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The edit operation that contracts edges, which is a fundamental operation in the theory of graph minors,
has recently gained substantial scientific attention from the viewpoint of Parameterized Complexity. In this
paper, we examine an important family of graphs, namely the family of split graphs, which in the context
of edge contractions, is proven to be significantly less obedient than one might expect. Formally, given a
graph G and an integer k, SPLIT CONTRACTION asks whether there exists X C E(G) such that G/X is
a split graph and | X| < k. Here, G/X is the graph obtained from G by contracting edges in X. Guo and
Cai [Theoretical Computer Science, 2015] claimed that SPLIT CONTRACTION is fixed-parameter tractable.
However, our findings are different. We show that SPLIT CONTRACTION, despite its deceptive simplicity, is
WI[1]-hard. Our main result establishes the following conditional lower bound: under the Exponential Time
Hypothesis, SPLIT CONTRACTION cannot be solved in time 20(£%) . pO(1) where £ is the vertex cover number
of the input graph. We also verify that this lower bound is essentially tight. To the best of our knowledge,
this is the first tight lower bound of the form 20(€%) . O() for problems parameterized by the vertex cover
number of the input graph. In particular, our approach to obtain this lower bound borrows the notion of
harmonious coloring from Graph Theory, and might be of independent interest.

CCS Concepts:*Mathematics of computing — Graph algorithms; Edge Contraction;*Theory of com-
putation — Fixed parameter tractability;

General Terms: Design, Algorithms, Performance
Additional Key Words and Phrases: Split Graph, Parameterized Complexity, Edge Contraction

ACM Reference Format:

Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh and Meirav Zehavi, 2017. Split Contraction: The
Untold Story. TOCT 9, 4, Article 39 (March 2017), 22 pages.

DOI: 0000001.0000001

1. INTRODUCTION

Graph modification problems have been extensively studied since the inception of Pa-
rameterized Complexity in the early 90’s. The input of a typical graph modification
problem consists of a graph G and a positive integer k, and the objective is to edit &
vertices (or edges) so that the resulting graph belongs to some particular family, 7, of
graphs. These problems are not only mathematically and structurally challenging, but
have also led to the discovery of several important techniques in the field of Parame-
terized Complexity. It would be completely appropriate to say that solutions to these
problems played a central role in the growth of the field. In fact, just over the course of
the last couple of years, parameterized algorithms have been developed for CHORDAL
EDITING [Cao and Marx 2016], UNIT INTERVAL EDITING [Cao 2017], INTERVAL VER-
TEX (EDGE) DELETION [Cao and Marx 2015; Cao 2016], PROPER INTERVAL COMPLE-
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TION [Bliznets et al. 2015], INTERVAL COMPLETION [Bliznets et al. 2016] CHORDAL
COMPLETION [Fomin and Villanger 2013], CLUSTER EDITING [Fomin et al. 2014],
THRESHOLD EDITING [Drange et al. 2015a], CHAIN EDITING [Drange et al. 2015a],
TRIVIALLY PERFECT EDITING [Drange et al. 2015b; Drange and Pilipczuk 2015] and
SPLIT EDITING [Ghosh et al. 2015]. This list is not comprehensive but rather illustra-
tive.

The focus of all of these papers, and in fact, of the vast majority of papers on param-
eterized graph editing problems, has so far been limited to edit operations that delete
vertices, delete edges or add edges. Using a different terminology, these problems can
also be phrased as follows. For some particular family of graphs, 7, we say that a graph
G belongs to F + kv, F + ke or F — ke if some graph in F can be obtained by deleting at
most k vertices from G, deleting at most k£ edges from G or adding at most k edges to
@G, respectively. Recently, a methodology for proving lower bounds on running times of
algorithms for such parameterized graph editing problems was proposed by Bliznets
et al. [Bliznets et al. 2016]. Furthermore, a well-known result by Cai [Cai 1996] states
that in case F is a hereditary family of graphs with a finite set of forbidden induced
subgraphs, then the graph modification problem defined by F and the aforementioned
edit operations admits a simple FPT algorithm.

In recent years, a different edit operation has begun to attract significant scientific
attention. This operation, which is arguably the most natural edit operation apart
from deletions/insertions of vertices/edges, is the one that contracts an edge. Here,
given an edge (u,v) that exists in the input graph, we remove the edge from the
graph and merge its two endpoints. Edge contraction is a fundamental operation in
the theory of graph minors. Using our alternative terminology, we say that a graph
G belongs to F/ke if some graph in F can be obtained by contracting at most k edges
in G.! Then, given a graph G and a positive integer k, F-EDGE CONTRACTION asks
whether G belongs to F/ke. For several families of graphs F, early papers by Watan-
abe et al. [Watanabe et al. 1981; 1983] and Asano and Hirata [Asano and Hirata 1983]
showed that 7-EDGE CONTRACTION is NP-complete. In the framework of Parameter-
ized Complexity, these problems exhibit properties that are quite different from those
of problems where we only delete or add vertices and edges. Indeed, for these problems,
the result by Cai [Cai 1996] does not hold. In particular, Lokshtanov et al. [Lokshtanov
et al. 2013] and Cai and Guo [Cai and Guo 2013] independently showed that if F is
either the family of P,-free graphs for some ¢ > 5 or the family of C,-free graphs for
some ¢ > 4, then 7-EDGE CONTRACTION is W[2]-hard.

To the best of our knowledge, Heggernes et al. [Heggernes et al. 2014] were the
first to explicitly study 7-EDGE CONTRACTION from the viewpoint of Parameterized
Complexity. They showed that in case F is the family of trees, 7-EDGE CONTRAC-
TION is FPT but does not admit a polynomial kernel, while in case F is the family of
paths, the corresponding problem admits a faster algorithm and an O(k)-vertex ker-
nel. Golovach et al. [Golovach et al. 2013] proved that if F is the family of planar
graphs, then F-EDGE CONTRACTION is again FPT. Moreover, Cai and Guo [Cai and
Guo 2013] showed that in case F is the family of cliques, 7-EDGE CONTRACTION is
solvable in time 20(klogk) . nO() "while in case F is the family of chordal graphs, the
problem is W[2]-hard. Heggernes et al. [Heggernes et al. 2013] developed an FPT algo-
rithm for the case where F is the family of bipartite graphs. Later, a faster algorithm
was proposed by Guillemot and Marx [Guillemot and Marx 2013].

A recent paper by Cai and Guo [Guo and Cai 2015] studied the case where F is the
family of split graphs, which corresponds to the following problem.

1Here, it might be more appropriate to replace / (in F/ke) by the operation opposite to edge contraction, but
we believe that the current notation is clearer.
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SPLIT CONTRACTION Parameter: &
Input: A graph G and an integer k.
Question: Does there exist X C F(G) such that G/X is a split graph and | X| < k?

Cai and Guo [Guo and Cai 2015] claimed to design an algorithm that solves SPLIT
CONTRACTION in time 2°**) . n©() which proves that the problem is FPT. Our ini-
tial objective was to either speed-up their algorithm or obtain a tight conditional lower
bound. In fact, it seemed plausible that SPLIT CONTRACTION, like 7-EDGE CONTRAC-
TION where F is the family of cliques, is solvable in time 20(¥1°2k).,O(1) The algorithm
by Cai and Guo [Guo and Cai 2015] first computes a set of vertices of small size whose
removal renders the graph into a split graph. Then, it is based on case distinction.
In case the remaining graph contains a large clique, the problem is solved in time
20(klogk) . nO()  and otherwise it is solved in time 2°**) . ,O()_ In particular, in case
the clique is small, the minimum size of a vertex cover of the input graph is small—it
can be bounded by O(k). Thus, the bottleneck of the proposed algorithm is captured by
graphs having small vertex covers. Interestingly, our first main result, given in Section
3, proves that it is unlikely to overcome the difficulty imposed by such graphs.

THEOREM 1.1. Unless the ETH fails, SPLIT CONTRACTION parameterized by ¢, the
size of a minimum vertex cover of the input graph, does not have an algorithm running

in time 2°°) . nO) Here, n denotes the number of vertices in the input graph.

To the best of our knowledge, under the Exponential Time Hypothesis (ETH) [Im-
pagliazzo et al. 2001; Cygan et al. 2015], this is the first tight lower bound of this form
for problems parameterized by the vertex cover number of the input graph. Lately,
there has been increasing scientific interest in the examination of lower bounds of
forms other than 2°(*) . n1) for some parameters s. For example, lower bounds that
are “slightly super-exponential”, i.e. of the form 2°(31°g5) . ,O(1) for various parameters
s, have been studied in [Lokshtanov et al. 2011]. Cygan et al. [Cygan et al. 2016] ob-

tained a lower bound of the form 22°* . () where k is the solution size, for the EDGE
CLIQUE COVER problem. Very recently, Marx and Mitsoue [Marx and Mitsou 2016]

have further obtained lower bounds of the forms 22°’ . () and QQQO(W) -n®M) | where
w is the treewidth of the input graph, for choosability problems.

In order to derive our main result, we make use of a partitioning of the vertex set
V(G) into independent sets C1, . .., C; such that for each i, j € [t], i # j, |[E(G[C; UC;])N
E(G)] < 1. Essentially, this coloring can be viewed as a proper coloring f : V(G) — [{]
with the additional property that between any two color classes we have at most one
edge. (Here, we use the standard notation [t|] = {1,2,...,¢}.) This kind of coloring,
called harmonious coloring [Lee and Mitchem 1987; McDiarmid and Xinhua 1991,
Edwards 1997], has been studied extensively in the literature. We are not aware of uses
of harmonious coloring in deriving lower bound results and believe that this approach
could be of independent interest.

After we had established Theorem 1.1, we took a closer look at the algorithm by Cai
and Guo [Guo and Cai 2015], and were not able to verify some of their arguments. We
next prove that unless FPT=W][1]-hard, the algorithm by Cai and Guo [Guo and Cai
2015] is incorrect, as the problem is W[1]-hard (Section 4).

THEOREM 1.2. SPLIT CONTRACTION is W[1]-hard when parmeterized by the size
of a solution.

We find this result surprising: one might a priori expect that “contraction to split
graphs” should be easy as split graphs have structures that seem relatively simple. In-
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deed, many NP-hard problems admit simple polynomial-time algorithms if restricted
to split graphs. Consequently, our result can also be viewed as a strong evidence of the
inherent complexity of the edit operation which contracts edges. Furthermore, some
of the ideas underlying the constructions of this reduction, such as the exploitation
of properties of a special case of the PERFECT CODE problem to analyze budget con-
straints involving edge contractions, might be used to establish other W[1]-hard results
for problems of similar flavors. We remark that despite errors in the paper [Guo and
Cai 2015], it can be verified that the lower bound given by Theorem 1.1 is tight. For the
sake of completeness, we give a standalone FPT algorithm for SPLIT CONTRACTION

that runs in time 20¢*) . p0),

2. PRELIMINARIES

We denote the set of natural numbers by N. For & € N, by [k] we denote the set
{1,2,...,k}.

We use standard terminology from the book of Diestel [Diestel 2012] for terms that
are not explicitly defined here. We consider only finite simple graphs. For a graph G,
by V(G) and E(G) we denote the vertex and edge sets of the graph G, respectively.
For a vertex v € V(G), we use dg(v) to denote the degree of v, i.e the number of edges
incident on v, in the graph G. For v € V(G), by N¢(v) we denote the set {u € V(G) |
(v,u) € E(G)}. We drop the subscript G from dg(v) and Ng(v) when the context is
clear. For a vertex subset S C V(G), by G[S] we denote the subgraph of G induced by
S, i.e. the graph with the vertex set S and the edge set {(v,u) € E(G) | v,u € S}. By
G — S we denote the graph G[V(G) \ S]. We say that two disjoint vertex subsets, say
S, 8" C V(@G), are adjacent if there exist v € S and v’ € S’ such that (v,v') € E(G).
Further, an edge (u,v) € E(G) is between S,5" ifu € Sand v € S’ (orv € S and u € S").

A split graph is a graph G whose vertex set V(G) can be partitioned into two sets,
A and B, such that G[A] is a clique while B is an independent set, i.e. G[B] is an
edgeless graph. A path in a graph is a sequence of vertices v, vs, ..., v; such that for
all i € [l — 1], (v;,vi+1) € E(G). Further, we say that such a path is a path between v,
and v;. A graph is called connected if there is a path between every pair of vertices. A
maximal connected-graph is called a component in a graph. A vertex subset S C V(G)
is said to cover an edge (u,v) € E(G) if Y N {u,v} # 0. A vertex subset S C V(G) is
called a vertex cover in G if it covers all the edges in G. A minimum vertex cover is
S C V(G) such that S is a vertex cover and for all S’ C V(G) such that S’ is a vertex
cover, we have |S| < |97].

For (v,u) € E(G), the result of contracting the edge (v, u) in G is the graph obtained
by the following operation. We add a vertex vu* and make it adjacent to the vertices in
(N(v) UN(u)) \ {v,u} and delete v, u from the graph. We often call such an operation
contraction of the edge (v,u). For E' C E(G), we denote by G/E’ the graph obtained by
contracting the edges of £’ in G. Here, we note that the order in which the edges in F’
are contracted is insiginficant.

A graph G is isomorphic to a graph H if there exists a bijective function ¢ : V(G) —
V(H) such that for v,u € V(G), (v,u) € E(G) if and only if (¢(v),¢(u)) € E(H). A
graph G is contractible to a graph H if there exists F' C E(G) such that G/E’ is
isomorphic to H. In other words, G is contractible to H if there exists a surjective
function ¢ : V(G) — V(H) with the following properties.

—Forall b, € V(H), (h
W(h) = {ve V(G) ] g

, h’) E(H) if and only if W (h), W(R') are adjacent in G. Here,
v
—Forall h e V(H), GIW(

) =
h)] is connected
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Let W= {W(h) | h € V(H)}. Observe that W defines a partition of the vertex set of
G. We call W a H-witness structure of G. The sets in W are called witness-sets.

Parameterized Complexity.. A parameterized problem II is a subset of I'* x N, where
I' is a finite alphabet. An instance of a parameterized problem is a tuple (z, k), where
x is a classical problem instance, and k is called the parameter. A central notion in pa-
rameterized complexity is fixed-parameter tractability (FPT) which means, for a given
instance (x, k), decidability in time f(k)-p(|z|), where f is an arbitrary function of ¥ and
p is a polynomial in the input size. On the one hand, to prove that a problem is FPT,
it is possible to give an explicit algorithm, called a parameterized algorithm, which
solves it in time f(k) - p(|z|). On the other hand, to show that a problem is unlikely to
be FPT, it is possible to use polynomial-time reductions analogous to those employed
in Classical Complexity. Here, the concept of W[1]-hardness replaces the one of NP-
hardness, and we need not only construct an equivalent instance in FPT time, but also
ensure that the size of the parameter in the new instance depends only on the size of
the parameter in the original instance. For more details on Parameterized Complexity,
we refer the reader to the books of Downey and Fellows [Downey and Fellows 1997;
2013], Flum and Grohe [Flum and Grohe 2006], Niedermeier [Niedermeier 2006], and
the recent book by Cygan et al. [Cygan et al. 2015].

3. LOWER BOUND FOR SPLIT-CONTRACTION PARAMETERIZED BY VERTEX COVER
In this section we show that unless the ETH fails, SPLIT CONTRACTION does not admit
an algorithm running in time 20(52)710(1), where ¢ is the size of a minimum vertex
cover of the input graph G on n vertices. We complement it by giving an algorithm in
Section 5) for SPLIT CONTRACTION parameterized by ¢, running in time 2°(¢*) 0.
To obtain our lower bound, we give an appropriate reduction from VERTEX COVER
on sub-cubic graphs. For this we utilize the fact that VERTEX COVER on sub-cubic
graphs does not have an algorithm running in time 2°(" 2?1 unless the ETH fails [Im-
pagliazzo et al. 2001; Komusiewicz 2015]. For the ease of presentation we split the re-
duction into two steps. The first step comprises of reducing a special case of VERTEX
COVER on sub-cubic graphs, which we call SUB-CUBIC PARTITIONED VERTEX COVER
(SuB-CuBIC PVC) to SPLIT CONTRACTION. In the second step we show that there
does not exist an algorithm running in time 2°("n°M for SUB-CUBIC PVC. We re-
mark that the reduction from VERTEX COVER on sub-cubic graphs (SUB-CUBIC V()
to SUB-CUBIC PVC is a Turing reduction.

3.1. Reduction from SuB-CuBIC PARTITIONED VERTEX COVER to SPLIT CONTRACTION
In this section we give a reduction from SUB-CUBIC PARTITIONED VERTEX COVER

to SPLIT CONTRACTION. Next, we formally define SUB-CUBIC PARTITIONED VERTEX
COVER.

SUB-CUBIC PARTITIONED VERTEX COVER (SUB-CUBIC PVC)

Input: A sub-cubic graph G; an integer ¢; for 7 € [t], an integer k; > 0; a partition
P = {C4,...,C} of V(G) such that t € O(/|V(G)|) and for all i € [¢], C; is an
independent set and |C;| € O(1/|V(G)|). Furthermore, for i, j € [t],: # j, |E(G[C; U
C;)NE(G)|=1.

Question: Does G have a vertex cover X such that for all i € [t], | X N C;| < k;?

We first explain (informally) the ideas behind our reduction. Let X be a hAypothetical
vertex cover we are looking for. Recall that we assume the ETH holds and thus we
are allowed to use 2°"n°(M time to obtain our reduction. We will use this freedom to
design our reduction and to construct an instance (G’, k') of SPLIT CONTRACTION. For
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/ %/ (Clique)

AN LN LIV

Fig. 1. Reduction from SUB-CUBIC PVC to SPLIT CONTRACTION.

i € [t], in V(G"), we have a vertex corresponding to each possible intersection of X with
C; on at most k; vertices. Further, we have a vertex ¢; € V(G’) corresponding to each
C;, for i € [t]. We want to make sure that for each (u,v) € E(G), we choose an edge
of E(G’) (in the solution to SPLIT CONTRACTION) that is incident to a vertex which
corresponds to a subset containing one of u or v and one of ¢; or ¢;. Furthermore, we
want to force these selected vertices to be contracted to the clique side in the resulting
split graph. We crucially exploit the fact that there is exactly one edge between every
C;, C; pair, where 4,j € [t],7 # j. Finally, we will add a clique, say I', of size 3t and
make each of its vertices adjacent to many pendant vertices, which ensures that after
contracting the solution edges, the vertices of I' remain in the clique side. We will
assign appropriate adjacencies between the vertices of I and ¢;, for ¢ € [t]. This will
guide us in selecting edges for the solution of the contraction problem. We now move
to the formal description of the construction used in the reduction.

Construction. Let (G,P = {C1,Cs,...,Ci},k1,..., k) be an instance of SUB-CUBIC
PVC and n = |V(G)|. We create an instance of SPLIT CONTRACTION (G, k') as follows.
For i € [t],let S; = {vy | Y C C;and|Y| < k;}. That is, S; comprises of vertices
corresponding to subsets of C; of size at most ;. For each i € [t], we add five vertices
bi, ¢, i, yi, z; to V(G'). The vertices {x;, y;, z; | i € [t]} induce a clique (on 3¢ vertices) in
G’. We add the edges (b;, sy), (¢i, sy), (x4, 8y), (Yi, Sy ), (i, sy) for all sy € S; to E(G’).
For i,j € [t], i # j, we add the edges (c;,z;), (¢, y;), (¢, ;) to E(G'). For 4,5 € [t], i # j
and sy € S;, we add the edge (¢;, sy) in E(G’) if and only if Y covers the unique edge
between C; and C;. For all i € [t], we add 4t + 2 pendant vertices, b/, j € [4t + 2], to b;.

Similarly, for all i € [t], we add 4¢+2 pendant vertices ¢/, =/, v/, and 2}, j € [4t+2], to ¢;,
x;, y; and z;, respectively. The pendant vertices are added in order to make sure that
the vertices resulting after the contraction of their witness sets belong to the clique
side. This completes the construction of the graph G’. Observe that {b;,c;, x;, y;,2; | i €
[t]} forms a minimum vertex cover of G’ of size 5¢. Finally, we set &’ = 2t. The resulting
instance of SPLIT CONTRACTION is (G',k’). We refer the reader to Figure 1 for an
illustration of the construction.

In the next few lemmata (Lemmata 3.1 to 3.6) we prove certain properties of the
instance (G’, k') of SPLIT CONTRACTION. This will be helpful later for establishing the
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equivalence between the original instance (G,P = {C1,Cs,...,Ci}, ky, ..., k) of SUB-
CuBIC PVC and the instance (G’, k') of SPLIT CONTRACTION. In Lemmas 3.1 to 3.6 we
will use the following notations. We use 7' to denote a solution to SPLIT CONTRACTION
in (G',k') and H = G'/T with C, I being a partition of V(H) inducing a clique and an
independent set, respectively, in H. We let ¢ : V(G') — V(H) be the surjective function
defining the contractibility of G’ to H, and W be the H-witness structure of G'.

LEMMA 3.1. Let (G', k') be a YES instance of SPLIT CONTRACTION. Then, for all
v € {bi,ci, i, yi, 2 | i € [t]}, we have p(v) € C.

PROOF. Consider v € {b;, ¢;, z;,yi, z; | i € [t]}. Recall that there are 4t + 2 = 2k + 2
pendant vertices v}/, for j € [2k" + 2] adjacent to v. At most &’ edges in {(v},v) | j €
[2k’ 4 2]} can belong to T'. Therefore, there exist ji, jo € [2k' + 2], j1 # j2 such that no
edge incident to v} or v isin T'. In other words, for 1y = ¢ (v} ) and hy = ¢(v},), W (h1)
and W (hg) are singleton sets. Since W is a H-witness structure of G’, (hy, hs) ¢ E(H).
Therefore, at least one of /.y, hy belongs to I, say hy € I. This implies that ¢(v) € C. O

LEMMA 3.2. Let (G', k') be a YES instance of SPLIT CONTRACTION. Then, for all
i € [t], there exists sy, € S; such that (b;, sy,) € T.

PROOF. Towards a contradiction assume that there is i € [t] such that for all sy €
SZ‘, (bi7 Sy) ¢ T. Recall that Ngl(bi) = Sj, U {b;l | j S [4t + 2]} Let h = @(bz) and
A ={bj,cj,z;,y5,2; | j € [t],j # i}. There exists v € A such that |IW(h')| = 1, where
h' = ¢(v). This follows from the fact that at most 2k’ = 4t vertices in A can be incident
to an edge in T, although |A| = 5(¢t — 1) > 4t, as t can be assumed to be larger than 6,
else the graph has constantly many edges and we can solve the problem in polynomial
time. From Lemma 3.1 it follows that (h,h’) € E(H), but W(h), W(h') are not adjacent
in G’, contradicting that W is an H-witness structure of G'. Hence the claim follows. O

For each i € [t], we arbitrarily choose a vertex s}. € S; such that (b;,s}.) € T. The
existence of such a vertex is guaranteed by Lemma 3.2.

LEMMA 3.3. Let (G', k') be a YES instance of SPLIT CONTRACTION and (b;, sy,) € T
for i € [t]. Then, for h; = ¢(s3,), we have |W (h;)| > 3. Furthermore, there is an edge in
T incident to b; or sy, other than (b;, sy, ).

PROOF. Suppose there exists i € [t], h; = ©(s3,) such that [W(h;)| < 3. Recall that
|W(h;)| > 2, since b; € W (h;). Let A = {x;,y;,2; | j € [t],j # i}. From Lemma 3.2, it
follows that for each j € [¢], there is an edge (b, s%) € T, therefore the number of edges
in 7T incident to a vertex in A is bounded by k' — t = ¢. But |A| = 3¢t — 3 > 2t, therefore,
there exists a € A such that for h, = ¢(a), |W(h,)| = 1. From Lemma 3.1, (h;, h,) €
E(H), therefore W (h;) and W (h,) must be adjacent in G'. But a ¢ N({b;, sy, }), hence
W (h;) and W (h,) are not adjacent in G, contradicting that W is an H-witness structure
of G

Since [W (h;)| > 3 and G[W (h;)] is connected, at least one of s, , b; must be adjacent
to an edge in T which is not (sy.,b;). D '

LEMMA 3.4. Let (G', k') be a YES instance of SPLIT CONTRACTION. Then, for all
i € [t], we have |W (h;)| > 2 where h; = ©(c;).

PROOF. Towards a contradiction assume that there exists i € [t], h; = ¥(c¢;), such
that |W(h;)| < 2. Let A = {¢; | j € [t],5 # i} U{xs, s, 2z }. From Lemma 3.2 it follows
that the edge (b;,s}.) € T, for each j € [t]. By Lemma 3.3 it follows that there is an
edge in 7" that is adjacent to exactly one of {b;, s} } in T, for all j € [t]. Therefore, at
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most ¢ vertices in A can be incident to an edge in 7', while |A| = ¢ + 2. This implies
that there exists a € A, h, = ¢(a) such that |W(h,)| = 1. Observe that none of the
vertices in A are adjacent to ¢; in G'. Therefore, it follows that W (h;), W(h,) are not
adjacent in G’. But Lemma 3.1 implies that (h;, h,) € E(H), a contradiction to WV being
an H-witness structure of G'. O

LEMMA 3.5. Let (G', k') be a YES instance of SPLIT CONTRACTION and (b;, sy,) € T
for i € [t]. Then, for each i € [t], we have |W (h;)| = 3 where h; = ¢(s3,).

PROOF. Fori € [t], let h; = ¢(s},). From Lemma 3.3 we know that [W (h;)| > 3. Let
C={ci|ielt]}and S = {{b;, sy} | i € [t]}. From Lemmata 3.3 and 3.4 it follows that
each ¢ € C must be incident to an edge in 7" and each S € S must have a vertex which
is incident to an edge in 7" with the other endpoint not in S. Since |C| = |S| = t and
(bi,sy.) € T, for all i € [t], there are at most ¢ edges in 7' that are incident to a vertex
in C and a vertex in S € S. Therefore, each ¢ € C is incident to exactly one edge in 7.
Similarly, each S € S is incident to exactly one edge with one endpoint in S and the
other not in S. This implies that exactly one vertex ¢ € C belongs to W (h;) for i € [t],
and ¢ does not belong to W (h;), where i # j, i, j € [t]. Also note that none of the vertices
in {z,v,2 | i G [t ]} can be incident to an edge in T. Similarly, none of the vertices in
{0, all ), 2 i€ [t],5 € [4t + 2]} can be incident to an edge in 7. Hence, we get
that |W (h;)| = 3, concluding the proof. O

LEMMA 3.6. Let (G', k') be a YES instance of SPLIT CONTRACTION and (b;, sy,) € T
for i € [t]. Then, for all i € [t], we have c; € W (h;) where h; = p(s3,).

PROOF. Suppose for some i € [t], ¢; ¢ W(h;) where h; = ¢(sy,). From Lem-
mata 3.3, 3.4 and k' = 2t, it follows that there exists some j € [¢] such that ¢; € W(h;),
where h; = go(s?) By our assumption, j # i. From Lemma 3.5 we know that

|[W(h;)| = 3, therefore W(h;) = {bj,sy,,c;}. Moreover, by Lemmata 3.4 and 3.5 and
since k' = 2t, |W(z;)| = 1. However, we then get that W (h;), W(z;) are not adjacent in
G'. By Lemma 3.1, we obtain a contradiction to the assumption that WV is an H-witness
structure of G'. This completes the proof. O

We are now ready to prove the main equivalence lemma of this section.

LEMMA 3.7. (G,P = {C4,Cs,...,Ci}, k1,..., k) is a YES instance of SUB-CUBIC
PVC ifand only if (G', k') is a YES instance of SPLIT CONTRACTION.

PROOF. In the forward direction, let Y be a vertex cover in G such that for each
et |YNC;| <k Foriclt],weletY; =Y NC;. Let T = {(b;, sv;), (ci, sy,) | © € [t]}.
Let H=G'/T, ¢ : V(G') — V(H) be the underlying surjective map and W be the H-
witness structure of G'. To show that T is a solution to SPLIT CONTRACTION in (G’ K'),
1t is enough to show that H is a split graph. Let = UlE 1(Si\{sy, ) U{b, cf 2, yj 25
€ [t],7 € [4t + 2]}. Recall that for each v € I, |W (p( ))| = 1. Furthermore, for v,v’' € I,

(v, v') ¢ E(G'). Hence, it follows that I = {x(v) | v € I} induces an independent set in
H.Let Cy = {x;,yi, 2 | i € [t]}. Recall that G’[C,] is a clique and from the construction of
T, |W(g¢(c))| = 1 for all ¢ € C;. Therefore, C; = {¢(c) | ¢ € C;} induces a clique in H. Let
Co = [t]}, hi = @(sy,) for i € [t], and Cy = {h; | i € [t]}. From the construction
of T, we have W (h;) = {bi,c;, sy, } for all i € [t]. Observe that for ¢; € C; and ¢y € Co,
W (c1), W (cy) are adjacent in G’, therefore, (c;,c;) € E(H). Consider h;, hj € Co, where
i,j € [t],i # j. Recall W(h;) = {b;, sy;,ci} and W (h;) = {bj;, sy;,c;}. Since Y is a vertex
cover, at least one of Y; or Y; covers the unique edge between C; and C; in G, say Y;
covers the edge between C; and C;. But then (sy,, ¢;) € E(G’), therefore (h;, h;) € E(H).
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The above argument implies that ¢ = ¢; U C, induces a clique in H. Furthermore,
V(H) = I UC. This implies that H is a split graph.

In the reverse direction, let T be a solution to SPLIT CONTRACTION in (G, k’). Let
H =GG/T, ¢ : V(G') — V(H) be the underlying surjective map and W be the H-
witness structure of G'. From Lemma 3.2, it follows that for all i € [t], there exists
sy, € S; such that (b;,sy;) € T. For i € [t], let Y; be the set such that (b;,sy,) € T.
We let Y = Uj¢cqYi. For i € [t], from the definition of the vertices in 5;, it follows that
Y N C;| < k;. We will show that YV is a vertex cover in G. Towards a contradiction
assume that there exists i,j € [t],i # j, such that Y does not cover the unique edge
between C; and C;. From Lemmas 3.2 and 3.6 it follows that W (h;) = {b;,sy,, ¢}
and W(h;) = {bJ,sY],cJ} where h; = ¢(sy;) and h; = ¢(sy,). From Lemma 3.1 it
follows that (h;,h;) € E(H). Therefore, W (h;) and W( ;) are adjacent in G’. Recall
that N/ (b)) N W (h;) = 0, Nar(bj) "W (h;) = 0, (ci, ¢j), (sv;, sy;) ¢ E(G'). Therefore, at
least one of (¢;, sy, ,(cJ,SY) must belong to E(G’) say (¢, SY) € E(G"). But then by
construction it follows that Y; C Y covers the unique edge between C;and C;in G, a
contradiction. This completes the proof. DO

Finally, we restate Theorem 1.1 and prove its correctness.

THEOREM 3.8. Unless the ETH fails, SPLIT CONTRACTION parameterized by /, the
size of a minimum vertex cover of the input graph, does not have an algorithm running

in time 2°(°) . nO) Here, n denotes the number of vertices in the input graph.

PRrROOF. Towards a contradiction assume that there is an algorithm A for SPLIT
CONTRACTION, parameterized by ¢, the size of a minimum vertex cover, running in
time 2°(°)pCM) Let (G, P = {C1,Cs,...,C.}, k1, ..., k) be an instance of SUB-CUBIC
PVC. We create an instance (G’, k') of SPLIT CONTRACTION as described in the Con-
struction, running in time 2°") . n®1) where n = |V (G)|. Recall that in the instance
created, the size of a minimum vertex cover is £ = 5t = O(y/n). Then we use algorithm
A for deciding if (G, k') is a YES instance of SPLIT CONTRACTION and return the
same answer for SUB-CUBIC PVC on (G, P, k1, ..., k). The correctness of the answer
returned follows from Lemma 3.7. But then we can decide whether (G, P, k1, ..., k) isa
YES instance of SUB-CUBIC PVC in time 2°(").n®(") | which contradicts ETH assuming
Theorem 3.9. This concludes the proof. O

3.2. Reduction from SuB-CuBic VC to Sus-CuBic PVC

Finally, to complete our proof we show that SUB-CUBIC PVC on graphs with n vertices
can not be solved in time 2°(™n®1) unless the ETH fails. In this section we give a
Turing reduction from SUB-CUBIC VC to SUB-CUBIC PVC that will imply our desired
assertion.

Let (G, k) be an instance of SUB-CUBIC VC and n = |V(G)|. We first create a new
instance (G, k') of SUB-CUBIC VC satisfying certain properties. We start by computing
a harmonious coloring of G using ¢ € O(y/n) color classes such that each color class
contains at most O(y/n) vertices. A harmonious coloring on bounded degree graphs
can be computed in polynomial time using at most O(y/n) colors with each color class
having at most O(y/n) vertices [Lee and Mitchem 1987; McDiarmid and Xinhua 1991,
Edwards 1997]. Let C4,...,C; be the color classes. Recall that between each pair of
the color classes, C;,C; for i,j € [t|, i # j, we have at most one edge. If for some
i,j € [t],7 # j, there is no edge between a vertex in C; and a vertex in C}, then we
add a new vertex z;; in C; and a new vertex z;; in C; and add the edge (z;;, ;).
Observe that we add a matching corresponding to a missing edge between a pair of
color classes. In this process we can add at most ¢t — 1 new vertices to a color class
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C;, for i € [t]. Therefore, the number of vertices in C; for i € [t] after addition of new
vertices is also bounded by O(y/n). We denote the resulting graph by G’ with partition
of vertices C4,...,C; (including the newly added vertices, if any). Observe that the
number of vertices n’ in G’ is at most O(n). Let m be the number of matching edges
added in G to obtain G’ and let ¥’ = k+m. It is easy to see that (G, k) is a YES instance
of SUB-CUBIC VC if and only if (G’, k') is a yes instance of SUB-CUBIC VC.

We will now be working with the instance (G’, k') of SUB-CUBIC VC with the par-
tition of vertices C1, ..., C; obtained by extending the color classes of the harmonious
coloring of G we started with. We guess the size of the intersection of the vertex cover in
G’ with each C, for i € [t]. That is, for i € [t], we guess an integer 0 < k, < min(|C;|, k'),
such that }_, ., ki = K. Finally, we let (G',P = {C\,...,Ci}, ki, ..., ki) be an instance
of SUB-CUBIC PVC. Notice that G’ and P satisfies all the requirements for it to be an
instance of SUB-CUBIC PVC. It is easy to see that (G’,%’) is a YES instance of SUB-
CuBIC VC if and only if for some guess of k;, for i € [t], (G',P = {C1,...,C}, ki, ..., k})
is a YES instance of SUB-CUBIC PVC. This finishes the reduction from SUB-CUBIC
VC to SuB-CuBIC PVC.

THEOREM 3.9. Unless the ETH fails, SUB-CUBIC PVC does not admit an algorithm
running in time 2°0") . n®()_ Here, n is the number of vertices in the input graph.

PROOF. Towards a contradiction assume that there is an algorithm A for SUB-
CuBIC PVC running in time 2° . n®(1), Let (G, k) be an instance of SUB-CUBIC VC.
We apply the above mentioned reduction to create an instance (G’, k') of SUB-CUBIC
VC with vertex partitions C,...,C; such that t € O(y/n) and |C;| € O(y/n), for all
i € [t]. Furthermore, there is exactly one edge between C;,C}, for ¢,j € [t], i # j, and
C; induces an independent set in G’. For each guess 0 < k] < min(|C;|, k") of the size of
intersection of vertex cover with C;, for i € [t], we solve the instance (G', P, k],..., k}).
By the exhaustiveness of the guesses of the size of intersection for each partition,
(G',K') is a YES instance of SUB-CUBIC VC if and only if for some guess %/, ..., &},
(G',P,K;,...,k;) is a YES instance of SUB-CUBIC PVC. We emphasize the fact that

the number of guesses we make is bounded by n°V"™" = 200" since |C;| € O(/n)
and ¢t € O(y/n). But then we have an algorithm for SUB-CUBIC VC running in time
20(n) . nO(M) | contradicting the ETH. This concludes the proof. [

4. W[1]-HARDNESS OF SPLIT CONTRACTION

In this section we show that SPLIT CONTRACTION parameterized by the solution size
is W[1]-hard. Towards this we first define an intermediate problem from which we give
the desired reduction.

SPECIAL RED-BLUE PERFECT CODE (SRBPC) Parameter: &
Input: A bipartite graph G with vertex set V(G) partitioned into R (red set) and
B (blue set). Furthermore, R is partitioned (disjoint) into Ry W Ry W...W Ry and for
all .7’ € R, dg(r) = dg(r’). That is, every vertex in R has same degree, say d.
Question: Does there exist X C R, such that for all b € B, |[N(b) N X| = 1 and for
allie [k], |R,NX| =17

SRBPC is a variant of PERFECT CODE which is known to be W[1]-hard [Downey and
Fellows 1995]. We postpone the W[1]-hardness proof of SRBPC to Section 4.2 and first
give a parameterized reduction from SRBPC to SPLIT CONTRACTION, showing that
SPLIT CONTRACTION is W[1]-hard.
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Fig. 2. WI[1]-Hardness of SPLIT CONTRACTION.

4.1. Reduction from SRBPC to SPLIT CONTRACTION

Let (G,R = R1W, RoW... W Ry, B) be an instance of SRBPC. We will assume that |[B| =
dk, otherwise, the instance is a trivial NO instance of SRBPC. For technical reasons
we assume that |B| = ¢ > 4k (and hence d > 4). Such an assumption is valid because
otherwise, the problem is FPT. Indeed, if |B| = ¢ < 4k then for every partition Py, ..., Py
of B into k parts such that each part is non-empty, we first guess a permutation 7 on k
elements and then for every i € [k], we check whether there exists a vertex ;) € R,
that dominates exactly all the vertices in P; (and none in other parts P;, j # 1). Clearly,

all this can be done in time 2°(*1°2¥),O(1)  Furthermore, we also assume that ,

else the problem is solvable in polynomial time. Now we give the desired reduction.
We construct an instance (G’, k') of SPLIT CONTRACTION as follows. Initially, V(G') =
RUBand E(G’) = E(G). For all b,V € B, b # b, we add the edge (b,b') to E(G’). That

is, we transform B into a clique. Let |t = 2k + 2| For each b; € B, we add a set of ¢

vertices yi,...,y! each adjacent to b; in G’. We add a vertex s adjacent to every vertex
r € Rin G'. Also, we add a set of ¢ vertices ¢1, ..., ¢ each adjacent to s in G’. For each
i € [k], we add a vertex z; adjacent to each vertex r € R;. Finally, for all i € [k], we add
a set of t vertices w!, ..., w! adjacent to x; in G'. We set the new parameter £’ to be 2k.
This completes the description of the reduction. We refer the reader to Figure 2 for an
illustration of the reduction.

In the next four lemmata (Lemmata 4.1 to 4.4) we prove certain structural properties
of the instance (G’,k’) of SPLIT CONTRACTION. These will later be used in showing
that (G,R = RiW, Ry W ... W Ry, B) is a YES instance of SRBPC if and only if (G', k)
is a YES instance of SPLIT CONTRACTION. For the next four lemmAata, we let S be a
solution to SPLIT CONTRACTION in (G’, k') and H = G’/S with C, I being a partition
of V(H) inducing a clique and an independent set, respectively, in H. Let ¢ : V(G) —
V(H) denote the function defining the contractibility of G to H, and WV be the H-witness
structure of G.

LEMMA 4.1. Let (G',K') be a YES instance of SPLIT CONTRACTION. Then, for all
ve {s}UBU{z; | i€ [k]}), we have p(v) € C.
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PROOF. We only give an argument for the vertex s. The argument for vertices in
BU{z; | i € [k]} is analogous and thus omitted. Recall that there are ¢ pendant vertices
q,---,q adjacent to s, where ¢t = 2k + 2. At most 2k < t edges in {(¢;, s) | ¢ € [t]} can
belong to S. Therefore, there exist ji, jo € [t], j1 # j2 such that no edge incident to g,
or ¢;, is in S. In other words, for h1 = ¢(g;,) and he = ©(g;,), W(h1) and W (hy) are
singleton sets. Since W is a H-witness structure of G’, (h1,h2) ¢ E(H). Therefore, at

least one of h1, ho belongs to I, say hy € I. This implies that p(s)eC. O

LEMMA 4.2. Let (G', k') be a YES instance of SPLIT CONTRACTION. Then, for all
i € [k, there exists r; € R; such that (z;,r;) € S.

PROOF. Towards a contradiction assume that there exists an index ¢ € [k] such that
for all » € R;, (x;,7) ¢ S. Let h = ¢(x;). Observe that the edges in S can only be
incident to at most 4k vertices and thus there exists j € [¢] (¢ = |B| > 4k) such that for
W = @(b;), W(h') is a singleton set. From Lemma 4.1, we know that h, ' € C. Hence,
W(h) and W (h') are adjacent in G'. Thus there is a vertex v € W (h) and v' € W(R')
such that (v,v') € E(G’). Since [W(}')| = 1, we have that v' = ;. But (x;,b;) ¢ E(G'),
hence v # x;. Observe that v is a vertex of degree at least 2 in G’ and all the neighbors
of z; with degree at least 2 are in R;. Hence it follows that there exists » € R; such that
r € W(h). The solution S must contain all the edges of a spanning tree of G[W (h)]. Any
spanning tree of G[W (h)] must contain an edge (z;,7’) where v’ € R; (possibly ' = r)
since all the paths between z; and r in G must contain a vertex in R;. This is contrary
to our assumption that for all » € R;, (z;,7) ¢ S. This completes the claim. O

For each i € [k] we arbitrarily choose a vertex r} € R; such that e = (z;,7}) € S. The
existence of such a vertex is guaranteed by Lemma 4.2.

LEMMA 4.3. Let (G', k') be a YES instance of SPLIT CONTRACTION. Then, for all
i € [k] and h; = @(r}), we have |W (h;)| > 3. Furthermore, there is an edge ¢; # e in S
incident to exactly one of xz;,r} and not incident to the vertices in {w}, ..., w}}.

PROOF. Towards a contradiction assume that for some i € [k] and h; = ¢(r}),
|[W(h;)| < 3. From our assumption that (z;,r}) € S we have that z; € W (h;). Also, note
that there is a set B’ C B of at least ¢ — 2k vertices such that for h, = ¢ (b), |W(hy)| = 1.
This follows from the fact that at most 2k vertices in B can be incident to an edge in S.
Let B =B\ N(r}). We claim that |B| > ¢ — 2k —d > 0. Towards the claim observe that if
(G,R,B) is a YES instance of SRBPC then ¢ = dk. The last assertion follows from the
fact that every vertex in R has degree exactly d and we are seeking a solution X C R,
such that for all b € B, |[N(b) N X| = 1 and for all i € [k], |R; N X| = 1. That is, the set
X is of size k and it partitions B. This implies that d > 4, since ¢ = dk > 4k. Thus,
combining this with the fact that k > 2 we have that |B| > ¢ —2k —d = (d — 2)k —d > 0.
This completes the claim. Since the size of |IW(h;)| < 3 and it contains z; and r; we
have that W (h;) = {z;,7}}. Now, consider b € B with h = ¢(b). Observe that W (h;) and
W (h) are not adjacent in , however since x; € W (h;) Lemma 4.1 implies that h; € C.
But then (h, h;) € E(H), a contradiction. This implies that for all i € [k] and h; = o(r})
we have |W (h;)| > 3. However, since h;, h € C there must be a vertex in W (h;) that is
adjacent to a vertex in W (h). But since W (h) = {b}, W(h;) must contain a vertex that
is adjacent to b. But, none of the vertices in {w!, --- ,wi} are adjacent to b. Thus, W (k)
must contain a vertex that is adjacent to either z; or } but not to any of the vertices in
{wi, -, wi}. Let such a vertex be z; and let it be adjacent to r} (or z;). Since a solution
to (G', k') can be formed by taking spanning trees of each of the witness sets, we can
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assume that S contains a spanning tree of W (h;) that contains the edge e; = (z;,r}) (or
e; = (z;,2;)) and ef. This completes the proof of the lemma. O

From Lemma 4.2 we know that for each i € [k], we have r} € R; such that (z;,7}) € S.
Similarly, from Lemma 4.3 we know that, for each i € [k], there is an edge incident to
one of x;, r; other than e} = (z;,r}) in every solution. Recall that for i, j € [k], i # j none
of z;,r; is adjacent to x;,r;. Hence, it follows that we have already used up our budget
of k' = 2k by forcing certain types of edges to be in S. Finally, we prove Lemma 4.4 that
forces even more structure on the witness sets.

LEMMA 4.4. Let (G',k') be a YES instance of SPLIT CONTRACTION. Then, for all
i€ [k], v} € W(gp(s)).

PROOF. Let h, = ¢(s) and R = {r} | i € [k],r} € W(h,)}. For a contradiction assume
that | k| < k, otherwise the claim trivially holds. By Lemma 4.2, for each i € [k], e} =
(z;,7) € S. This implies that for all 7 € R, z; € W (h,) and hence [W (h,)| > 2|R| + 1.
From Lemma 4.3 we know that there exists an edge ¢; # e; € S incident to either z; or
r7 and not incident to any vertex in {wj,...,w}}. Thus, every edge in S is incident to
either x; or r*. This implies that for every vertex z € {q1,..., .} U{y,....y} | j € [(]},
|[W(¢(2))] = 1. Now we show that there exists a vertex in 5 that is not adjacent to any
vertex in W (h;). We start proving the claim that S does not contain an edge of the form
(rf,b;), where i € [k] and b; € B. Suppose not, then consider the sets R, = {r} € R |
(r¥,b) € S;b € By and B = {b € B | (r},b) € S,i € [k]}. By our assumption we have
|Ry| = ¢ > 0. Moreover, for each b € B, we have ¢(s) and ¢(b) are adjacent in H and
|B| < q. Observe that |[W(¢(s)) NR| < k — ¢, and W (p(s)) N R, = 0. From Lemma 4.1,
©(s) must be adjacent in H to each ¢(b), where b € 5. Since degree of each vertex in
R is d therefore, ¢(s) can be adjacent in H to at most d(k — ¢) vertices p(b), where
be B\ B.As d > 4, there is a vertex b € B\ B such that ¢(s) and o(b) are non-adjacent
in H, which is not possible. This concludes the proof of the claim. The claim allows us
to assume that the only vertices in W (h;) that can be adjacent to a vertex in B are in
R. However, every vertex in R has exactly d neighbours in B. This together with the
fact that |B| = ¢ = dk > d|R| implies that there exists a subset B’ of size d(k — |R|) such
that none of these vertices are adjacent to any vertex in R. However, at most (k — | R|)
vertices in B’ can be incident to an edge in S. This implies that there exists a vertex
b € B’ with h = ¢(b) such that it is not incident to any edge in S and thus [W(h)| = 1.
But then we can conclude that W (k) and W (h,) are not adjacent in G'. However, by
Lemma 4.1 we know that &,,h € C and thus there is an edge (h = ¢(b), hs) € E(H'),
a contradiction. This contradicts our assumption that |R| < k and gives us the desired
result. O

We are now ready to prove the equivalence between the instance (G, R, B) of SRBPC
and the instance (G’, k') of SPLIT CONTRACTION.

LEMMA 4.5. (G,R = Ry W...W Ry, B) is a YES instance of SRBPC if and only if
(G', k") is a YES instance of SPLIT CONTRACTION.

PROOF. In the forward direction, let Z = {r; | ; € R;,i € [k]} C R be a solution
to (G,R,B) of SRBPC. Let Z' = {(r;,x;),(ri,s) | i € [k]}. Observe that |Z’| = 2k. Let
T = {ri,x; | i € [k]}. We define the following surjective function ¢ : V(G’) — V(G') \ T.
If v € TU{s} then p(v) = s, else p(v) = v. Observe that G'[W(s)] is connected and for
allv e V(G')\ (T U{s}), W(v) is a singleton set. Consider the graph H with V(H) =
V(G \T and (v,u) € E(H) if and only if ¢=!(v), = (u) are adjacent in G’. Note that
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the graphs G’/Z’ and H are isomorphic, therefore we prove that H is a split graph. Let
C ={p(v) | BU{s}} and I = V(H)\ C. For v,u € I, o~} (v) = {v} and ¢~} (u) = {u}
and {v}, {u} are non-adjacent in . Therefore, (v,u) ¢ E(H). This proves that I is an
independent set in H. For b, € B ¢ C, (b,1/) € E(G"), therefore (o(v), p(u)) € E(H).
Since Z is a solution to SRBPCin (G, R, B), for b € B, there exists r; € Z such that
(b,7;) € E(G"), therefore, W(s) and b are adjacent in G’. Hence, (¢(s), p(b)) € E(H').
This finishes the proof that C' induces a clique in H and that H is a split graph.

In the reverse direction, let S be a solution to (G’,%’) of SPLIT CONTRACTION, and
denote H = G'/S. Let W be the H-witness structure of G, ¢ be the associated surjective
function and hs = ¢(s). From Lemmas 4.2 and 4.4 it follows that for all i € [k], there
exists r7 € R; such that (z;,7}) € S and r},z; € W(h,). Let Z = {r} | i € [k]}. We will
show that Z is a solution to SRBPC in (G, R, B). Since |W(hs)| > k¥ +1 =2k + 1, it
holds that for all v € V(H) \ {hs}, |W(v)| = 1. This implies that for all b € B, b ¢ W (hy).
Also observe that since z; € W (h;) for all i € [k] and [W (hs)| = k' +1 = 2k + 1, we have
that |W(hs) N R;| = 1. This implies that |Z| = k and |Z N R;| = 1, for all i € [k]. To show
that Z is indeed a solution, it is enough to show that for all b; € B, |Z N N(b;)| = 1.
Towards a contradiction, assume there exists b; € B such that |Z N N(b;)| # 1. Let
hy, = ©(b;). We consider the following two cases.

—If |Z N Ng:(b;)] < 1. Recall that W (hy,) = {b;}. Further, No/(b;) € RU{y{,..., %/},
Z = W (hs)NR and by our assumption ZNN¢:(b;) = 0. But then W (h) and W (hy, ) are
not adjacent in ’. However, Lemma 4.1 implies that (s, h,) € E(H), contradicting
our assumption that |Z N N(b;)| < 1. '

—1If |[Z N Ngi(b;)| > 1, then there exists j,j' € [k], j # j' such that 77,75 € Ng/(b).
Then it follows that | U;cx) N(r7)| < £ = dk. But then there exists b’ € B such that
W (p(t')) and W (h,) are non-adjacent in G’, contradicting that (¢ (V'), hs) € E(H) from
Lemma 4.1.

This completes the proof. O
We now restate Theorem 1.2.

THEOREM 4.6. SPLIT CONTRACTION is W[1]-hard when parmeterized by the size of
a solution.

PROOF. Proof follows from construction, Lemma 4.5 and the W[1]-hardness of
SRBPC (Theorem 4.11). O

4.2. W[1]-Hardness of SPECIAL RED-BLUE PERFECT CODE

In this section we show that SRBPC is W[1]-hard parameterized by the solution size.
We give a reduction from MULTI-COLORED CLIQUE to SRBPC. The problem MULTI-
COLORED CLIQUE is known to be W[1]-hard [Fellows et al. 2009], and is formally
defined below.

MULTI-COLORED CLIQUE (MCC) Parameter:
Input: A k-partite graph G with vertex partition V3,...,V}; of V(G).

Question: Does there exist X C V(G) such that for all ¢ € [£], | X NV;| = 1 and
G[X] is a clique?

The intuitive description of the reduction we are going to construct below is as fol-
lows. Let (G, V1, ..., V%) of be an instance of MCC. We will often refer to the sets V; as
color classes. For each color class we create a vertex selection gadget. Then we have
edge selection gadgets which ensure that between every pair of color classes an edge is
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selected. The vertex selection gadget ensures that the vertex chosen is same as the one
incident to the edge chosen by the edge selection gadget. Finally, we have a coherence
gadget which ensures that all the edges that are incident to a color class are incident
to the same vertex in this color class.

For technical reasons we will assume that the number of vertices in G is 2¢, for
some ¢t € N. Note that this can be easily achieved by adding dummy vertices to an
arbitrary color class with no edge incident to them. This results in at most doubling
of the number of vertices in the graph. For our purposes, we also assign a unique t-
bit-string to each vertex v € V(G). Next, we move to the description of the instance
(G', R, B) of SRBPC that we create.

Edge Selection Gadget. For i,j € [k], i # j, we create an edge selection gadget E;;
as follows. For each edge (u,v) € E(G), such that v € V; and v € V}, we add a vertex
eus to E;;. We emphasize the fact that £;; and E;; denote the same set. Similarly, for
an edge (u,v) € E(G), the vertices e,, and e,, are the same vertex. The symmetry in
the indices/subscripts holds only for the edge selection gadgets.

For the description of the vertex selection and coherence gadgets we will need the
following notation. For i € [k], the set T; = {j € [k] | j # ¢} has a natural total ordering
pi, specifically the order given by the relation < defined on N. Therefore, by p;(j) we
denote the position of j in the total ordering of T; (1st position is denoted by 1). We will
slightly abuse the notation and drop the subscript i from p; whenever it is clear from
the context.

Vertex Selection Gadget. For each color class i € [k] we have a vertex selection gad-
get S;. For i € [k], S; consists of k — 1 sets of vertices S; (), where j € [k] \ {i}. Here,

S, p(;) 1s a set of 2t vertices denoted by z( Lp(7), xy P Zf(J),yO (),ylp(”,...,ylf(ﬂ)

The intuition behind the construction of the set Si.p(;) 1s to encode the bit representa-
tion of the vertices in Vj. The size of S, ,(;) is twice the size of the bit-representation
for achieving the degree constraints of the vertices in the instance of SRBPC to be
created.

Coherence Gadget. Consider i € [k] and j € [k] \ {i}. We have a set C; ,(;) containing
copies of vertices in V;, i.e. |C; ,;)| = |Vi|. For a vertex v € V,, its copy in C; ,(;) is

denoted by ¢, Also, we have a set A; ,(;) containing a vertex ay” @) for each ¢ € [{].

The set 4; ;) is added only to ensure some degree constraints in the construction. For
each u € A; ;) and v € C; ,(;), we add the edge (u,v) to E(G’), i.e., G'[A; ;) U C; »(j)]
is a complete bipartite graph. By A; we denote the set Ujc(i (i} Ai,p(5)-

We now move to the description of the edges between vertex selection, edge selec-
tion and coherence gadgets. We refer the reader to Figure 3 for an illustration of the
reduction.

Edges between gadgets. Let i, j € [k],i # j,and u € V;,v € V} such that (u,v) € E(G).
Recall that corresponding to the edge (u,v), we have a vertex e, in E;; (which is same
as E;;). Let bob; ... b.—1 be the unique bit-string assigned to u. We add an edge between

xé’p(j) € S;,p(j) and ey, in G’ if and only if b, = 1, here £ € {0,...,t—1}. Similarly, we add
an edge between yz”’(j) € S; »(j) and ey, in G” if and only if b, = 0; here, £ € {0,...,t—1}.
Refer to Figure 4 for a pictorial illustration.

We now describe the edges between C; ,;) and S; ;. We will assume modulo k-

arithmetics for the computation of 1ndlces We note that the notation p is used only
for ease in specification and modulo index computation to work properly. For ¢, j € [k],

i # j and v € V;, there is a vertex c; L) ¢ Cip( p j) Let bgb, ...b,_; be the unique bit-

string assigned to v. We add an edge between z; ) e Sip(;) and P @) in G’ if and only
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Fig. 3. Illustration of edges between Vertex Selection Gadget, Coherence Gadget for : = 1, and Edge Selec-
tion Gadget.

v v ()%ém(j)xi,pu) riﬁj)yé’”(”yi’p(”yifﬂ
P00 -ee

. o -0 o

—_

(e )

Fig. 4. Edges between E;; and S;;, assuming the bit-string associated with v has by = 1 and b, = 0 for all
Let—1].

if b, = 0, here ¢ € {0,...,t — 1}. Similarly, we add an edge between yé’”(j)ﬂ € S p()+1

and c5*) in G’ if and only if b, = 1, here ¢ € {0,...,t— 1}. This finishes the description
of the graph G'.

Now we move on to partitioning the vertices in V(G’) into two sets R and 5. Then
we further partition R. For 7, j € [k], i # j we add all the vertices in C; ,(;) and E;; to
R. All the remaining vertices are added to the set 5. The set R is partitioned into E;;
and C; ,(;), where i # j. Observe that since E;; = Ej; for all i # j we have k(k—1) + (5)
parts of R and the degree of each vertex in R is 2¢t. This completes the description of
the instance (G', R, B) of SRBPC.

Next, we prove some lemmata that will help us in establishing the equivalence be-
tween the two instances.

LEMMA 4.7. Let (G', R, B) be a YES instance of SRBPC and R be one of its solution.
If for some i,j € [k],i # j, u € V;, v € V; we have e, € R then the following holds.

) et ¢ g
— D -l e g

PROOF. We give proof only for the first part of the lemma. The second one follows
from an analogous argument. Consider i, j € [k],i # j, u € V;, v € V}, such that e, € R.
Let b, = bgb; . ..b;_1 be the unique bit-string assigned to u. Observe that all the vertices
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i”) ) with by =1,for ¢ € {0,...,t—1} are adjacent to e,,. Since Ris a solution, it must

contam a vertex from C; (). Let the unique vertex in R N C; 20) be ¢’ . Suppose
w # u. Cons&der the difference in the bit-string representation b,,, of w and b,. Since
w # u, b, and b, differs in at least one position, let the first such position be ¢. If b, = 1

(¢"" bit in b,) then ¢ bit in b,, is 0. But then, z;” () is adjacent to two vertices, namely

eus and c*Y | contradicting that R is a solution. If b, = 0, then 2" @) is not adjacent

to ey, and cu’”(J) Recall that N(x i”’(j)) C E;; UC; ,(j)- Hence, mZ’p(j) is non-adjacent to

any vertex in R, a contradlctlon Therefore, u = w and ;") € R. A similar argument

can be given for proving c;” PU)=1 ¢ R. This completes the proof. O

LEMMA 4.8. Let (G', R, B) be a YES instance of SRBPC and R be a solution. If for

somez’,je[}z;éjanduveehavecup(])

that e, € R.

€ R then there exists some v € V; such

PROOF. Towards a contradiction assume that for some i, € [k],i # j and u € V; we
have ¢;Y) ¢ R and for all v € Vi, s ¢ R.Let b, = boby ... b, be the unique bit-string

assigned to u. For all ¢ € {0,...,¢t — 1} such that b, = 0, xz’p(j) is adjacent to ;"\,
Since R is a solution it must contain a vertex e,,, € E;;, where w € V; and z € V;. By

assumption w # u. But by Lemma 4.7, ¢’ € R, contradicting that [R N C; il =1
This implies that w =u. O
LEMMA 4.9. Let (G', R, B) be a YES instance of SRBPC and R be a solution. If for
some i,j € [k],i # j and u € V; we have ¢;"Y) € R then for all ¢ € [k] \ {i} we have
,p(f)
€ R.

PROOF. Follows from Lemmas 4.7 and 4.8. O

LEMMA 4.10. (G,k) is a YES instance of MCC if and only if (G',R,B) is a YES
instance of SRBPC.

PROOF. In the forward direction, let V = {v; | i € [k]} be a solution to MCC for
(G, V1,..., V). Let b; be the unique bit-string assigned to v;, for i € [k]. Also, we let
R = {cif7 | i.j € [K,i # j}Ufeu, | i.j € [k # j}. Observe that [RN Cy| = 1,
for all 4,5 € [k],7 # j. Similarly, [R N E;;| = 1, for all ¢,j € [k],i # j. Recall that
B=V(G)\R = (Uie[k]si) U (Uie[k}fli). Here, for i € [k], we have S, = Uje[k]\{i}si,p(j)
and A; = Ujcp (i} 4i,p(j)- Observe that for each i € [k], each vertex in A; is adjacent
to exactly one vertex in R. Next, we show that for i, j € [k], i # j, each vertex in S, ,(;
is adjacent to exactly one vertex in R. Recall that S2 .»(j) 18 adjacent only to vertices in
Ci.p(j)> Cip(j)—1 and E;;. Consider a vertex z wl) ¢ S p(), for £ € {0,...,t —1}. Assume
that ¢" bit of b; is 1. This implies that «}” @) g adJacent to €y, and not adjacent
to 5”9, Also, xe’” () is non-adjacent to any other vertex in R. Hence it follows that
IR N N(25°9))| = 1. An analogous argument can be given for the case when ¢t bit of

b; is 0. Furthermore, we can give a symmetric argument for a vertex yz’p ) ¢ Si (i)
where ¢ € {0,...,t — 1}. This finishes the proof of the forward direction.
In the reverse direction, let R be a solution to SRBPC for (G’, R, B). Note that for

i,j€k,i+#j, [RNE;| =1and [RNC; ;| = 1. Let X = {v € V(G) | "Y€ R}.
It follows from Lemma 4.9 that for all < € [k], | X N V;| = 1. Consider u,v € X, where
uweV;,veV;and i # j. From Lemma 4.9 for all ¢ € [k], z;«éﬁwehavec’p“) € R and
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for all ¢’ € [k], j # ¢’ we have P ) ¢ R. This together with Lemma 4.8 imply that
ewn € R. Hence (u,v) € E(G). Since choice of u, v was arbitrary, it implies that G[X] is
aclique. O

We are now ready to prove the main theorem of this section.

THEOREM 4.11. SRBPC when parameterized by the number of parts in R is W[1]-
hard.

PROOF. Follows from construction of the instance (G’, R, B) of SRBPC for the given
instance (G, k) of MCC, Lemma 4.10, and W[1]-hardness of MCC. O

5. FPT ALGORITHM FOR SPLIT CONTRACTION PARAMETERIZED BY VERTEX COVER

In this section we give an FPT algorithm for SPLIT CONTRACTION when parameterized
by the size of a minimum vertex cover. In Section 5.1 we give an algorithm running in
time 2°(°) . n®() for SPLIT CONTRACTION parameterized by ¢, the size of minimum
vertex cover, when the input graph is connected. In this section we use the algorithm
for solving SPLIT CONTRACTION parameterized by the size of a minimum vertex cover
on connected graphs to solve SPLIT CONTRACTION on general graphs.

Let (G, k) be an instance of SPLIT CONTRACTION and C4,...,C; be the set of con-
nected components of G. Observe that except for one connected component in G, every
other component must be contracted to a single vertex, since all the vertices in these
components must be part of the independent set. Also, note that for contracting a com-
ponent to a single vertex we need to contract a spanning tree in it. Therefore, for each
i€ ft]let ki =k =3 icpp iy IV(C)) — 1| and solve the instance (C;, k;). If for any i € [¢]
the algorithm returns a YES instance then we return that (G, k) is a YES instance,
otherwise return that (G, k) is a NO instance. The correctness of the above algorithm
relies on the correctness of the algorithm for connected graphs and thus results in the
following theorem.

THEOREM 5.1. SPLIT CONTRACTION admits an algorithm running in time 2°¢°) .
nPW where { is the size of the minimum vertex cover of the input graph.

5.1. Algorithm for SPLIT CONTRACTION on Connected Graphs

In this section we give an FPT algorithm for SPLIT CONTRACTION parameterized by
the size of a minimum vertex cover when the input graph is a connected. Let (G, k)
be an instance of SPLIT CONTRACTION, where G is a connected graph. We start by
computing a minimum sized vertex cover S in G. Computing a minimum vertex cover
in a graph can be done in time 1.2738¢ - n®(1) where / is the size of a minimum vertex
cover in the graph [Chen et al. 2010]. We first prove the following Lemma which will
be useful for the algorithm.

LEMMA 5.2. Let G be a connected graph, S be a minimum vertex cover in G and
K C E(G) be a set of minimum size such that G/K is a split graph, then |K| < 2|S)|.

PROOF. Let T be a dfs-tree of G and L denote the set of leaves in T. It is well
known that V(T') \ Lt is a connected vertex cover of G and |V (T) \ Ly| < 2|S| [Savage
1982]. Let E7 be the edges in T that are non-adjacent to vertices in L. Observe that
G/Er is a split graph. Thus, |K| < |Er| < [V(T)\ Lr| <2|S|. D

Let I = V(G) \ S. Since S is a vertex cover, I is an independent set in G. We define
an equivalence relation R among the vertices in I based on their neighborhood in S.
Basically, u, v € I belong to the same equivalence class if and only if N(u) = N(v). Let

ACM Transactions on Computation Theory, Vol. 9, No. 4, Article 39, Publication date: March 2017.



Split Contraction: The Untold Story 39:19

I.,...,I; be the equivalence classes of R. Note that ¢t < 2/°I. We apply the following
Reduction Rules exhaustively.

REDUCTION RULE 1. Ifk > 2|S|, then return that (G, k) is a YES instance.
LEMMA 5.3. Reduction Rule 1 is safe.
PROOF. The proof follows from Lemma 5.2. O

REDUCTION RULE 2. Ifthere is an equivalence class I;, for j € [t] such that |I;| >
2k + 2, then delete an arbitrary vertex v € I; from G. That is, the resulting instance is

(G - {U}7 k‘l)
LEMMA 5.4. Reduction Rule 2 is safe.

PROOF. Let (G, k) be an instance of SPLIT CONTRACTION. Furthermore, for some
J € [t] we have |I;| > 2k + 2 and let v € I; and let (G’ = G — {v}, k). In the forward
direction let X be a solution to (G, k), W be the H = G/ X -witness structure of G with ¢
being the underlying surjective function. If no edge in X is incident to v, then X is also
a solution in (G’, k) as G’/ X is an induced subgraph of G/X. Let X, C X be those edges
which are incident to v. There is a vertex v’ € I; that is not adjacent to any edge in X
since |I;| > 2k+2. Let X,y = {(u,v’) | (u,v) € X, },i.e., X,/ is the set of edges obtained by
replacing v by v’ in X,,. Note that such a replacement is possible because N (v) = N(v').
Let X’ = (X \ X,) U X,. Clearly, the size of | X’| < |X| < k. We define the surjective
function ¢’ : V(G') — V(H) \ {¢(v')} as follows. For v € V(G’), u # v/, ¢'(u) = ¢(u)
and ¢’ (v') = p(v) (recall, p(v) # ©(v')). For h € V(H) \ {p(v')} we let W'(h) = ¢~ 1(h).
Let H' to be the graph with V(H') = V(H) \ {¢(v')} and (h1, h2) € E(H’) if and only if
W'(hy1) and W’ (h2) are adjacent in G'. Since, |IW (p(v'))| = 1 we have that for any vertex
he V(H)\{¢'v'}, W(h) = W(h) and W'(¢' (V")) = (W (p(v))\ {v})U{v'}. Observe that
since N¢(v) = Ng(v'), we have that for all h € V(H'), G’'[W(h)] is connected, and hence
it follows that G’ is contractible to H'. Furthermore, to show that G’/ X"’ is a split graph,
it is enough to show that H’ is a split graph. Since Ng(v) = Ng(v'), the graphs H, H’
differs only in the vertex ¢(v') € V(H) (¢(v') ¢ V(H')). But any induced subgraph of a
split graph, is a split graph, hence it follows that H’ is a split graph.

In the reverse direction, let X be a solution to SPLIT CONTRACTION in (G', k), H =
G'/X and ¢, W be the underlying surjective function and H-witness structure of G’,
respectively. Observe that X can be incident to at most 2k vertices in I;, therefore
there are vertices u,u’ € V(G') NI}, u # v’ which are not incident to any edge in X i.e.
[W(eo(w))] = |[W(p(u')| = 1. Let C' and Z’ be the clique and independent set respectively
in H. Note that at least one of p(u), p(u’) belongs to Z’, say ¢(u) € Z'. We define the
surjective function ¢, : V(G) — V(H)U{v} as follows. For z € V(G) \ {v}, ¢, (z) = ¢(z)
and p(v) = v. Let H, be the graph with vertex set V(H)U{v} and (h, /') € E(H,) if and
only if W, (k) and W, (') are adjacent in G. Notice that ¢, satisfies all the properties
for it to define the contractibility of G to H,. Recall that N(v) = N(u). But then 7' U{v}
is an independent set and C’ is a clique, partitioning the vertices of H,,, therefore H, is
a split graph. But notice that indeed H, = G/ X, hence the claim follows. O

Given an instance (G, k) to SPLIT CONTRACTION, we apply Reduction Rules 1 and 2
until no longer applicable. For simplicity we denote the resulting instance where none
of the Reduction Rules are applicable by (G, k) itself. Observe that the number of ver-
tices in G is upper bounded by (2k +2) - 2¢ + ¢ < (40 + 2) - 2 + ¢ = 2°1)  where ¢ = |S|.
This follows from the fact that the Reduction Rules are not applicable and Lemma 5.2.

Observe that the number of vertices in G that are incident to an edge of the solution
is bounded by 2k. We guess X C V(G) of size at most 2k, which is incident to at least
one edge in the solution. Note that the number of such guesses is upper bounded by
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(2(;;)) = 20(®)_ The number of edges in G[X] is bounded by O(¢2). For each E' C
E(G[X]) of size at most k, we check if G/E’ is a split graph. If for all X C V(G) and
E' C E(G[X]), G/E' is not a split graph then we return that (G, k) is a NO instance,

otherwise we return that (G, k) is a YES instance of SPLIT CONTRACTION.

Correctness and running time analysis. Given an instance (G, k), where G is a
connected graph on n vertices, the algorithm starts by computing a minimum sized
vertex cover S in GG and an equivalence relation based on the neighborhood in G. The
time required for this step of the algorithm is bounded by O(1.2738° - n©()), where
¢ = |S| [Chen et al. 2010]. The algorithm then applies one of the Reduction Rule, if
applicable. The Reduction Rules can be applied in polynomial time and their safeness
follows from Lemma 5.3 and 5.4. When none of the Reduction Rules are applicable
then the algorithm solves the instance in a brute force way and here its correctness
is immediate. In the brute force step the algorithm guess a subset X C V(G) of size
at most 2k which are incident to an edge in the solution. The number of such subsets
is bounded by 2°“*), which in turn is bounded by 2°(*). For the guessed subset X,
the algorithm tries for all possible sets of edges E’ of size at most &k in F(G[X]). The

number of such edge subsets is upper bounded by 2°(*1°¢¥) which is bounded by 20",
Checking if G/E’ is a split graph takes linear time [Golumbic 2004]. Hence, the total

running time is bounded by 1.2738¢ - n@(1) 4 20(£%) . 20(€*) . O(1) — 2O(£*) . ;O (1),

THEOREM 5.5. SPLIT CONTRACTION on connected graphs admits an algorithm

running in time 2°) . nOW) where ( is the size of a minimum vertex cover of the
input graph.

6. CONCLUSION

In this paper, we have established two important results regarding the complexity of
SPLIT CONTRACTION. First, we have shown that under the ETH, this problem cannot
be solved in time 2°(") . n®1) where ¢ is the vertex cover number of the input graph,
and this lower bound is tight. To the best of our knowledge, this is the first tight lower
bound of the form 2°¢¢*) . n®M) for problems parameterized by the vertex cover number
of the input graph. Second, we have proved that SPLIT CONTRACTION, despite its
deceptive simplicity, is actually W[1]-hard with respect to the solution size. We believe
that techniques integrated in our constructions can be used to derive conditional lower
bounds and W[1]-hardness results in the context of other graph editing problems where
the edit operation is edge contraction.

We would like to conclude our paper with the following intriguing question. In the ex-
act setting, it is easy to see that SPLIT CONTRACTION can be solved in time 20("logn)
Can it be solved in time 2°("1°2™)? A negative answer would imply, for instance, that it
is neither possible to find a topological clique minor in a given graph in time 2°("10sn)
which is an interesting open problem [Cygan et al. 2016]. It might be possible that
tools developed in our paper, such as the usage of harmonious coloring, can be utilized
to shed light on such problems.
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