertex cover, we have that N(t′)∪N(t′′) must belong

to the vertex cover, and this leads to a drop of at least six in the measure.

When t does not belong to the vertex cover, we pick t′, t′′ in the vertex cover,

leading to a drop of two more in the measure.

2. If u does not belong to the vertex cover, then we pick all of its neighbors in the

vertex cover. Since the degree of u is four, this leads the measure to drop by four.

Also, after removing N [u] from G, the vertex w lose two neighbors (namely v and

t). If it is foldable, then we proceed by folding the said vertex. Otherwise, we

branch further on w, letting w′, w′′ denote the neighbors of w.

(a) When w does belong to the vertex cover, we have that N(w′) ∪ N(w′′) must

belong to the vertex cover and this leads to a drop of six in the measure.
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(b) When w does not belong to the vertex cover, we pick w′, w′′ in the vertex

cover, leading to a drop of two in the measure,

Depending on the situations that arise, the branching vectors can be one of the

following (we use S to denote the vertex cover that will be output by the algorithm):

• w is foldable in G \N [u], and v is foldable in G \ {u}. (2, 5)

• w is foldable in G \ N [u], v is not foldable in G \ {u}, and t is foldable in (G \

{u}) \N [v]. (7, 4, 5)

• w is foldable in G \ N [u], v is not foldable in G \ {u}, and t not foldable in

G \ {u} \N [v]. (7, 9, 5, 5)

• w is not foldable in G \N [u], and v is foldable in G \ {u}. (2, 10, 6)

• w is not foldable in G \ N [u], v is not foldable in G \ {u}, and t is foldable in

G \ {u} \N [v]. (7, 4, 10, 6)

• w is not foldable in G \N [u], v is not foldable in G \ {u}, and t is not foldable in

G \ {u} \N [v]. (7, 9, 5, 10, 6)

The reason we needed to have d(t) = 4 in the case above was to ensure that we have a

vertex that we can either fold or branch on in the graph G \N(v), which is the situation

that arises when v is not foldable, and N(v) is included in the vertex cover. If w and

x both have degree three, then v is indeed foldable and the branching above gives the

desired guarantee. Otherwise, if t has degree three and in particular (t, x) is an edge,

then t becomes isolated in this situation, and we have no clear way of further progress.

We now continue our case analysis. Recall that we would like to address the situation

that t is degree three and all of its neighbors are common with v, and further that both

of w and x have degree four (otherwise v would be foldable and we can apply Scenario

A, Case 1).
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Case 2: The vertex t has degree three, the vertices w, x have degree four,

and (t, x) ∈ E. Here, we let u′ and u′′ denote the neighbors of u. Our case analysis is

now based on the degrees of these vertices.

Case 2.I: At least one of u′ or u′′ has degree three: Suppose, without loss of generality,

that u′ has degree three. Note that x and u are two non-adjacent vertices. The vertices v

and t are already in their common neighborhood. If they have more common neighbors,

then we branch according to the CommonNeighborBranch strategy. Otherwise, we

branch on the vertex w as follows.

1. If w belongs to the vertex cover, then we delete w from G. Here, the measure drops

by one. In the remaining graph, branch on u:

(a) When u does belong to the vertex cover, then we also pick x in the vertex

cover (see Lemma 11). Further, we fold u′ if it is foldable, otherwise we branch

on u′:

When u′ does belong to the vertex cover, we have that its second neighborhood

must belong to the vertex cover, and this leads to a further drop of six in the

measure.

When u′ does not belong to the vertex cover, we pick its neighbors in the vertex

cover, leading to a drop of two in the measure.

(b) When u does not belong to the vertex cover, we pick the neighbors of u in the

vertex cover. Since u is not in the vertex cover, and w is in the vertex cover,

we know by Lemma 11 that the neighbors of x must be in the vertex cover.

Note that u and x have no common neighbors other than v and t, otherwise

the CommonNeighborBranch strategy would apply. Therefore, we have

that the measure drops by at least six more (the vertex u has at least four

neighbors and x has at least two private neighbors).

2. If w does not belong to the vertex cover, then we pick all of its neighbors in the

vertex cover. This immediately leads the measure to drop by four. Also, after
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removing N [w] from G, the vertex u loses two neighbors (namely v and t). If u is

foldable we fold u, otherwise we branch on u:

(a) When u does belong to the vertex cover, we have that N(u′)∪N(u′′) must be

in the vertex cover and this leads to a drop of six in the measure.

(b) When u does not belong to the vertex cover, we pick u′, u′′ in the vertex cover,

leading to a drop of two in the measure.

Depending on the situations that arise, the branching vectors can be one of the

following:

• u is foldable in G \N [w], and u′ is foldable in G \ {u, w}. (4, 7, 5)

• u is foldable in G \N [w], and u′ is not foldable in G \ {u, w}. (9, 5, 7, 5)

• u is not foldable in G \N [w], and u′ is foldable in G \ {u, w}. (4, 7, 10, 6)

• u is not foldable in G \N [w], and u′ is not foldable in G \ {u, w}. (9, 5, 7, 10, 6)

Case 2.II: Both u′ or u′′ have degree four : Here, we branch on u′, as described below.

1. If u′ belongs to the vertex cover, then we delete u′ from G. Here, the measure

drops by one. In the remaining graph, branch on u:

(a) When u does belong to the vertex cover, remove u from G. In the remaining

graph, the vertices v and t loses one neighbor each (namely u), and are now

vertices of degree two. Note that v, w, t, x now form a C4, and since v and

t have degree two, we may pick w and x in the vertex cover without loss of

generality (see Lemma 12).

(b) When u does not belong to the vertex cover, we pick the neighbors of u in

the vertex cover. Also, after removing N [u] from G, the vertices w and x lose

two neighbors each (namely v and t). If either of them are foldable, then we

proceed by folding. Notice that none of them become isolated because degree

two vertices are eliminated. Otherwise, we branch on w:
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Figure 3.12: Scenario A, Case 2.I: The situation (left) and the suggested branching

(right).

When w does belong to the vertex cover, we have that its second neighborhood

must belong to the vertex cover, and this leads to a drop of six in the measure.

When w does not belong to the vertex cover, we pick its neighbors in the vertex

cover, leading to a drop of two in the measure.

2. If u′ does not belong to the vertex cover, then we pick all of its neighbors in the

vertex cover. This immediately leads the measure to drop by four. Also, after

removing N [u′] from G, the vertices v and t loses one neighbor each (namely u),

and are now vertices of degree two. Note that v, w, t, x now form a C4, and since

v and t have degree two, we may pick w and x in the vertex cover without loss of

generality (see Lemma 12).

If one of w or x is foldable in G \N [u], then we have a branching vector of (4, 5, 6).

Otherwise, we have a branching vector of (4, 10, 6, 6).

This completes the description of Scenario A, where we assumed that t was adjacent

to u. Now, let us turn to the situation when t is not adjacent to u. Since we are in the
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Figure 3.13: Scenario A, Case 2.II: The situation (left) and the suggested branching

(right).

setting where t is adjacent to two neighbors of v, this implies that w and x are both

neighbors of t. In fact, we can even assume that both w and x are vertices of degree

three, otherwise we would be in Scenario A by a simple renaming of vertices. We call

this setup Scenario B.

Here, we simply branch on the vertex u, as follows:

1. If u belongs to the vertex cover, then we delete u from G. In the resulting graph,

v is evidently a foldable degree two vertex, so we fold v. Notice that the measure

altogether drops by two in this branch.

2. If u does not belong to the vertex cover, then we pick all its neighbors in the vertex

cover. After removing N [u], note that w and x have degree two. If either of them

are foldable, then we proceed by folding. Otherwise, we branch on w:

(a) When w does belong to the vertex cover, we have that its second neighborhood

must belong to the vertex cover, and this leads to a drop of six in the measure.

(b) When w does not belong to the vertex cover, we pick its neighbhors in the

vertex cover, leading to a drop of two in the measure.
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Note that if w is foldable in G\N [u], then we have a branch vector of (2, 5), otherwise,

we have a branch vector of (2, 6, 10). Now we have covered all the cases that arise when

the neighbors of v have a shared neighbor other than v, which we called t.
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Figure 3.14: Scenario B: The situation (left) and the suggested branching (right).

The remaining case is when the vertices u, w, x have no common neighbors other than

v. We call this Scenario C. Here, we have cases depending on the degree of w and x

— the first setting is when both w, x are vertex of degree three. Second when both have

degree four and third when one has degree three and other has degree four.

When the degree of both w and x is three: This branching is identical to the

branching for Scenario B. Note that the important aspect there was the fact that v is

foldable in G\{u}, which continues to be the case here. It is easy to check that all other

elements are identical.

When the degree of both w and x is four: In this case, we branch on w.

1. If w belongs to the vertex cover, then we delete w from G. Here, the measure drops

by one. In the remaining graph, branch on v:

(a) When v does belong to the vertex cover and we are in case when w is in vertex

cover, we know by Lemma 11 that the neighbors of u and x must be in the

vertex cover. Note that u, w and x have no common neighbors other than

v (or we would be in Scenario A or Scenario B). But, both u and x are

degree four vertices with no vertex common in their neighborhood other than
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v, so we include the neighbors of u and x in the vertex cover and delete from

graph N [u] ∪N [x] ∪ {w}, with a total drop in the measure by 8.

(b) When v does not belong to the vertex cover, we pick the neighbors of v in the

vertex cover and the measure drops by three.

2. If w does not belong to the vertex cover, then we pick all of its neighbors in the

vertex cover and we branch on x.

(a) When x does belong to the vertex cover, and we have that w is not in the

vertex cover, we know by Lemma 11 that neighbors of u and w must be in

vertex cover. So we include neighbors of u and x in the vertex cover, to get a

total drop of 8.

(b) When x does not belong to the vertex cover, we include all neighbors of x in

the vertex cover to get a total drop of 7.

Here we have the branch vector as (8, 3, 8, 7).

When the degree of w is four and x is three: We let the two other neighbors of

x to be x1, x2. If x1 is a degree four vertex and x2 is a degree three vertex (or vice-versa)

then we have a degree three vertex x adjacent to two degree three vertices v, x2 and a

degree four vertex x1 and we can apply the rules in Scenario C: case 1. So we are

left with two cases one when both x1, x2 are degree three vertices and second when both

x1, x2 are degree four vertices.

Both x1, x2 are degree three vertices : In this case we branch on u.

1. When u does belong to the vertex cover then we branch on v.

(a) When v does belong to the vertex cover and we know u is in vertex cover, we

know by Lemma 11 that neighbors of w, x are in vertex cover. So we include

neighbors of w, x in vertex cover and get a drop in measure by 7.

(b) When v does not belong to the vertex cover then we include neighbhors of v

in the vertex cover, to get a drop in the measure by 3.
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2. When u does not belong to the vertex cover. Then we include neighbors of u in

the vertex cover and delete N [u] from the graph. Now x is a degree two vertex and

|(N(x1)∪N(x2))\{x}| ≤ 4, so we fold x to get a drop of one more in the measure.

Here we have the branch vector as (7, 3, 5).

Both x1, x2 are degree four vertices : We branch on x1.

1. When x1 does belong to the vertex cover, we branch on x.

(a) When x does belong to the vertex cover, we know by Lemma 11 that neighbors

of v and x2 are in vertex cover. So we include neighbors of v and x2 in the

vertex cover and get a total drop of 7 in the measure.

(b) When x does not belong to the vertex cover, we get an immediate drop in

measure by 3, now we branch on u.

When u does belong to the vertex cover and we are in the case when x does

not belong to the vertex cover, we know by Lemma 11 that neighbors of w, x

must be in vertex cover. So we include neighbors of w, x in the vertex cover

and get a total drop in the measure by 7

When u does not belong to the vertex cover then we include neighbors of u in

the vertex cover and get a total drop of 6 in the measure.

2. When x1 does not belong to the vertex cover, we get an immediate drop of four

in the measure. We delete N [x1] from the graph, after deletion v is a degree two

vertex. If v is foldable we fold v and get a drop of 1, otherwise we branch on v.

(a) When v does belong to the vertex cover then we include the neighborhood of

u and w in the vertex cover and get a total drop in the measure of at least 10.

(b) When v does not belong in the vertex cover then we include neighbors of v in

the vertex cover and get a total drop of 6.

If v is foldable in G \ N [x1] we have the branch vector (7, 7, 6, 5), otherwise the

branch vector is (7, 7, 6, 10, 6).
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Scenario Cases Branch Vector c

Degree Two (not easily foldable) (2, 5) 1.2365

Degree Three Edge in N(v) (3, 3) 1.2599

CommonNeighborBranch

(3, 4) 1.2207

(4, 8, 4) 1.2465

Scenario A

Case 1

(2, 5) 1.2365

(7, 4, 5) 1.2365

(7, 9, 5, 5) 1.2498

(2, 10, 6) 1.2530

(7, 4, 10, 6) 1.2475

(7, 9, 5, 10, 6) 1.2575

Case 2 (I)

(4, 7, 5) 1.2365

(9, 5, 7, 5) 1.2498

(4, 7, 10, 6) 1.2475

(9, 5, 7, 10, 6) 1.2575

Scenario Cases Branch Vector c

Case 2 (II)

(4, 5, 6) 1.2498

(4, 10, 6, 6) 1.2590

Scenario B

(2, 5) 1.2365

(2, 6, 10) 1.2530

Scenario C

Case 1 (2, 6, 10) 1.2530

Case 2 (8, 3, 8, 7) 1.2631

Case 3

(7, 3, 5) 1.2637

(7, 7, 6, 5) 1.2519

(7, 7, 6, 10, 6) 1.2592

Table 3.1: The branch vectors and the corresponding running times across various sce-

narios and cases for algorithm of maximum degree four graphs.
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Note that the correctness of the algorithm is implicit in the description, and follows

from the fact that the cases are exhaustive and so is the branching. The branch vectors

are summarized in Table 3.1. We have consequently, the following theorem.

Theorem 13. The Vertex Cover problem on graphs that have maximum degree at

most four can be solved in O⋆(1.2637k) worst-case running time.

3.4 Conclusions

In this chapter we showed that the problem of hitting all axis-parallel slabs induced by

a point set P is equivalent to the problem of finding a vertex cover on a braid graph.

We established that this problem is NP-complete. Finally, we also gave an algorithm for

vertex cover on graphs of maximum degree four whose running time is O⋆(1.2637k). It

would be interesting to know if we can exploit the structure of braid graphs to design an

algorithm with better running time for computing an optimal vertex cover on them.



Chapter 4

Vertex cover on triangulations

In this chapter, we focus on the computational problem of finding optimal vertex covers

on triangulations, specifically chordless-NST. Uehara [Ueh96] showed that the k-vertex

cover problem is NP-complete on 3-connected, triangle free planar graphs. We show

that for chordless-NST (refer Definition 10), deciding the vertex cover problem is NP-

complete by giving a reduction from an instance of vertex cover problem on 3-connected

triangle free planar graph. Dillencourt and Smith [DS96] showed that chordless-NST s

are Delaunay realizable. Note this implies that the vertex cover problem on graphs

realizable as Delaunay triangulation and vertex cover on triangulations is NP-complete.

We extend this to show that problem of vertex cover on maximal-planar graphs (refer

Definition 9) is NP-complete.

4.1 NP-completeness of vertex cover on chordless-

NST

In this section, we show that the problem of deciding k-vertex cover on chordless-NSTs

is NP-complete. We reduce an instance of k-vertex cover on 3-connected triangle-free

planar graphs to an instance of k′-vertex cover on a chordless-NST.

Let G be a 3-connected triangle-free planar graph with |V (G)| = n and |E(G)| = m.

We will construct a chordless-NST graph G′. Initially we have G′ = G. We consider a

44
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fixed straight line planar embedding of G′. Let f0, f1, ..., fk−1 be the faces of G′, with

fk−1 being the outer face. For each face fi, we denote the vertices on the face fi by

vi0 , vi1 , ..., vini−1
(forming cycle in that order), where ni is the number of vertices on the

face fi, for 0 ≤ i < k.

Our goal with the construction of G′ is to get a triangulation of each inner face of G.

Informally, we add inside every face f of length ℓ, a cycle Cf of length ℓ, and we then

place a very large wheel inside this cycle. We triangulate these two layers by distributing

edges uniformly. The size of the wheel and the budget of the reduced instance is chosen

so that any vertex cover of G′ cannot afford to leave out any vertex from Cf or the center

of the wheel — this would require the vertex cover to pick too many vertices from the

wheel. In particular, the trade-off is such that we can afford to pick half the vertices

from the wheel (which would be required), but picking the neighborhood of a vertex v

from Cf on the wheel, overshoots the budget. Once the structure of the vertex cover

on the gadgets is forced, the original edges can be easily covered by the original vertex

cover. We now turn to a formal description.

For face fi of G
′, where 0 ≤ i < k − 1 we insert a cycle Ci = (ui0 , ui1, ..., uini−1

) (in

that order) inside fi and add edges (vij , uij), (vij , uij+1
) to E(G′), for 0 ≤ j < ni (index

modulo ni). Inside cycle Ci we insert a wheel Wi on 2c.ni +1 vertices, where c =4n and

the cycle of the wheel being wi0, wi1, ..., wi2c.ni−1
and xi being the center of the wheel.

For uij , 0 ≤ j < ni we add 2c + 1 edges, (uij , wi2c.j+l
), 0 ≤ l ≤ 2c (index modulo 2c.ni)

(refer Figure 4.1). Note the figure gives a qualitative illustration of triangulating a face

fi. The actual number of vertices in the cycle or wheel as shown in the figure does not

correspond to the number of vertices as given by the construction.

Lemma 14. The graph G admits a vertex cover of size p if and only if G′ has a vertex

cover of size p+ (k− 1) + (c+ 1)(2m− nk−1), where c = 4n, k is the number of faces in

G and nk−1 is the number of vertices on the outer face.

Proof. Without loss of generality we may assume p < n. In the forward direction consider

a vertex cover S of G, where |S| = p. The only edges in G′ that might not be covered

by S are those adjacent to vertices of cycle Ci or wheel Wi, for 0 ≤ i < k − 1. If we add
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Figure 4.1: Face fi, triangulated by inserting vertices ui forming a cycle and ver-

tices wij forming a wheel.

to S, all vertices of Ci, 0 ≤ i < k − 1 and for each wheel Wi, 0 ≤ i < k − 1, include

alternate vertices and the center of the wheel xi, it is easy to see that we can cover all

edges of G′, and the number of extra vertices x that we have added to S is given by the

expression below:

=
k−2
∑

i=0

(ni +

⌈

2c.ni

2

⌉

+ 1)

= (k − 1) +
k−2
∑

i=0

(c+ 1).ni

= (k − 1) + (c+ 1)(2m− nk−1)

So we have a vertex cover of G′ with size at most p+ (k − 1) + (c+ 1)(2m− nk−1).

In the reverse direction, let S be a vertex cover of size p+(k−1)+(c+1)(2m−nk−1)

for G′. We argue that all the vertices of cycle Ci, 0 ≤ i < k − 1 must be present in

S. Suppose there exists a Cj corresponding to the face fj of G, such that we have not

included a vertex uj ∈ V (Cj) in the vertex cover. But then we need to include all the

vertices that are neighbors of uj in the vertex cover and by construction we have 2c+ 1

neighbors in the corresponding wheel Wj. Other vertices that are left in wheel Wj forms a

cycle (with some extra edges), so we need at least ⌈(2c.nj+1−(2c+1))/2⌉ more vertices.

From the cycle Cj we need at least ⌈nj/2⌉ vertices and from remaining cycles Ci and
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wheel Wi, we need atleast 1 + 2c.ni/2+ ⌈ni/2⌉ more vertices for 0 ≤ i < k− 1, i 6= j. So

the total number of vertices y needed is given by the expression below:

y = (2c+ 1) +

⌈

2c.nj + 1− (2c+ 1)

2

⌉

+
⌈nj

2

⌉

+

k−2
∑

i=0,i 6=j

(1 +
2c.ni

2
+
⌈ni

2

⌉

)

= (2c+ 1) + c(nj − 1) +
⌈nj

2

⌉

+
k−2
∑

i=0,i 6=j

(1 + c.ni +
⌈ni

2

⌉

)

= c+

k−2
∑

i=0

(1 + c.ni +
⌈ni

2

⌉

)

= c+ (k − 1) +

k−2
∑

i=0

(c.ni +
⌈ni

2

⌉

)

≥ c+ (k − 1) +
2c+ 1

2

k−2
∑

i=0

ni

= c + (k − 1) +
2c+ 1

2
(2m− nk−1)

= c+ (k − 1) + (c+ 1)(2m− nk−1)−
1

2
.(2m− nk−1)

Since G is a planar graph, so number of edges m can be at most 3n − 6 and each face

has at least four vertices, therefore we have

y ≥ 4n−
1

2
.(2(3n− 6)− 4) + (k − 1) + (c+ 1)(2m− nk−1)

> n+ (k − 1) + (c+ 1)(2m− nk−1)

which is a contradiction to the assumption that G′ has a vertex cover of size at most

p+(k−1)+ (c+1)(2m−nk−1) since p < n. Therefore, we cannot leave any vertex from

cycle Ci, 0 ≤ i < k−1. Total number of vertices included by including all vertices of Ci,

0 ≤ i < k−1 is x =
∑k−2

i=0 ni = (2m−nk). To cover all the wheels Wi, 0 ≤ i < k−1 (Note

we have covered all edges with one vertex in wheel and other vertex not in the wheel)

we require at least c.ni +1 vertices from Wi. So the total number of vertices required to
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cover all edges of the wheels is at least y =
∑k−2

i=0 (c.ni + 1) = c(2m− nk) + (k − 1). So

for covering all other edges (edges of G) we are left with at most p vertices.

Theorem 15. Deciding k-vertex cover on chordless-NST is NP-complete.

Proof. Follows from Lemma 14.

Lemma 16. Graph G′ is realizable as a Delaunay Triangulation.

Proof. G′ does not have a chord since G was 3-connected and the construction of G′

did not alter the outer face. Also since G is a triangle free graph, G′ does not have

any separating triangle (non-facial triangles) induced by vertices of G. Note that all the

extra cycles (non-facial) and wheels that we insert in G to create G′ are of length greater

than three. Hence G′ does not have any non-facial triangle.

It is shown in [DS96] that all chordless-NSTs are realizable as combinatorially equiva-

lent Delaunay triangulations. It follows that G′ is combinatorially realizable as Delaunay

triangulation.

Theorem 17. Deciding k-vertex cover on graphs realizable as Delaunay triangulations

is NP-complete.

Proof. Follows from Theorem 15 and Lemma 16.

Corollary 3. Deciding k-vertex cover on triangulated graph is NP-complete.

4.2 NP-completeness of vertex cover on maximal pla-

nar graphs

In this section we show that the vertex cover problem on maximal planar graphs is NP-

complete. We give a reduction from an instance of vertex cover on triangulated graph

(which is known to be NP-complete from Section 4.1) to an instance of vertex cover on

a maximal planar graph. Given an instance of k-vertex cover on a triangulated graph

G (outer face not necessarily a triangle) on n vertices, we construct a maximal planar
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Figure 4.2: Outer face of graph G′ is a triangle C3 = (x0, x1, x2). The region between

C3 and the outer face of G is triangulated by adding vertices ui forming a cycle C and

vertices wi forming a cycle C ′.

graph G′ corresponding to G maintaining appropriate relationship between the sizes of

the vertex cover. We fix a straight line embedding of G in plane (non-crossing edges)

with the non-triangular face (if any) as the outer face. We let the outer face in this

fixed embedding of G to be f , with the vertices forming the outer face as v0, v1, ...vn′−1

(forming a cycle in that order).

Initially we have G′ = G. We insert a cycle C = (u0, u1, ..., un′−1) (in that order)

outside f and add edges (ui, vi), (ui, vi+1) to E(G′), for 0 ≤ j < n′ (index modulo n′).

Outside cycle C we insert another cycle C ′ = (w0, w1, ..., wcn′−1) (in that order), where

c = 6n. For each vertex ui, 0 ≤ i < n′ we add c + 1 edges (ui, wci+j), 0 ≤ j ≤ c,

(index modulo cn′), . Outside C ′ we add cycle C3 = (x0, x1, x2), and for each vertex xi,

0 ≤ i < 3 add edges (xi, wci+j), 0 ≤ j ≤ 2n.n′ (refer Figure 4.2). Note the figure gives a

qualitative illustration of construction of maximal planar graph. The actual number of

vertices in the cycle as shown in the figure does not correspond to the number of vertices

as given by the construction.

Lemma 18. Graph G admits a vertex cover of size p if and only if G′ has a vertex cover

of size p+ n′(3.n+ 1) + 3.

Proof. Without loss of generality we may assume p < n. In the forward direction consider
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a vertex cover S of G, |S| = p. The only edges in G′ that might not be covered by S

are those adjacent to vertices of cycle C,C ′ and C3. If we add to S, all vertices of C,

alternate vertices of cycle C ′ and all the three vertices of C3, then it is easy to see that

all the edges of G′ are covered, and the number of extra vertices that we added to S is

n′+6n.n′/2+3 = n′(3n+1)+3. So we have a vertex cover for G′ of size p+n′(3n+1)+3.

In the reverse direction consider a vertex cover S of G′ of size p+ n′(3n+1)+ 3. We

first argue that all the vertices of cycle C must be present in S. Suppose S does not

contain at least one vertex say u ∈ V (C), then we need to include all its 6n+1 neighbors

of u in C ′ and from the remaining 6n.n′− (6n+1) vertices in C ′ forming a path we need

to include at least ⌊(6n.n′ − (6n+1))/2⌋ vertices in the vertex cover. We need at least 2

vertices to cover the edges of C3 and ⌈n′/2⌉ vertices to cover edges of the cycle C. Hence

the number of vertices required to cover the edges of G′ \ G is at least x which is given

by:

x = (6n+ 1) +
⌊6n.n′ − (6n + 1)

2

⌋

+ 2 +
⌈n′

2

⌉

≥ 3n+ 3.n.n′ + 1 +
n′

2

But, we know that p+ n′(3.n+ 1) + 3 ≤ 2n+ 3n.n′ + 2 < x, (n ≥ 3) a contradiction on

the assumption of size of vertex cover of G′.

By a similar argument we can show that all the vertices of cycle C3 must be present

in Vc. Therefore, we have to include all n′ vertices in the cycle C, and all three vertices

of C3. Now we require at least 6n.n′/2 = 3n.n′ alternate vertices of C ′ to cover edges

that are incident to vertices in C ′. So we require at least n′(3n+1)+ 3 vertices to cover

edges in E(G′) \ E(G), which implies a p-sized vertex cover for G.

Theorem 19. Deciding k-vertex cover on maximal planar graphs is NP-complete.

Proof. Follows from Lemma 18 and Corollary 3.
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4.3 Discussions and concluding remarks

In this chapter we showed that the vertex cover problem is NP-complete for chordless-

NST. This implies the NP-completeness of vertex cover on triangulations that are De-

launay realizable. It remains an open direction whether we can exploit the structure of

a Delaunay triangulation of a point set on the plane (Delaunay triangulation with its

realization on the plane) to solve the vertex cover problem optimally on them. It is not

known whether given a triangulation T which is known to be Delaunay realizable we

can actually find a point set P in the plane realizing T as a Delaunay triangulation of

P [HMS00].

Having established the NP-completeness of vertex cover on triangulations it remains

an open direction whether we can exploit the structure of triangulation or Delaunay

triangulation to get a better algorithm (FPT or approximation) to compute vertex cover

on them. Dillencourt [Dil90b] showed that Delaunay triangulations are 1-tough and

hence have a perfect matching. It remains an open direction whether we can obtain

above-guarantee FPT algorithm parameterized by the difference of the size of the vertex

cover and the size of maximum matching (perfect matching in our case) for Delaunay

triangulations.
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Dürr and Thomas Wilke, editors, 29th International Symposium on Theo-

retical Aspects of Computer Science (STACS 2012), volume 14 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 338–349, Dagstuhl,

Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[OBSC09] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial

tessellations: concepts and applications of Voronoi diagrams, volume 501.

John Wiley & Sons, 2009.

[RAG+13] Ninad Rajgopal, Pradeesha Ashok, Sathish Govindarajan, Abhijit Khopkar,

and Neeldhara Misra. Hitting and piercing rectangles induced by a point

set. In Ding-Zhu Du and Guochuan Zhang, editors, Computing and Combi-

natorics, volume 7936 of Lecture Notes in Computer Science, pages 221–232.

Springer Berlin Heidelberg, 2013.



BIBLIOGRAPHY 56

[Raz09] Igor Razgon. Faster computation of maximum independent set and parame-

terized vertex cover for graphs with maximum degree 3. Journal of Discrete

Algorithms, 7(2):191–212, 2009.

[Sib78] Robin Sibson. Locally equiangular triangulations. The computer journal,

21(3):243–245, 1978.

[TW11] Mu-Tsun Tsai and Douglas B West. A new proof of 3-colorability of eulerian

triangulations. Ars Mathematica Contemporanea, 4(1), 2011.

[Ueh96] Ryuhei Uehara. NP-completeness of the problems on a restricted graph. Tech-

nical Report TWCU-M-0004, Tokyo Woman’s Christian University, 1996.

[Xia10] Mingyu Xiao. A note on vertex cover in graphs with maximum degree 3. In

My T. Thai and Sartaj Sahni, editors, Computing and Combinatorics, volume

6196 of Lecture Notes in Computer Science, pages 150–159. Springer Berlin

Heidelberg, 2010.


	Acknowledgements
	Publications based on this Thesis
	Abstract
	Keywords
	Introduction
	Fixed parameter tractable algorithms
	Delaunay graph of axis-parallel slabs
	Delaunay triangulations
	Organization of rest of the thesis

	Preliminaries
	Vertex cover on Delaunay graphs of axis-parallel slabs
	Hitting set for induced axis-parallel slabs
	NP-completeness of vertex cover on Braid graphs
	2-connected cubic planar graphs to 4-regular graphs
	4-regular graph with 2-factoring H,H' to a braid graph

	An improved branching algorithm
	Conclusions

	Vertex cover on triangulations
	NP-completeness of vertex cover on chordless-NST
	NP-completeness of vertex cover on maximal planar graphs
	Discussions and concluding remarks

	Bibliography

