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For a family F of graphs, a graph G, and a positive integer k , the F -Deletion problem asks whether we
can delete at most k vertices from G to obtain a graph in F . F -Deletion generalizes many classical graph
problems such as Vertex Cover, Feedback Vertex Set, and Odd Cycle Transversal. For an integer α ≥ 1,
an n-vertex (multi) graph G = (V ,⋃α

i=1 Ei ), where the edge set of G is partitioned into α color classes, is
called an α-edge-colored (multi) graph. A natural extension of the F -Deletion problem to edge-colored
graphs is the Simultaneous F -Deletion problem. In the latter problem, we are given an α-edge-colored
graph G and the goal is to find a set S of at most k vertices such that each graph Gi − S , where Gi = (V ,Ei )
and 1 ≤ i ≤ α , is in F . In this work, we study Simultaneous F -Deletion for F being the family of forests.
In other words, we focus on the Simultaneous Feedback Vertex Set (SimFVS) problem. Algorithmically,
we show that, like its classical counterpart, SimFVS parameterized by k is fixed-parameter tractable (FPT)
and admits a polynomial kernel, for any fixed constant α . In particular, we give an algorithm running in
2O(αk )nO(1) time and a kernel with O(αk3(α+1)) vertices. The running time of our algorithm implies that
SimFVS is FPT even when α ∈ o(logn). We complement this positive result by showing that if we allow α to
be in O(logn), where n is the number of vertices in the input graph, SimFVS becomesW[1]-hard. In particular,
when α is roughly equal to c logn, for a non-zero positive constant c , the problem becomesW[1]-hard. Our
positive results answer one of the open problems posed by Cai and Ye (MFCS 2014).
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1 INTRODUCTION
In graph theory, one can define a general family of problems as follows. Let F be a collection
of graphs. Given an undirected graph G and a positive integer k , is it possible to perform at
most k edit operations to G so that the resulting graph belongs to F ? Here one can define edit
operations as either vertex/edge deletions, edge additions, or edge contractions. Such problems
constitute a large fraction of problems considered under the parameterized complexity framework
and have been studied extensively. When edit operations are restricted to vertex deletions this
corresponds to the F -Deletion problem, which generalizes classical graph problems such as
Vertex Cover [6], Feedback Vertex Set [5, 8, 18], Vertex Planarization [24], Odd Cycle
Transversal [19, 21], Interval Vertex Deletion [4], Chordal Vertex Deletion [23], and
Planar F -Deletion [11, 17]. The topic of this paper is a generalization of F -Deletion problems
to “edge-colored graphs”. In particular, we do a case study of an edge-colored version of the classical
Feedback Vertex Set problem [12].
A graph G = (V ,⋃α

i=1 Ei ), where the edge set of G is partitioned into α color classes, is called
an α-edge-colored graph. As stated by Cai and Ye [3], “edge-colored graphs are fundamental in
graph theory and have been extensively studied in the literature, especially for alternating cycles,
monochromatic subgraphs, heterochromatic subgraphs, and partitions”. A natural extension of the
F -Deletion problem to edge-colored graphs is the Simultaneous F -Deletion problem. In the
latter problem, we are given an α-edge-colored graph G and the goal is to find a set S of at most
k vertices such that each graph Gi − S , where Gi = (V ,Ei ) and 1 ≤ i ≤ α , is in F . Cai and Ye [3]
studied several problems restricted to 2-edge-colored graphs, where edges are colored either red or
blue. In particular, they consider the Dually Connected Induced Subgraph problem, i.e. find a set
S of k vertices inG such that both induced graphsGred[S] andGblue[S] are connected, and the Dual
Separator problem, i.e. delete a set S of at most k vertices to simultaneously disconnect the red
and blue graphs of G. They show, among other results, that Dual Separator is NP-complete and
Dually Connected Induced Subgraph isW[1]-hard even when bothGred andGblue are trees. One
of the open problems they state is to determine the parameterized complexity of Simultaneous
F -Deletion for α = 2 and F the family of forests, bipartite graphs, chordal graphs, or planar
graphs. The focus in this work is on one of those problems, namely Simultaneous Feedback
Vertex Set, an interesting, and well-motivated [2, 3, 16], generalization of Feedback Vertex Set
on edge-colored graphs.
A feedback vertex set is a subset S of vertices such that G − S is a forest. For an α-edge-colored

graph G , an α -simultaneous feedback vertex set (or α -simfvs for short) is a subset S of vertices such
that Gi − S is a forest for each 1 ≤ i ≤ α . The Simultaneous Feedback Vertex Set is stated
formally as follows.

Simultaneous Feedback Vertex Set (SimFVS) Parameter: k
Input: (G = (V ,⋃α

i=1 Ei ),k), where G is an undirected α-edge-colored (multi) graph and k is
a positive integer.
Question: Is there a subset S ⊆ V (G) of size at most k such that for 1 ≤ i ≤ α , Gi − S is a
forest?

Given a graph G = (V ,E) and a positive integer k , the classical Feedback Vertex Set (FVS)
problem asks whether there exists a set S of at most k vertices in G such that the graph induced
on V (G) \ S is acyclic. In other words, the goal is to find a set of at most k vertices that intersects
all cycles in G. FVS is a classical NP-complete [12] problem with numerous applications and is by
now very well understood from both the classical and parameterized complexity [10] view points.
For instance, the problem admits a 2-approximation algorithm [1], an exact (non-parameterized)
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algorithm running in O(1.736nnO(1)) time [29], a deterministic algorithm running in O⋆(3.619k )
time [18]1, a randomized algorithm running in O⋆(3k ) time [8], and a kernel on O(k2) vertices [27]
(see Section 2 for definitions).

Our results and methods. We show that, like its classical counterpart, SimFVS parameterized
by k is FPT and admits a polynomial kernel, for any fixed constant α . In particular, we obtain the
following results.

• An FPT algorithm running in O⋆(23αk ) time. For the special case of α = 2, we give a
faster algorithm running in O⋆(81k ) time. Using a completely different approach, Ye [30]
independently (and simultaneously) gave an algorithm running in O⋆(kαk ) time for the
general case and an algorithm running in O⋆(ck ) time, c > 81, for the case α = 2.

• For constant α , we obtain a kernel with O(αk3(α+1)) vertices.
• The running time of our algorithm implies that SimFVS is FPT even when α ∈ o(logn). We
complement this positive result by showing that for α ∈ O(logn), where n is the number of
vertices in the input graph, SimFVS becomes W[1]-hard. In particular, when α is roughly
equal to c logn, for a non-zero positive constant c , the problem becomes W[1]-hard.

Our algorithms and kernel build on the tools and methods developed for FVS [7]. However,
we need to develop both new branching rules as well as new reduction rules. The main reason
why our results do not follow directly from earlier work on FVS is the following. Many (if not all)
parameterized algorithms, as well as kernelization algorithms, developed for the FVS problem [7]
exploit the fact that vertices of degree two or less in the input graph are, in some sense, irrelevant.
In other words, vertices of degree one or zero cannot participate in any cycle and every cycle
containing any degree-two vertex must contain both of its neighbors. Hence, if this degree-two
vertex is part of a feedback vertex set then it can be replaced by either one of its neighbors.
Unfortunately (or fortunately for us), this property does not hold for the SimFVS problem when we
restrict our attention to edges of the same color, even on graphs where edges are bicolored either
red or blue. For instance, if a vertex is incident to two red edges and two blue edges, it might in
fact be participating in two distinct cycles. Hence, it is not possible to neglect (or shortcut) this
vertex in neither Gred nor Gblue. As we shall see, most of the new algorithmic techniques that we
present deal with vertices of exactly this type. Although very tightly related to one another, we
show that there are subtle and interesting differences separating the FVS problem from the SimFVS
problem, even for α = 2. For this reason, we also believe that studying Simultaneous F -Deletion
for different families of graphs F , e.g. bipartite, chordal, or planar graphs, might reveal some new
insights about the classical underlying problems.
In Section 3, we present an algorithm solving the SimFVS problem, parameterized by solution

size k , in O⋆(23αk ) time. Our algorithm follows the iterative compression paradigm introduced by
Reed et al. [26] combined with new reduction and branching rules. Our main new branching rule
can be described as follows: Given a maximal degree-two path in some Gi , 1 ≤ i ≤ α , we branch
depending on whether there is a vertex from this path participating in an α-simultaneous feedback
vertex set or not. In the branch where we guess that a solution contains a vertex from this path, we
construct a color i cycle which is isolated from the rest of the graph. In the other branch, we are able
to follow known strategies by “simulating” the classical FVS problem. Observe that we can never
have more than k isolated cycles of the same color in a positive instance. Hence, by incorporating
this fact into our measure we are guaranteed to make “progress” in both branches. For the base
case, each Gi is a disjoint union of cycles (though not G) and to find an α-simultaneous feedback
1 We use the O⋆ notation to describe the running times of our algorithms. A running time O⋆(f (k )) means that the
running time is upper bounded by f (k )nO(1), where n is the input size. That is, the O⋆ notation suppresses factors that are
polynomial in the input size from the running-time expression.
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vertex set for G we cast the remaining problem as an instance of Hitting Set parameterized by
the size of the family. For α = 2, we can instead use an algorithm for finding maximum matchings
in an auxiliary graph. Using this fact we give a faster, O⋆(81k ) time, algorithm for the case α = 2.
In Section 4, we tackle the question of kernelization and present a polynomial kernel for the

problem, for constant α . Our kernel has O(αk3(α+1)) vertices and requires new insights into the
possible structures induced by those special vertices discussed above. In particular, we enumerate
all maximal degree-two paths in each Gi after deleting an approximate feedback vertex set in Gi
and study how such paths interact with each other. Using vertex “marking” techniques, we are able
to “unwind” long degree-two paths by making a private copy of each unmarked vertices for each
color class. This unwinding leads to “normal” degree-two paths on which classical reduction rules
can be applied and hence we obtain the desired kernel.

Finally, we consider the dependence between α and both the size of our kernel and the running
time of our algorithm in Section 5. We show that even for α ∈ O(logn), where n is the number of
vertices in the input graph, SimFVS becomes W[1]-hard. We show hardness via a new problem
of independent interest which we denote by Partitioned Hitting Set. Partitioned Hitting
Set is a special variant of the well-known Hitting Set problem. In the Hitting Set problem,
we are given a universe U, a family F = { f1, f2, . . .} of subsets of U, and an integer k , and the
goal is to “hit” every set in F using at most k elements from U. Formally, the goal is to determine
whether there exists U ⊆ U such that |U | ≤ k and U ∩ f , ∅, for all f ∈ F . The input to the
Partitioned Hitting Set problem consists of a tuple (U,F = F1 ∪ . . . ∪ Fα ,k), where each
Fi , 1 ≤ i ≤ α , is a collection of subsets of the finite universe U, k is a positive integer, and all
the sets within a family Fi , 1 ≤ i ≤ α , are pairwise disjoint. As in the Hitting Set problem, the
goal is to determine whether there exists a subset U of U of cardinality at most k such that for
every f ∈ F = F1 ∪ . . . ∪ Fα , f ∩ U is nonempty. We show that Partitioned Hitting Set is
W[1]-hard for α ∈ O(log |U||F |) via a reduction from Partitioned Subgraph Isomorphism and
we show that SimFVS isW[1]-hard for α ∈ O(logn) via a reduction from Partitioned Hitting
Set with α ∈ O(log |U||F |). Along the way, we also show, using a somewhat simpler reduction
from Hitting Set, that SimFVS is W[2]-hard for α ∈ O(n).

2 PRELIMINARIES
We start with some basic definitions and introduce terminology from graph theory and algorithms.
We also establish some of the notation that will be used throughout.

Graphs. For a graph G, by V (G) and E(G) we denote its vertex set and edge set, respectively. We
only consider finite graphs possibly having loops and multiedges. In the following, letG be a graph
and let H be a subgraph of G . By dH (v), we denote the degree of vertex v in H . For any non-empty
subsetW ⊆ V (G), the subgraph of G induced byW is denoted by G[W ]; its vertex set isW and its
edge set consists of all those edges of E with both endpoints inW . ForW ⊆ V (G), by G −W we
denote the graph obtained by deleting the vertices inW and all edges which are incident to at least
one vertex inW .

A path in a graph is a sequence of distinct verticesv0,v1, . . . ,vk such that (vi ,vi+1) is an edge for
all 0 ≤ i < k . A cycle in a graph is a sequence of distinct vertices v0,v1, . . . ,vk such that (vi ,vi+1)
is an edge for all 0 ≤ i < k and (vk ,v0) is an edge. We note that both a double edge and a loop are
cycles. We also use the convention that a loop at a vertex v contributes two to the degree of v .
An α-edge-colored graph (or α-colored graph for short) is a graph G = (V ,⋃α

i=1 Ei ). We call Gi
the color i (or i-color) graph of G, where Gi = (V ,Ei ) (the graph G is the “bag” union of all graphs
Gi ). For notational convenience we sometimes denote an α-colored graph byG = (V ,E1,E2, ...,Eα ).
For an α-colored graph G, the total degree of a vertex v is

∑α
i=1 dGi (v). A vertex v is isolated if it
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has total degree zero (a vertex with a loop is not isolated). By color i edge (or i-color edge) we
refer to an edge in Ei , for 1 ≤ i ≤ α . A vertex v ∈ V (G) is said to have a color i neighbor if there
is an edge (v,u) in Ei , furthermore u is a color i neighbor of v . We say a path or a cycle in G is
monochromatic if all the edges on the path or cycle have the same color. Given a vertex v ∈ V (G), a
v-flower of order k is a set of k cycles in G whose pairwise intersection is exactly {v}. If all cycles
in a v-flower are monochromatic then we have a monochromatic v-flower. An α-colored graph
G = (V ,E1,E2, · · · ,Eα ) is an α -forest if each Gi is a forest, for 1 ≤ i ≤ α . We refer the reader to [9]
for details on standard graph theoretic notation and terminology we use in the paper.

Parameterized complexity. A parameterized problem Π is a subset of Γ∗ × N, where Γ is a
finite alphabet. An instance of a parameterized problem is a tuple (x ,k), where x is a classical
problem instance, and k is called the parameter. A central notion in parameterized complexity is
fixed-parameter tractability (FPT) which means, for a given instance (x ,k), decidability in time
f (k) ·p(|x |,k), where f is a computable function of k and p is a polynomial in |x | and k . For showing
that a given parameterized problem is not likely to be FPT, i.e. not likely to admit an algorithm
running in f (k) ·p(|x |,k) time, Downey and Fellows [10] introduced theW-hierarchy. The hierarchy
consists of a complexity class W[t], for every integer t ≥ 1, such that W[t] ⊆ W[t + 1] for all t .
Downey and Fellows [52] proved that FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[t] and conjectured that
strict containment holds. In particular, the assumption FPT ⊂ W[1] is a natural parameterized
analogue of the conjecture that P , NP. Similarly to the notion of reductions in classic complexity
theory, we can use the notion of parameterized reductions for showing that a problem is FPT
or for placing it inside the W-hierarchy. Let A,B ⊆ Γ∗ × N be two parameterized problems. A
parameterized reduction from A to B is an algorithm that, given an instance (x ,k) of A, outputs an
instance (x ′,k ′) of B such that (x ,k) is a yes-instance of A if and only if (x ′,k ′) is a yes-instance of
B, k ′ ≤ д(k) for some computable function д, and the running time is f (k) · p(|x |,k), where f is a
computable function of k and p is a polynomial in |x | and k .
Kernelization. A kernelization algorithm for a parameterized problem Π ⊆ Γ∗ ×N is an algorithm
that, given (x ,k) ∈ Γ∗ × N, outputs, in time polynomial in |x | and k , a pair (x ′,k ′) ∈ Γ∗ × N such
that (x ,k) ∈ Π if and only if (x ′,k ′) ∈ Π and |x ′ |,k ′ ≤ д(k), where д is some computable function.
The output instance x ′ is called the kernel, and the function д is referred to as the size of the kernel.
If д(k) = kO(1) (resp. д(k) = O(k)) then we say that Π admits a polynomial (resp. linear) kernel.
A reduction rule for a parameterized problem Π is a function ρ : Γ∗ × N→ Γ∗ × N that maps an
instance (x ,k) (of Π) to an instance (x ′,k ′) (of Π) such that ρ is computable in time polynomial
in |x | and k . We say that two instances of Π, (x ,k) and (x ′,k ′), are equivalent if (x ,k) ∈ Π if and
only if (x ′,k ′) ∈ Π. A reduction rule is said to be safe whenever it translates an instance into an
equivalent one.

3 FPT ALGORITHM FOR SIMULTANEOUS FEEDBACK VERTEX SET
We give an algorithm for the SimFVS problem using the method of iterative compression [7, 26].
We briefly describe the general scheme of iterative compression and then focus on an algorithm for
solving the disjoint version of SimFVS. We refer the reader to [7, 26] for more details on iterative
compression. In the Disjoint SimFVS problem, we are given an α-colored graph G = (V ,⋃α

i=1 Ei ),
an integer k , and an α-simfvsW inG of size k +1. The objective is to find an α-simfvs S ⊆ V (G) \W
of size at most k , or correctly conclude the non-existence of such an α-simfvs.

Let (G = (V ,⋃α
i=1 Ei ),k) be an instance of SimFVS. We fix an arbitrary ordering (v1,v2, . . . ,vn)

on the vertices of G. For j ∈ {1, . . . ,n}, we let G(j) denote the subgraph of G induced on the first
j vertices. Note that when j = k , we can take the vertex set of G(k ) as an α-simfvs in G(k ) of size
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k . Now suppose that for some j > k , we have constructed an α-simfvs S (j) of G(j) of size at most
k . Then, in the graph G(j+1), the set Z (j+1) = S (j) ∪ {vj+1} is an α-simfvs of size at most k + 1. If
in fact |Z (j+1) | ≤ k then we are done, i.e. we let S (j+1) = Z (j+1) and proceed to the next iteration.
Otherwise, |Z (j+1) | = k + 1 and we need to “compress it” into a smaller solution (if it exists). To that
end, we first guess the intersection X of S (j+1) with Z (j+1). In other words, for every q ∈ {0, . . . ,k}
and every subset X of Z (j+1) of size q, we construct an instance (G ′,W ′,k ′) of Disjoint SimFVS as
follows. We letG ′ = G(j+1) −X ,W ′ = Z (j+1) \X , and k ′ = k −q. Note that |W ′ | = k −q + 1, so |W ′ |
is one larger than k ′. IfG ′ does not admit an α-simfvs of size at most k , then of course neither does
G , and we may terminate (and declare a no-instance). If S (j+1) has been successfully found (which is
the union of X and the solution to instance (G ′,W ′,k ′)), then we proceed to the next graph G(j+2),
and repeat. Finally, observe that G(n) = G, so we eventually either find an α-simfvs of size at most
k in G or conclude that no solution exists. A simple calculation shows that the existence of an
algorithm running in ck · nO(1) time for the disjoint variant implies that SimFVS can be solved in
time (1 + c)k · nO(1) [7]. In Section 3.1 we describe such an algorithm for Disjoint SimFVS.

3.1 Algorithm for Disjoint SimFVS
Let (G = (V ,E1,E2, . . . ,Eα ),W ,k) be an instance of Disjoint SimFVS and let F = G −W . We start
with some simple reduction rules that clean up the graph. Whenever more than one reduction rule
applies, we apply the lowest-numbered applicable rule.

• Reduction SimFVS.R1. Delete isolated vertices.
• Reduction SimFVS.R2. If there is a vertex v which has only one neighbor u in Gi , for some
i ∈ {1, 2, . . . ,α }, then delete the edge (v,u) from Ei .

• Reduction SimFVS.R3. If there is a vertex v ∈ V (G) whose total degree is exactly two and
whose neighbors are u andw , delete edges (v,u) and (v,w) from Ei and add an edge (u,w)
to Ei , where i is the color of edges (v,u) and (v,w). Note that after reduction SimFVS.R2 has
been applied, both edges (v,u) and (v,w) must be of the same color.

• Reduction SimFVS.R4. If for some i ∈ {1, 2, . . . ,α } there is an edge of multiplicity larger
than two in Ei , reduce its multiplicity to two.

• Reduction SimFVS.R5. If there is a vertex v with a loop, then add v to the solution set, delete
v (and all edges incident on v) from the graph and decrease k by 1.

Lemma 3.1. Reduction rule SimFVS.R1 is safe.

Proof. Let G be an α-colored graph and let v be an isolated vertex in G. Consider the α-colored
graphG ′ with vertex setV (G ′) = V (G)\ {v} and edge set E(G ′) = E(G). Sincev does not participate
in any cycle, it follows that G has an α-simfvs of size at most k if and only if G ′ has an α-simfvs of
size at most k . �

Lemma 3.2. Reduction rule SimFVS.R2 is safe.

Proof. Let G be an α-colored graph and v be a vertex whose only neighbor in Gi is u, for
some i ∈ {1, 2, . . . ,α }. Consider the α-colored graph G ′ with vertex set V (G) and edge sets
Ei (G ′) = Ei (G) \ {(v,u)} and Ej (G ′) = Ej (G), for j ∈ {1, 2, . . . ,α } \ {i}. We show that G has an
α-simfvs of size at most k if and only if G ′ has an α-simfvs of size at most k .

In the forward direction, consider an α-simfvs S inG of size at most k . SinceG ′
j = G j , S intersects

all the cycles in G ′
j , j ∈ {1, 2, . . . ,α } \ {i}. Note that in Gi , there is no cycle containing the edge

(u,v) as v is a degree-one vertex inGi . Hence, all the cycles inGi are also cycles inG ′
i . S intersects

all cycles in Gi and, in particular, S intersects all cycles in G ′
i . Therefore, S is an α-simfvs in G ′ of

size at most k .
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For the reverse direction, consider an α-simfvs S inG ′ of size at most k . If S is not an α-simfvs of
G then there is a cycle C in some Gt , for t ∈ {1, 2, . . . ,α }. Note that C cannot be a cycle in G j as
G j = G

′
j , for j ∈ {1, 2, . . . ,α } \ {i}. ThereforeC must be a cycle inGi . The cycleC must contain the

edge (v,u), as this is the only edge in Gi which is not an edge in G ′
i . But v is a degree-one vertex

in Gi , so it cannot be part of any cycle in Gi , contradicting the existence of cycle C . Thus S is an
α-simfvs of G of size at most k . �

Lemma 3.3. Reduction rule SimFVS.R3 is safe.

Proof. Consider an α-colored graphG. Let v be a vertex in V (G) such that v has total degree 2
and letu,w be the neighbors ofv inGi , whereu , w and i ∈ {1, 2, . . . ,α }. Recall that after reduction
SimFVS.R2 has been applied, both edges (v,u) and (v,w) must be of the same color. Consider the
α-colored graphG ′ with vertex setV (G) and edge sets Ei (G ′) = (Ei (G) \ {(v,u), (v,w)}) ∪ {(u,w)}
and Ej (G ′) = Ej (G), for j ∈ {1, 2, . . . ,α } \ {i}. We show that G has an α-simfvs of size at most k if
and only if G ′ has an α-simfvs of size at most k .

In the forward direction, let S be an α-simfvs inG of size at most k . Suppose S is not an α-simfvs of
G ′. Then, there is a cycle C in G ′

t , for some t ∈ {1, 2, . . . ,α }. Note that C cannot be a cycle in G ′
j

as G ′
j = G j , for j ∈ {1, 2, . . . ,α } \ {i}. Therefore C must be a cycle in G ′

i . All the cycles C ′ not
containing the edge (u,w) are also cycles in Gi and therefore S must contain some vertex from C ′.
It follows thatC must contain the edge (u,w). Note that the edges (E(C) \ {(u,w)})∪ {(v,u), (w,v)}
form a cycle in Gi . Therefore S must contain a vertex from V (C) ∪ {v}. We consider the following
cases:

• Case 1: v < S . In this case S must contains a vertex from V (C). Hence, S is an α-simfvs in G ′.
• Case 2: v ∈ S . Let S ′ = (S \ {v}) ∪ {u}. Any cycle C ′ containing v in Gi must contain u and
w (since dGi (v) = 2 for Reduction rule SimFVS.R3 to be applicable). But S ′ intersects all such
cycles C ′, as u ∈ S ′. Therefore S ′ is an α-simfvs of G ′ of size at most k .

In the reverse direction, consider an α-simfvs S of G ′. S intersects all cycles in G j , since G j = G
′
j ,

for j ∈ {1, 2, . . . ,α } \ {i}. All cycles in Gi not containing v are also cycles in G ′
i and therefore S

intersects all such cycles. A cycle C in Gi containing v must contain u and w (v is a degree-two
vertex inGi ). Note that (E(C) \ {(v,u), (v,w)})∪ {(u,w)} is a cycle inG ′

i and S , being an α-simfvs in
G ′, must contain a vertex from V (C) \ {v}. Therefore S ∩V (C) , ∅, so S intersects cycle C in G ′

i .
Hence S an α-simfvs in G ′. �

The safeness of reduction rule SimFVS.R4 follows from the fact that edges of multiplicity greater
than two do not influence the set of feasible solutions. Safeness of reduction rule SimFVS.R5 follows
from the fact that any vertex with a loop must be present in every solution (if a solution exists). Note
that all of the above reduction rules can be applied in polynomial time. Moreover, after exhaustively
applying all rules, the resulting graph G satisfies the following properties:
(P1) G contains no loops;
(P2) Every edge in Gi , for i ∈ {1, 2, . . . ,α }, is of multiplicity at most two;
(P3) Every vertex inG has either degree zero or degree at least two in eachGi , for i ∈ {1, 2, . . . ,α };
(P4) The total degree of every vertex in G is at least three.
Algorithm.We give an algorithm for the decision version of the Disjoint SimFVS problem, which
only checks whether a solution exists or not. Such an algorithm can be easily modified to find an
actual solution if one exists. Let (G,W ,k) be an instance of the problem, where G is an α-colored
graph. If G[W ] is not an α-forest then we can safely return that (G,W ,k) is a no-instance. This
follows from the fact that we are looking for an α-simfvs inG which is disjoint fromW . Recall that,
in the “compression” step of the iterative compression routine, we always “guess” the intersection
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of S (j+1) with Z (j+1). Hence, we assume that G[W ] is an α-forest in what follows. Whenever any of
our reduction rules SimFVS.R1 to SimFVS.R5 apply, the algorithm exhaustively does so (in order). If
at any point in our algorithm the parameter k drops below zero, then the resulting instance is a
no-instance.

ALGORITHM 1: Disjoint SimFVS
Input: G = (V ,E1,E2, . . . ,Eα ),W , k , and C = {C1, . . . ,Cα }
Output: YES if G has an α-simfvs S ⊆ V (G) \W of size at most k , NO otherwise.

Apply SimFVS R.1 to SimFVS R.5 exhaustively;
if k < 0 or for any i ∈ {1, 2, . . . ,α }, |Ci | > k then

return NO

while for some i ∈ {1, 2, . . . ,α }, Gi [V (Fi ) ∪V (Wi )] is not a forest do
find a cordate vertex vc of highest index in some tree of Fi ;
Let uc ,wc be the vertices in tree T ivc with a neighbor u,w respectively inWi ;
Let P = uc ,x1, . . . ,xt ,vc and P ′ = vc ,y1, . . . ,yt ′ ,wc be the paths in Fi from uc to vc and vc towc ,
respectively;

G1 = (G − {vc },W ,k − 1,C), Add G1 toG;
if V ′ = V (P) \ {vc } , ∅ then

Ci = Ci ∪ {(uc ,x1, . . . ,xt )};
G2 = (G −V ′,W ,k − 1,C), Add G2 toG;

if V ′ = V (P ′) \ {vc } , ∅ then
Ci = Ci ∪ {(y1, . . . ,yt ′ ,wc )};
G3 = (G −V ′,W ,k − 1,C), Add G3 toG;

if u,w are in the same component ofWi then
return

∨
G∈GDisjoint SimFVS(G)

else
return (∨G∈GDisjoint SimFVS(G)) ∨ Disjoint SimFVS(G − (V (P) ∪V (P ′)),W ∪V (P) ∪V (P ′),k,C)

end
end

// Solve the remaining instance using the hitting set problem

For i ∈ {1, 2, . . . ,α } let V (Ci ) =
⋃
C ∈Ci V (C),U = ⋃

i ∈{1,2, ...,α }V (Ci );
F = ⋃

i ∈{1,2, ...,α } Ci ;
Find a hitting setU = Hitting Set(F ,U);
if |U | ≤ k then

return YES

return NO

Recall that initially F = G −W is an α-forest, asW is an α-simfvs. We will consider each forest Fi ,
for i ∈ {1, 2, . . . ,α }, separately (where Fi is the color i graph of the α-forest F ). For i ∈ {1, 2, . . . ,α },
we letWi = Gi [W ] = (W ,Ei (G[W ])) and ηi be the number of components inWi . Some of the
branching rules that we apply create “special” vertex-disjoint cycles. We will maintain this set
of special cycles in Ci , for each i , and we let C = {C1, . . . ,Cα }. Initially, Ci = ∅. Each cycle that
we add to Ci will be vertex disjoint from cycles previously added to Ci . Hence, if at any point
|Ci | > k , for any i , then we can stop exploring the corresponding branch. Moreover, whenever we
“guess” that some vertex v must belong to a solution, we also traverse the family C and remove all
cycles containing v . For the running time analysis of our algorithm we will consider the following
measure:
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µ = µ(G,W ,k,C) = αk + (
α∑
i=1

ηi ) − (
α∑
i=1

|Ci |)

The input to our algorithm consists of a tuple (G,W ,k,C). For clarity, we will denote a reduced
input by (G,W ,k,C) (the one where reduction rules do not apply).

We root each tree in Fi at some arbitrary vertex. Assign an index t to each vertex v in the forest
Fi , which is the distance of v from the root of the tree it belongs to (the root is assigned index zero).
A vertex v in Fi is called cordate if one of the following holds:

• v is a leaf (or degree-zero vertex) in Fi with at least two color i neighbors in V (Wi ).
• The subtreeT i

v rooted at v contains two vertices u andw each of which has at least one color
i neighbor in V (Wi ) (v can be equal to u orw).

Lemma 3.4. For i ∈ {1, 2, . . . ,α }, let vc be a cordate vertex of highest index in some tree of the

forest Fi and let T
i
vc denote the subtree rooted at vc . Furthermore, let uc be one of the vertices in T

i
vc

such that uc has a neighbor inWi . Then, in the path P = uc ,x1, . . . ,xt ,vc (t could be equal to zero)
between uc and vc the vertices x1, . . . ,xt are degree-two vertices in Gi .

Proof. Ifuc = vc or t = 0 then there is nothing to prove. Otherwise, consider P = uc ,x1, . . . ,xt ,vc
the path from vc to uc , where t ≥ 1. In P , if there is a vertex x (other than uc and vc ) which has an
edge of color i to a vertex inWi , then x is a cordate vertex of higher index, contradicting the choice
of vc . Also, if there is a vertex x in P other than vc and uc of degree at least three in Fi , the subtree
rooted at x has at least two leaves, and all the leaves have a color-i neighbor inWi . Therefore, x
is a cordate vertex and has a higher index than vc , contradicting the choice of vc . It follows that
x1, . . . ,xt (if they exist) are degree-two vertices in Gi . �

We consider the following cases depending on whether there is a cordate vertex in Fi or not.
• Case 1: There is a cordate vertex in Fi . Let vc be a cordate vertex with the highest index in
some tree in Fi and let the two vertices with neighbors inWi be uc andwc (vc can be equal to
uc or wc ). Let P = uc ,x1,x2, · · · ,xt ,vc and P ′ = vc , y1, y2, · · · , yt ′ , wc be the unique paths
in Fi from uc to vc and from vc towc , respectively. Let Pv = uc ,x1, · · · ,xt , vc ,y1, · · · ,yt ′,wc
be the unique path in Fi from uc towc . Consider the following sub-cases:
– Case 1.a: uc andwc have neighbors in the same component ofWi . In this case one of the
vertices from path Pv must be in the solution (Figure 1). We branch as follows:
∗ vc belongs to the solution. We delete vc from G and decrease k by 1. In this branch µ
decreases by α .
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When vc does not belong to the solution, then at least one vertex from uc ,x1,x2, · · · ,xt
or y1,y2, · · · ,yt ′,wc must be in the solution. But note that these are vertices of degree at
most two in Gi by Lemma 3.4. So with respect to color i , it does not matter which vertex
is chosen in the solution. The only issue comes from some color j cycle, where j , i ,
in which choosing a particular vertex from uc ,x1, · · · ,xt or y1,y2, · · · ,yt ′,wc would be
more beneficial. We consider the following two cases.

∗ One of the vertices from uc ,x1,x2, · · · ,xt is in the solution. In this case we add an edge
(uc ,xt ) (or (uc ,uc ) when uc and vc are adjacent) to Gi and delete the edge (xt ,vc ) from
Gi . This creates a cycle C in Gi −W , which is itself a component in Gi −W . We remove
the edges inC fromGi and add the cycleC to Ci . We will be handling these sets of cycles
independently. In this case |Ci | increases by 1, so the measure µ decreases by 1.

∗ One of the vertices from y1,y2, · · · ,yt ,wc is in the solution. In this case we add an edge
(y1,wc ) to Gi and delete the edge (vc ,y1) from Gi . This creates a cycle C in Gi −W as
a component. We add C to Ci and delete edges in C from Gi −W . In this branch |Ci |
increases by 1, so the measure µ decreases by 1. The resulting branching vector is (α , 1, 1).

– Case 1.b: uc andwc do not have neighbors in the same component. We branch as follows
(Figure 2):
∗ vc belongs to the solution. We delete vc from G and decrease k by 1. In this branch µ
decreases by α .

∗ One of the vertices from uc ,x1,x2, · · · ,xt is in the solution. In this case we add an edge
(uc ,xt ) to Gi and delete the edge (xt ,vc ) from Gi . This creates a cycle C in Gi −W as
a component. As in Case 1, we add C to Ci and delete edges in C from Gi −W . |Ci |
increases by 1, so the measure µ decreases by 1.

∗ One of the vertices from y1,y2, · · · ,yt ,wc is in the solution. In this case we add an edge
(y1,wc ) to Gi and delete the edge (vc ,y1) from Gi . This creates a cycle C in Gi −W as
a component. We add C to Ci and delete edges in C from Gi −W . In this branch |Ci |
increases by 1, so the measure µ decreases by 1.

∗ No vertex from path Pv is in the solution. In this case we add the vertices in Pv toW ,
the resulting instance is (G − Pv ,W ∪ Pv ,k). The number of components inWi decreases
and we get a drop of 1 in ηi , so µ decreases by 1. Note that ifG[W ∪ Pv ] is not acyclic we
can safely ignore this branch. The resulting branching vector is (α , 1, 1, 1).

• Case 2: There is no cordate vertex in Fi . Let F be a family of sets containing a set fC = V (C)
for each C ∈ ⋃α

i=1 Ci and letU = ⋃α
i=1(

⋃
C ∈Ci V (C)). Note that |F | ≤ αk . We find a subset

U ⊆ U (if it exists) which hits all the sets in F , such that |U | ≤ k .
Note that in Case 1, if the cordate vertex vc is a leaf, then uc = wc = vc . Therefore, from Case

1.a we are left with one branching rule. Similarly, we are left with the first and the last branching
rules for Case 1.b. If vc is not a leaf but vc is equal to uc or wc , say vc = wc , then for both Case
1.a and Case 1.b we do not have to consider the third branch. Finally, when none of the reduction
or branching rules apply, we solve the problem by invoking an algorithm for the Hitting Set
problem as a subroutine.

Lemma 3.5. The presented algorithm for Disjoint SimFVS is correct.
Proof. Consider an input (G,W ,k,C) to the algorithm for Disjoint SimFVS, where G is an

α-colored graph,W is an α-simfvs of size k + 1, and k is a positive integer and C = {C1,C2, . . . ,C1}.
Let µ = µ(G,W ,k,C) be the measure as defined earlier. We prove the correctness of the algorithm
by induction on the measure µ. The base case occurs when one of the following holds:

• k < 0,
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• for some i ∈ {1, 2, . . . ,α }, |Ci | > k , or
• µ ≤ 0.

If k < 0, then we can safely conclude that G is a no-instance. If for some i ∈ {1, 2, . . . ,α } we have
|Ci | > k , then we need to pick at least one vertex from each of the vertex-disjoint cycles in Ci
and there are at least k + 1 of them. Our algorithm correctly concludes that the graph is also a
no-instance in such cases. If µ = αk + (∑α

i=1 ηi ) − (∑α
i=1 |Ci |) ≤ 0 then αk ≤ ∑α

i=1 |Ci |. But for each
i ∈ {1, 2, . . . ,α }, we have |Ci | ≤ k . Therefore αk ≤ ∑α

i=1 |Ci | ≤ αk ,
∑α

i=1 |Ci | = αk , and |Ci | = k , for
all i ∈ {1, 2, . . . ,α }. This implies that for each i ∈ {1, 2, . . . ,α }, Gi [V (Fi ) ∪V (Wi )] must be acyclic.
Assume otherwise. Then, for some i ∈ {1, 2, . . . ,α }, Gi [V (Fi ) ∪V (Wi )] contains a cycle which is
vertex disjoint from the k cycles in Ci . Therefore, at least k + 1 vertices are needed to intersect these
cycles and we again have a no-instance. Recall that when a new vertex v is added to the solution
set we delete all those cycles in

⋃α
i=1 Ci which contain v .

We are now left with cycles in
⋃α

i=1 Ci . Intersecting a cycle C ∈ ⋃α
i=1 Ci is equivalent to hitting

the set V (C). Hence, we construct a family F consisting of a set fC = V (C) for each C ∈ ⋃α
i=1 Ci

and we let U = ⋃α
i=1(

⋃
C ∈Ci V (C)). Note that |F | ≤ αk . If we can find a subset U ⊆ U which

hits all the sets in F , such that |U | ≤ k , then U is the required solution. Otherwise, we have a
no-instance. It is known that the Hitting Set problem parameterized by the size of the family F
is fixed-parameter tractable and can be solved in O⋆(2 |F |) time [7]. In particular, we can find an
optimum hitting setU ⊆ U, hitting all the sets in F . Therefore, we have a subset of vertices that
intersects all the cycles in Ci , for i ∈ {1, 2, . . . ,α }.
Putting it all together, at a base case, our algorithm correctly decides whether (G,W ,k,C) is a

yes-instance or not. For the induction hypothesis, assume that the algorithm correctly decides an
instance for µ ≤ t . Now consider the case µ = t + 1. If some reduction rule applies then we create
an equivalent instance (since all reduction rules are safe). Therefore, either we get an equivalent
instance with the same measure or we get an equivalent instance with µ ≤ t (the case when
SimFVS.R5 is applied). In the latter case, by the induction hypothesis, our algorithm correctly
decides the instance where µ ≤ t . In the former case, we apply one of the branching rules. Each
branching rule is exhaustive and covers all possible cases. In addition, the measure decreases at
each branch by at least one. Therefore, by the induction hypothesis, the algorithm correctly decides
whether the input is a yes-instance or not. �

Lemma 3.6. Disjoint SimFVS is solvable in time O⋆(22αk ).
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Proof. All of the reduction rules SimFVS.R1 to SimFVS.R5 can be applied in time polynomial in
the input size. Also, at each branch we spend a polynomial amount of time. For each of the recursive
calls at a branch, the measure µ decreases at least by 1. When µ ≤ 0, then we are able to solve the
remaining instance in time O(2αk ) or correctly conclude that the corresponding branch cannot
lead to a solution. At the start of the algorithm µ ≤ 2αk . Therefore, the height of the search tree is
bounded by 2αk . The worst-case branching vector for the algorithm is (α , 1, 1, 1). The recurrence
relation for the worst case branching vector is:T (µ) ≤ T (µ − α) + 3T (µ − 1) ≤ T (µ − 2) + 3T (µ − 1),
since α ≥ 2. The running time corresponding to the above recurrence relation is 3.3032αk . At each
branch we spend a polynomial amount of time but we might require O(2αk ) time for solving the
base case. Therefore, the running time of the algorithm is O⋆(2αk · 3.3032αk ) = O⋆(22αk ). �

Theorem 3.7. Simultaneous Feedback Vertex Set is solvable in time O⋆(23αk ).

3.2 Faster algorithm for Simultaneous Feedback Vertex Set with α = 2
We improve the running time of the FPT algorithm for SimFVS when α = 2. Given two sets of
disjoint cycles C1 and C2 and a set V =

⋃
C ∈C1

⋃ C2 V (C), we want to find a subset H ⊆ V such that
H contains at least one vertex from V (C), for each C ∈ C1 ∪ C2. We construct a bipartite graph GM
as follows. We set V (GM ) = {c1x |Cx ∈ C1} ∪ {c2y |Cy ∈ C2}. In other words, we create one vertex
for each cycle in C1 ∪ C2. We add an edge between c1x and c2y if and only if V (Cx ) ∩ V (Cy ) , ∅.
Note that for i ∈ {1, 2} and C,C ′ ∈ Ci , V (C) ∩V (C ′) = ∅. In Lemma 3.8, we show that finding a
matching M in GM , such that |M | + |V (GM ) \V (M)| ≤ k (or equivalently |C1 | + |C2 | − k ≤ |M |),
corresponds to finding a set H of size at most k , such that H contains at least one vertex from each
cycle C ∈ C1 ∪ C2.

Lemma 3.8. For i ∈ {1, 2}, let Ci be a set of vertex-disjoint cycles, i.e. for each C,C ′ ∈ Ci , C , C ′

implies V (C) ∩ V (C ′) = ∅. Let F = {V (C)|C ∈ C1 ∪ C2} and U = ⋃
C ∈C1∪C2 V (C). There exists a

vertex subset H ⊆ U of size k such that H ∩V (C) , ∅, for each C ∈ C1 ∪ C2, if and only if GM has a

matchingM , such that |M | + |V (GM ) \V (M)| ≤ k .

Proof. For the forward direction, consider a minimal vertex subset H ⊆ V (C1) ∪V (C2) of size at
most k such that for eachC ∈ C1 ∪ C2, H ∩V (C) , ∅. Note that a vertex h ∈ H can be present in at
most one cycle from Ci , for i ∈ {1, 2}, since Ci is a set of vertex-disjoint cycles. Therefore, h can be
present in at most 2 cycles from C1 ∪C2. If h is present in 2 cycles, sayCx ∈ C1 andCy ∈ C2, then in
GM we must have an edge between c1x and c2y (since h belongs to both Cx and Cy ). We include the
edge (c1x , c2y ) in the matchingM . If h belongs to only one cycle, say Ci

z ∈ C1 ∪ C2, then we include
vertex ciz in a set I . Note that (V (GM ) \V (M)) ⊆ I . For each h ∈ H , we either add a matching edge
or add a vertex to I . Therefore |M | + |V (GM ) \V (M)| ≤ |M | + |I | ≤ k .

In the reverse direction, consider a matchingM such that |M |+ |V (GM )\V (M)| ≤ k . We construct
a set H of size at most k containing a vertex from each cycle in C1 ∪ C2. For each edge (c1x , c2y )
in the matching, where Cx ∈ C1 and Cy ∈ C2, there is a vertex h that belongs to both V (Cx ) and
V (Cy ). Include h in H . For each ciz ∈ V (GM ) \V (M), add an arbitrary vertex v ∈ V (Cz ) to H . Note
that |H | ≤ k , since for each matching edge and each unmatched vertex we added one vertex to H .
Moreover, for each cycleC ∈ C1 ∪ C2, its corresponding vertex inGM is either part of the matching
or is an unmatched vertex; in both cases there is a vertex in H that belongs to C . Therefore, H is a
subset of size at most k which contains at least one vertex from each cycle in C1 ∪ C2. �

Note that a matching M in GM minimizing |M | + |V (GM ) \ V (M)| is one of maximum size.
Therefore, at the base case, we compute a maximum matching of the corresponding graph GM ,
which is a polynomial-time solvable problem, and return an optimal solution for intersecting all
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cycles in C1 ∪ C2. Moreover, if we set µ = 2k + (η1/2 + η2/2) − (|C1 | + |C2 |), then the worst case
branching vector is (2, 1, 1, 1/2). Corresponding to this worst case branching vector, the running
time of the algorithm is O⋆(81k ).

Theorem 3.9. Simultaneous Feedback Vertex Set is solvable in time O⋆(81k ) when α = 2.

4 POLYNOMIAL KERNEL FOR SIMULTANEOUS FEEDBACK VERTEX SET
In this section we give a kernel with O(αk3(α+1)) vertices for SimFVS. Let (G,k) be an instance
of SimFVS, where G is an α-colored graph and k is a positive integer. We assume that reduction
rules SimFVS.R1 to SimFVS.R5 have been exhaustively applied. The kernelization algorithm then
proceeds in two stages. In stage one, we bound the maximum degree of eachGi (hence bounding
the total degree of G). In the second stage, we present new reduction rules to deal with degree-two
vertices and conclude a bound on the total number of vertices.

To bound the total degree of each vertex v ∈ V (G), we bound the degree of v in Gi , for i ∈
{1, 2, . . . ,α }. To do so, we need the Expansion Lemma [7] as well as the 2-approximation algorithm
for the classical Feedback Vertex Set problem [1].
A q-star, q ≥ 1, is a graph with q + 1 vertices, one vertex of degree q and all other vertices of

degree 1. Let H be a bipartite graph with vertex bipartition (A,B). A set of edges M ⊆ E(H ) is
called a q-expansion of A into B if (i) every vertex of A is incident with exactly q edges ofM and (ii)
exactly q |A| vertices in B are incident with edges ofM .

Lemma 4.1 (Expansion Lemma [7]). Let q be a positive integer and H be a bipartite graph with

vertex bipartition (A,B) such that |B | ≥ q |A| and there are no isolated vertices in B. Then, there exist
nonempty vertex sets X ⊆ A and Y ⊆ B such that:

(1) X has a q-expansion into Y and

(2) no vertex in Y has a neighbour outside X , i.e. N (Y ) ⊆ X .

Furthermore, the sets X and Y can be found in time polynomial in the size of H .

4.1 Bounding the degree of vertices in Gi

We now describe the reduction rules that allow us to bound the maximum degree of a vertex
v ∈ V (G).

Lemma 4.2 (Lemma 6.8 [25]). Let G be an undirected (multi) graph and x be a vertex of G without

a loop. Then in polynomial time we can either decide that (G,k) is a no-instance of Feedback Vertex

Set or check whether there is an x-flower of order k + 1, or find a set of vertices Z ⊆ V (G) \ {x} of size
at most 3k intersecting every cycle in G, i.e. Z is a feedback vertex set of G.

The next proposition easily follows from Lemma 4.2.

Proposition 4.3. Let G be an undirected α -colored multigraph and x be a vertex without a loop in

Gi , for some i ∈ {1, 2, . . . ,α }. Then in polynomial time we can either decide that (G,k) is a no-instance
of Simultaneous Feedback Vertex Set or check whether there is an x-flower of order k + 1 in Gi ,

or find a set of vertices Z ⊆ V (G) \ {x} of size at most 3k intersecting every cycle in Gi .

After applying reduction rules SimFVS.R1 to SimFVS.R5 exhaustively, we know that the degree
of a vertex in each Gi is either 0 or at least 2 and no vertex has a loop. Now consider a vertex v
whose degree in Gi is more than 3k(k + 4). By Proposition 4.3, we know that one of three cases
must apply:
(1) (G,k) is a no-instance of SimFVS,
(2) we can find (in polynomial time) a v-flower of order k + 1 in Gi , or
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(3) we can find (in polynomial time) a set Hv ⊆ V (Gi ) of size at most 3k such that v < Hv and
Gi − Hv is a forest.

The following reduction rule allows us to deal with case (2). The safeness of the rule follows from
the fact that if v in not included in the solution then we need to have at least k + 1 vertices in the
solution.

Reduction SimFVS.R6. For i ∈ {1, 2, . . . ,α }, if Gi has a vertex v such that there is a v-flower of
order at least k +1 inGi , then includev in the solution S and decrease k by 1. The resulting instance
is (G − {v},k − 1).

When in case (3), we bound the degree ofv as follows. Consider the graphG ′
i = Gi−(Hv∪{v}∪V i

0 ),
where V i

0 is the set of degree-zero vertices in Gi . Let D be the set of components in the graph G ′
i

which have a vertex adjacent to v . Note that each D ∈ D is a tree and v cannot have two neighbors
in D, since Hv is a feedback vertex set in Gi . We will now argue that each component D ∈ D has
a vertex u such that u is adjacent to a vertex in Hv . Suppose for a contradiction that there is a
component D ∈ D such that D has no vertex which is adjacent to a vertex in Hv . D ∪ {v} is a tree
with at least 2 vertices, so D has a vertexw , such thatw is a degree-one vertex in Gi , contradicting
the fact that each vertex in Gi is either of degree zero or of degree at least two.
After exhaustive application of SimFVS.R4, every pair of vertices in Gi can have at most two

edges between them. In particular, there can be at most two edges between h ∈ Hv and v . If the
degree of v in Gi is more than 3k(k + 4), then the number of components |D| in G ′

i is more than
3k(k + 2), since |Hv | ≤ 3k .

Consider the bipartite graph B, with bipartition (Hv ,Q), whereQ has a vertex qD corresponding
to each component D ∈ D. We add an edge between h ∈ Hv and qD ∈ Q to E(B) if and only if D
has a vertex d which is adjacent to h in Gi .

Reduction SimFVS.R7. Letv be a vertex of degree at least 3k(k +4) inGi , for some i ∈ {1, 2, . . . ,α },
and let Hv be a feedback vertex set in Gi not containing v and of size at most 3k .

• Let Q ′ ⊆ Q and H ⊆ Hv be the sets of vertices obtained after applying Lemma 4.1 with
q = k + 2, A = Hv , and B = Q , such that H has a (k + 2)-expansion into Q ′ in B;

• Delete all the edges (d,v) in Gi , where d ∈ V (D) and qD ∈ Q ′;
• Add double edges between v and h in Gi , for all h ∈ H (unless such edges already exist).

By Lemma 4.1 and Proposition 4.3, SimFVS.R7 can be applied in time polynomial in the input
size.

Lemma 4.4. Reduction rule SimFVS.R7 is safe.

Proof. LetG be an α-colored graph where reductions SimFVS.R1 to SimFVS.R6 do not apply. Let
v be a vertex of degree more than 3k(k + 4) in Gi , for i ∈ {1, 2, . . . ,α }. Let H ⊆ Hv , Q ′ ⊆ Q be the
sets defined above and letG ′ be the instance obtained after a single application of reduction rule
SimFVS.R7. We show that G has an α-simfvs of size at most k if and only if G ′ has an α-simfvs of
size at most k . We need the following claim.

Claim 1. Any k-sized α-simfvs S of G or G ′
either contains v or contains all the vertices in H .

Proof. Since there exists a cycle (double edge) between v and every vertex h ∈ H inG ′
i , it easily

follows that either v or all vertices in H must be in any solution for G ′.
Consider the case ofG . We assume v < S and there is a vertex h ∈ H such that h < S . Note that H

has a (k + 2)-expansion intoQ ′ in B, therefore h is the center of a (k + 2)-star in B[H ∪Q ′]. LetQh
be the set of neighbors of h in B[H ∪Q ′] (|Qh | ≥ k + 2). For each qD ,qD′ ∈ Qh , their corresponding
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components D,D ′ ∈ D form a cycle with v and h. If both h and v are not in S , then we need to
pick at least k + 1 vertices to intersect the cycles formed by D, D ′, h, and v , for each qD ,qD′ ∈ Q ′.
Therefore, H ⊆ S , as needed. �

In the forward direction, consider an α-simfvs S of size at most k inG . For j ∈ {1, 2, . . . ,α } \ {i},
G ′
j = G j and therefore S intersects all the cycles in G ′

j . By the previous claim, we can assume that
either v ∈ S or H ⊆ S . In both cases, S intersects all the new cycles created in G ′

i by adding double
edges between v and h ∈ H . Moreover, apart from the double edges between v and h ∈ H , all the
cycles in G ′

i are also cycles in Gi , therefore S intersects all those cycles in G ′
i . It follows that S is an

α-simfvs in G ′.
In the reverse direction, consider an α-simfvs S in G ′ of size at most k . Note that for j ∈

{1, 2, . . . ,α } \ {i}, G ′
j = G j . Therefore S intersects all the cycles in G j . By the previous claim, at

least one of the following must hold: (1) v ∈ S or (2) H ⊆ S . Suppose that (1) v ∈ S holds. Since
G ′
i − {v} = Gi − {v}, S \ {v} intersects all the cycles inG ′

i − {v} andGi − {v}. Therefore S intersects
all the cycles in Gi and S is an α-simfvs in G. In case (2), i.e. when v < S but H ⊆ S , any cycle in G
which does not intersect with H is also a cycle in G ′ (since such a cycle does not intersect with
H and the only deleted edges from G ′ belong to cycles passing through H ). In other words, S \H
intersects all cycles in both G ′

i − H and Gi − H and, consequently, S is an α-simfvs in G. �

After exhaustively applying all reductions SimFVS.R1 to SimFVS.R7, the degree of a vertex
v ∈ V (Gi ) is at most 3k(k + 4) − 1 in Gi , for each i ∈ {1, 2, . . . ,α }.

4.2 Bounding the number of vertices in G

Having bounded the maximum total degree of a vertex inG , we now focus on bounding the number
of vertices in the entire graph. To do so, we first compute an approximate solution for the SimFVS
instance using the polynomial-time 2-approximation algorithm of Bafna et al. [1] for the Feedback
Vertex Set problem in undirected graphs. In particular, we compute a 2-approximate solution Si
in Gi , for i ∈ {1, 2, . . . ,α }. We let S =

⋃α
i=1 Si . Note that S is an α-simfvs in G and has size at most

2α |SOPT |, where |SOPT | is an optimal α-simfvs in G. Let Fi = Gi − Si . Let T i
≤1, T i

2 , and T i
≥3, be the

sets of vertices in Fi having degree at most one in Fi , degree exactly two in Fi , and degree greater
than two in Fi , respectively.
Later, we shall prove that bounding the maximum degree in G is sufficient for bounding the

sizes of T i
≤1 and T i

≥3, for all i ∈ {1, 2, . . . ,α }. We now focus on bounding the size of T i
2 which, for

each i ∈ {1, 2, . . . ,α }, corresponds to a set of degree-two paths. In other words, for a fixed i , the
graph induced in Fi by the vertices in T i

2 , i.e. Fi [T i
2 ], is a set of vertex-disjoint paths. We say a set of

distinct vertices {v1, . . . ,vℓ} in T i
2 forms a maximal degree-two path if (vj ,vj+1) is an edge, for all

1 ≤ j < ℓ, and all vertices {v1, . . . ,vℓ} have degree exactly two in Gi .
We enumerate all the maximal degree-two paths in Gi − Si , for i ∈ {1, 2, . . . ,α }. Let this set of

paths in Gi − Si be Pi = {P i1, P i2, . . . , P ini }, where ni is the number of maximal degree-two paths in
Gi − Si . We introduce a special symbol ϕ and add ϕ to each set Pi , for i ∈ {1, 2, . . . ,α }. The special
symbol will be used later to indicate that no path is chosen from the set Pi .
Let S = P1 × P2 × · · · × Pα be the set of all tuples of maximal degree-two paths of different

colors. For τ ∈ S, j ∈ {1, 2, . . . ,α }, j(τ ) denotes the element from the set Pj in the tuple τ , i.e. for
τ = (Q1,ϕ, . . . ,Q j , . . . ,Qα ), j(τ ) = Q j (for example 2(τ ) = ϕ).

For a maximal degree-two path P ij ∈ Pi and τ ∈ S, we define Intercept(P ij ,τ ) = ∅ if P ij < τ .
Otherwise, we define Intercept(P ij ,τ ) = {v ∈ V (P ij )| for all 1 ≤ t ≤ α , if t(τ ) , ϕ then v ∈ V (t(τ ))}.
Stated differently, Intercept(P ij ,τ ) is either the empty set or is the set of vertices which are present
in all the paths in the tuple τ (of course a ϕ entry does not contribute to this set).
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(a)

(b)

Fig. 3. Unravelling two paths with five common vertices (a) to obtain two paths with one common vertex (b).

We define the notion of unravelling a path P ij ∈ Pi from all other paths of different colors in
τ ∈ S at a vertex u ∈ Intercept(P ij ,τ ) by creating a separate copy of u for each path. Formally, for
a path P ij ∈ Pi , τ ∈ S, and a vertex u ∈ Intercept(P ij ,τ ), the Unravel(P ij ,τ ,u) operation does the
following. For each t ∈ {1, 2, . . . ,α } let xt and yt be the unique neighbors of u on path t(τ ) (and
also inGi ). Create a vertex ut (τ ) for each path t(τ ), for 1 ≤ t ≤ α , delete the edges (xt ,u) and (u,yt )
from Gt and add the edges (xt ,ut (τ )) and (ut (τ ),yt ) in Gt . Figure 3 illustrates the unravel operation
for two paths of different colors.

Reduction SimFVS.R8. For a path P ij ∈ Pi , τ ∈ S, if |Intercept(P ij ,τ )| > 1, then for a vertex u ∈
Intercept(P ij ,τ ), Unravel(P ij ,τ ,u).

Lemma 4.5. Reduction rule SimFVS.R8 is safe.

Proof. Let G be an α-colored graph and Si be a 2-approximate feedback vertex set in Gi , for
i ∈ {1, 2, . . . ,α }. Let Pi be the set of maximal degree-two paths inGi −Si andS = P1×P2×· · ·×Pα .
For a path P ij ∈ Pi , τ ∈ S, |Intercept(P ij ,τ )| > 1, and u ∈ Intercept(P ij ,τ ), let G ′ be the α-colored
graph obtained after applying Unravel(P ij ,τ ,u) in G. We show that G has an α-simfvs of size at
most k , if and only if G ′ has an α-simfvs of size at most k .
In the forward direction, consider an α-simfvs S in G of size at most k . Let x be a vertex in

Intercept(P ij ,τ ) \ {u}. We define S ′ = S if u < S and S ′ = (S \ {u}) ∪ {x} otherwise. A cycle C in
the graph G ′

t not containing ut (τ ), where ut (τ ) is the copy of u created for path t(τ ), τ ∈ S, and
t ∈ {1, 2, . . . ,α }, is also a cycle inGt . Therefore S ′ intersectsC . Let Pt be the path in Pt containing
u, for t ∈ {1, 2, . . . ,α }. Note that in Pi , there is exactly one maximal degree-two path containing u
and all the cycles in Gt containing u must contain Pt . All the cycles in G ′

t containing ut (τ ) must
contain x , since ut (τ ) is the private copy of u for the degree-two path t(τ ) containing x . We consider
the following cases depending on whether u belongs to S or not.

• u ∈ S : A cycle C in G ′
t , t ∈ {1, 2, . . . ,α }, containing ut (τ ) also contains x . Therefore S ′

intersects C .
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• u < S : Corresponding to a cycle C inG ′
t , t ∈ {1, 2, . . . ,α }, containing ut (τ ), there is a cycle C ′

on vertices (V (C) ∪ {u}) \ {ut (τ )} in Gt . But S is an α-simfvs in G and therefore both S and
S ′ must contain a vertex y ∈ V (C ′) \ {u}.

In the reverse direction, let S be an α-simfvs in G ′. We define S ′ = S if {ul (τ ) |ul (τ ) ∈ S, 1 ≤ l ≤
α } ∩ S , ∅ and S ′ = (S \ {ul (τ ) |ul (τ ) ∈ S, 1 ≤ l ≤ α }) ∪ {u} otherwise. All the cycles in Gt not
containing u are the cycles in G ′

t not containing ut (τ ). Therefore S ′ intersects all those cycles. We
consider the following cases depending on whether there is some t ′ ∈ {1, 2, . . . ,α } for which ut ′(τ )
belongs to S or not.

• For all t ′ ∈ {1, 2, . . . ,α }, ut ′(τ ) < S . Let C be a cycle in Gt containing u, for t ∈ {1, 2, . . . ,α }.
Note that G ′

t has a cycle C ′ corresponding to C , with V (C ′) = (V (C) \ {u}) ∪ {ut (τ )}. S
intersects C ′, therefore both S and S ′ have a vertex y ∈ V (C ′) \ {ut (τ )}. Since y ∈ V (C), S ′
intersects the cycle C in Gt .

• For some t ′ ∈ {1, 2, . . . ,α }, ut ′(τ ) ∈ S . Note that S ′ intersects all the cycles in Gt containing
u, for t ∈ {1, 2, . . . ,α }. Moreover, the only purpose of ut ′(τ ) being in S is to intersect a cycle
C ′ in G ′

t containing ut ′(τ ). However, the corresponding cycle in Gt can be intersected by a
single vertex, namely u. Therefore, S ′ is an α-simfvs in G.

This completes the proof. �

Theorem 4.6. SimFVS admits a kernel on O(αk3(α+1)) vertices.

Proof. Consider an α-colored graph G on which reduction rules SimFVS.R1 to SimFVS.R8 have
been exhaustively applied. Note that all of our reduction rules are safe. Reduction rules SimFVS.R1
to SimFVS.R5 can clearly be applied in time polynomial in |V (G)| and k (for constant α ). The fact
that we can apply reduction rules SimFVS.R6 and SimFVS.R7 in polynomial time (for constant α )
follows from Lemma 4.1 and Proposition 4.3. Moreover, observe that reduction rules SimFVS.R1
to SimFVS.R7 strictly decrease either the number of vertices or the number of edges in the graph,
and therefore can only be applied a polynomial number of times. As for SimFVS.R8, we shall show
in what follows that the number of maximal degree-two paths is bounded by kO(α ) (assuming
SimFVS.R1 to SimFVS.R7 have been exhaustively applied), and we can enumerate all of them in
polynomial time (for constant α ). Even though SimFVS.R8 increases the number of vertices in the
graph, such vertices will always have degree exactly two in the graph and will subsequently be
removed. Every application of SimFVS.R8 decreases the number of vertices sharing the same set of
maximal degree-two paths (and no reduction rule increases the number of such vertices). Hence, It
remains to bound the number of vertices.

For i ∈ {1, 2, . . . ,α }, the degree of a vertex v ∈ Gi is either 0 or at least 2 in Gi . In what follows,
we do not count the vertices of degree 0 in Gi while counting the vertices in Gi ; since the total
degree of a vertex v ∈ V (G) is at least three, there is some j ∈ {1, 2, . . . ,α } such that the degree of
v ∈ V (G j ) is at least 2.

Let Si be a 2-approximate feedback vertex set in Gi , for i ∈ {1, 2, . . . ,α }. Note that S = ⋃α
i=1 Si

is a 2α-approximate α-simfvs in G. Let Fi = Gi − Si . Let T i
≤1, T i

2 , and T i
≥3, be the sets of vertices in

Fi having degree at most one in Fi , degree exactly two in Fi , and degree greater than two in Fi ,
respectively. The degree of each vertex v ∈ V (Gi ) is bounded by O(k2) in Gi , for i ∈ {1, 2, . . . ,α }.
In particular, the degree of each s ∈ S is bounded by O(k2) inGi . Moreover, each vertexv ∈ T i

≤1 has
degree at least 2 in Gi and must therefore be adjacent to some vertex in S . It follows that |T i

≤1 | ∈
O(k3).
In a tree, the number t of vertices of degree at least three is bounded by l − 2, where l is the

number of leaves. Hence, |T i
≥3 | ∈ O(k3). Also, in a tree, the number of maximal degree-two paths is
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Fig. 4. The graph G before contracting all edges colored zero for U = {u1,u2,u3,u4} and F =

{{u1,u2}, {u2,u3}, {u2,u4}}.

bounded by t + l . Consequently, the number of degree-two paths in Gi − Si is in O(k3). Moreover,
no two maximal degree-two paths in a tree intersect.
Note that there are at most O(k3) maximal degree-two paths in Pi , for i ∈ {1, 2, . . . ,α }, and

therefore |S | = O(k3α ). After exhaustive application of SimFVS.R8, for each path P ij ∈ Pi , i ∈
{1, 2, . . . ,α }, and τ ∈ S, there is at most one vertex in Intercept(P ij ,τ ). Also note that after exhaustive
application of reductions SimFVS.R1 to SimFVS.R7, the total degree of a vertex in G is at least 3.
Therefore, there can be at most O(k3α ) vertices in a degree-two path P ij ∈ Pi . Furthermore, there are
at most O(k3) degree-two maximal paths inGi , for i ∈ {1, 2, . . . ,α }. It follows that |T i

2 | ∈ O(k3(α+1))
and |V (Gi )| ≤ |T i

≤1 | + |T i
2 | + |T i

≥3 | + |Si | = O(k3) + O(k3(α+1)) + O(k3) + 2k ∈ O(k3(α+1)). Therefore,
the number of vertices in G is in O(αk3(α+1)). �

5 HARDNESS RESULTS
In this section we show that SimFVS isW[1]-hard when α ∈ O(logn), where n is the number of
vertices in the input graph. We give a reduction from a special version of the Hitting Set (HS)
problem, which we denote by Partitioned Hitting Set (PHS). We believe this version of Hitting
Set to be of independent interest with possible applications for showing hardness results of similar
flavor. We prove W[1]-hardness of Partitioned Hitting Set by a reduction from a restricted
version of the Partitioned Subgraph Isomorphism (PSI) problem.

Before we delve into the details, we start with a simpler reduction from Hitting Set showing
that SimFVS isW[2]-hard when α ∈ O(n). The reduction closely follows that of Lokshtanov [20] for
dealing with theWheel-Free Deletion problem. Intuitively, starting with an instance (U,F ,k)
of HS, we first construct a graph G on 2|U||F | vertices consisting of |F | vertex-disjoint cycles.
Then, we use |F | colors to uniquely map each set to a separate cycle; carefully connecting these
cycles together guarantees equivalence of both instances.

Theorem 5.1. SimFVS parameterized by solution size is W[2]-hard when α ∈ O(n).

Proof. Given an instance (U,F ,k) of Hitting Set, we let U = {u1, . . . ,u |U |} and F =

{ f1, . . . , f |F |}. We assume, without loss of generality, that each element inU belongs to at least
one set in F . For each fi ∈ F , 1 ≤ i ≤ |F |, we create a vertex-disjoint cycle Ci on 2|U| vertices
and assign all its edges color i . We let V (Ci ) = {ci1, ci2, . . . , ci2 |U |} and we define β(i,uj ) = ci2j−1,
for 1 ≤ i ≤ |F | and 1 ≤ j ≤ |U|. In other words, every odd-numbered vertex of Ci is mapped
to an element in U. Now for every element uj ∈ U, 1 ≤ j ≤ |U|, we create a vertex vj , we let
γ (uj ) = {ci2j−1 |1 ≤ i ≤ |F | ∧uj ∈ fi }, and we add an edge (of some special color, say zero) between
vj and every vertex in γ (uj ) (see Figure 4).
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To finalize the reduction, we contract all the edges colored zero to obtain an instance (G,k)
of SimFVS. Note that |V (G)| = |E(G)| = 2|U||F | and the total number of used colors is |F | (and
|F | ∈ O(|U||F |)). Moreover, after contracting all 0-colored edges, |γ (uj )| = 1 for all uj ∈ U.

Claim 2. If F admits a hitting set of size at most k then G admits an |F |-simfvs of size at most k .

Proof. Let X = {ui1 , . . . ,uik } be such a hitting set. We construct a vertex set Y = {γ (ui1 ), . . .,
γ (uik )}. Recall that, after contracting all 0-colored edges, |γ (uj )| = 1 for all uj ∈ U, and therefore
the vertex set Y is well-defined. If Y is not an |F |-simfvs ofG thenG[V (G) \Y ] must contain some
cycle where all edges are assigned the same color. By construction, every set in F corresponds
to a uniquely colored cycle in G. Hence, the contraction operations applied to obtain G cannot
create new monochromatic cycles, i.e. every cycle in G which does not correspond to a set from
F must include edges of at least two different colors. Therefore, if G[V (G) \ Y ] contains some
monochromatic cycle then X cannot be a hitting set of F . �

Claim 3. If G admits an |F |-simfvs of size at most k then F admits a hitting set of size at most k .

Proof. Let X = {vi1 , . . . ,vik } be such an |F |-simfvs. First, note that if some vertex in X does
not correspond to an element inU, then we can safely replace that vertex with one that does (since
any such vertex belongs to exactly one monochromatic cycle). We construct a set Y = {ui1 , . . . ,uik }.
If there exists a set fi ∈ F such that Y ∩ fi = ∅ then, by construction, there exists an i-colored
cycle Ci in G such that X ∩V (Ci ) = ∅, a contradiction. �

Combining the previous two claims with the fact that our reduction runs in time polynomial in
|U|, |F |, and k , completes the proof of the theorem. �

Notice that the proof of Theorem 5.1 crucially relies on the fact that each cycle is “uniquely
identified” by a separate color. In order to get around this limitation and prove W[1]-hardness
for α ∈ O(logn) we need, in some sense, to group separate sets of a Hitting Set instance into
O(log(|U||F |)) families such that sets inside each family are pairwise disjoint. By doing so, we can
modify the proof of Theorem 5.1 to identify all sets inside a family using the same color, for a total
of O(logn) colors (instead of O(n)). We achieve exactly this in what follows. We refer the reader to
the work of Impagliazzo et al. [14, 15] for details on the Exponential Time Hypothesis (ETH). For
our purposes, it is enough to view ETH as the following conjecture: There exists a positive real s
such that determining whether a 3-CNF boolean formula on n variables andm clauses is satisfiable
cannot be accomplished in time 2sn(n +m)O(1).

Partitioned Hitting Set (PHS) Parameter: k
Input: A tuple (U,F = F1 ∪ . . . ∪ Fα ,k), where Fi , 1 ≤ i ≤ α , is a collection of subsets of
the finite universe U and k is a positive integer. Moreover, all the sets within a family Fi ,
1 ≤ i ≤ α , are pairwise disjoint.
Question: Is there a subset X of U of cardinality at most k such that for every f ∈ F =
F1 ∪ . . . ∪ Fα , f ∩ X is nonempty?

Partitioned Subgraph Isomorphism (PSI) Parameter: k = |E(G)|
Input: A graph H , a graph G with V (G) = {д1, . . . ,дℓ}, and a coloring function col : V (H ) →
[ℓ].
Question: Is there an injection inj : V (G) → V (H ) such that for every i ∈ [ℓ], col(inj(дi )) = i
and for every (дi ,дj ) ∈ E(G), (inj(дi ), inj(дj )) ∈ E(H )?
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Fig. 5. An instance of the PSI problem.

Theorem 5.2 ([13, 22]). Partitioned Subgraph Isomorphism parameterized by |E(G)| is W[1]-
hard, even when the smaller graph G is connected and has maximum degree three. Moreover, the

problem cannot be solved in time f (k)no(
k

logk )
, where f is an arbitrary function, n = |V (H )|, and

k = |E(G)|, unless ETH fails.

Wemake a few simplifying assumptions: For an instance of Partitioned Subgraph Isomorphism,
we let Hi denote the subgraph of H induced on vertices colored i . We assume that |V (Hi )| = 2t , for
1 ≤ i ≤ ℓ and t some positive integer; adding isolated vertices to each set is enough to guarantee
this size constraint. Moreover, we assume that whenever there is no edge (дi ,дj ) ∈ E(G), then there
are no edges between V (Hi ) and V (Hj ) in H (see Figure 5 for an example of an instance). Note that
the PSI problem asks for a “colorful” subgraph of H isomorphic to G such that one vertex from
Hi is mapped to the vertex дi , 1 ≤ i ≤ ℓ. Therefore, it is also safe to assume that Hi , 1 ≤ i ≤ ℓ, is
edgeless.

Theorem 5.3. Partitioned Hitting Set parameterized by solution size is W[1]-hard when

α ∈ O(log(|U||F |)). Moreover, the problem cannot be solved in time f (k)no(
k

logk )
, where f is an

arbitrary function, n = |U|, and k is the required solution size, unless ETH fails.

Proof. Given an instance (H ,G, col , ℓ = |V (G)|,k = |E(G)|) of PSI, where G has maximum
degree three, we reduce it into an instance (U,F = F1 ∪ . . . ∪ Fα ,k ′ = k + ℓ) of PHS, where
α = 16 log 2t + 1 = 16t + 1, Fi , 1 ≤ i ≤ α , is a collection of subsets of the finite universe U, and all
the sets within a family Fi are pairwise disjoint.

We start by constructing the universeU. For each vertex hij ∈ V (Hi ), 1 ≤ i ≤ ℓ and 0 ≤ j ≤ 2t −1,
we create an element vij . For each edge (hi1j1 ,h

i2
j2 ) ∈ E(H ), we create an element ei1,i2j1, j2 where j1 is the

index of the vertex in Hi1 , j2 is the index of the vertex in Hi2 , 1 ≤ i1, i2 ≤ ℓ, and 0 ≤ j1, j2 ≤ 2t − 1.
Note that |U| = |V (H )| + |E(H )| = ℓ2t + |E(H )| < 4t2ℓ2.
We now create “selector gadgets” between elements corresponding to vertices and elements

corresponding to edges. For every ordered pair (x ,y), 1 ≤ x ,y ≤ ℓ, such that there exists an edge
between Hx and Hy in H (or equivalently there exists an edge (дx ,дy ) in G), we create 2t sets. We
denote half of those sets by Ux,y,p and the order half by Dx,y,p , where 1 ≤ p ≤ t . Let Ux denote
the set of all elements corresponding to vertices in Hx and letUx,y (x and y unordered inUx,y )
denote the set of all elements corresponding to edges between vertices in Hx and vertices Hy . We
let bit(i)[p], 0 ≤ i ≤ 2t −1 and 1 ≤ p ≤ t , be the pth bit in the bit representation of i (where position
p = 1 holds the most significant bit). For each vxi ∈ Ux and for all p from 1 to t , if bit(i)[p] = 0 we
add vxi to set Dx,y,p and we add vxi to set Ux,y,p otherwise. For each ex,yi, j ∈ Ux,y and for all p from
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Fig. 6. Parts of the reduction for the PSI instance from Figure 5. Rounded rectangles represents subsets of the
universe and circles (and ellipses) represent sets in the family.

1 to t , if bit(i)[p] = 0 we add ex,yi, j to set Ux,y,p and we add ex,yi, j to set Dx,y,p otherwise. Recall that
for ex,yi, j , i corresponds to the index of element vxi ∈ Ux .
Finally, for each x , 1 ≤ x ≤ ℓ, we add the set Qx = Ux , and for each (unordered) pair x ,y such

that (дx ,дy ) ∈ E(G) we add the set Qx,y = Ux,y . Put differently, a set Qx contains all elements
corresponding to vertices inHx and a setQx,y contains all elements corresponding to edges between
Hx and Hy . The role of these ℓ + k sets is simply to force a solution to pick at least one element
from every Ux and one element from every Uy,z , 1 ≤ x ,y, z ≤ ℓ. Note that we have a total
of 4t |E(G)| + |E(G)| + ℓ < 4tℓ2 + ℓ2 + ℓ sets and therefore 16t + 1 ∈ O(log(|U||F |)). We set
k ′ = |V (G)| + |E(G)| = ℓ + k . This completes the construction. An example of the construction for
the instance given in Figure 5 is provided in Figure 6.

Claim 4. In the resulting instance (U,F = F1 ∪ . . . ∪ Fα ,k ′ = k + ℓ), α = 16 log 2t + 1 = 16t + 1.

Proof. First, we note that all sets Qx and Qy,z , 1 ≤ x ,y, z ≤ ℓ, are pairwise disjoint. Hence, we
can group all these sets into a single partition. We now prove that 16t is enough to partition the
remaining sets.
Since G has maximum degree three, we know by Vizing’s theorem [28] that G admits a proper

4-edge-coloring, i.e. no two edges incident on the same vertex receive the same color. Let us fix
such a 4-edge-coloring and denote it by β : E(G) → {1, 2, 3, 4}. Recall that for every ordered
pair (x ,y), 1 ≤ x ,y ≤ ℓ, we define two groups of sets Ux,y,p and Dx,y,p , 1 ≤ p ≤ t . Given
any set Xx,y,p , X ∈ {U ,D}, we define the partition to which Xx,y,p belongs as part(X ,x ,y,p) =
(β(дx ,дy ),p, {U ,D}, {x < y,x > y}). In other words, we have a total of 16t partitions depending
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on the color of the edge (дx ,дy ) in G, the position p, whether X = U or X = D, and whether x < y
or x > y (recall that we assume x , y).
Since β is a proper 4-coloring of the edges of G, we know that if two sets belong to the same

partition they must be of the form Xx1,y1,p and Xx2,y2,p , where X ∈ {U ,D}, x1 , x2, y1 , y2,
β(дx1 ,дy1 ) = β(дx2 ,дy2 ), x1 < y1 (x1 > y1), and x2 < y2 (x2 > y2). It follows from our construction
thatXx1,y1,p ∩Xx2,y2,p = ∅;Xx1,y2,p only contains elements fromUx1 ∪Ux1,y1 ,Xx2,y2,p only contains
elements from Ux2 ∪Ux2,y2 , and (Ux1 ∪Ux1,y1 ) ∩ (Ux2 ∪Ux2,y2 ) is empty. �

Claim 5. The resulting instance (U,F = F1 ∪ . . . ∪ Fα ,k ′ = k + ℓ) admits no hitting set of size

k ′ − 1.

Proof. If there exists a hitting set S of size k ′ − 1, then either (1) there exists Ux , 1 ≤ x ≤ ℓ,
such that S ∩Ux = ∅ or (2) there existsUy,z , 1 ≤ y, z ≤ ℓ, such that S ∩Uy,z = ∅. In case (1), we
are left with a set Qx which is not hit by S . Similarly, for case (2), there exists a set Qy,z which is
not hit by S . In both cases we get a contradiction as we assumed S to be a hitting set, as needed. �

Claim 6. Any hitting set of size k ′
of the resulting instance (U,F = F1 ∪ . . . ∪ Fα ,k ′ = k + ℓ)

must pick exactly one element from each set Ux , 1 ≤ x ≤ ℓ, and exactly one element from each set

Uy,z , 1 ≤ y, z ≤ ℓ. Moreover, for every ordered pair (x ,y), 1 ≤ x ,y ≤ ℓ, a hitting set of size k ′
must

pick vxi ∈ Ux and e
x,y
i, j ∈ Ux,y , 0 ≤ i, j ≤ 2t − 1. In other words, the vertex hxi ∈ V (H ) is incident to

the edge (hxi ,h
y
j ) ∈ E(H ).

Proof. The first part of the claim follows from the previous claim combined with the fact that
k ′ = k + ℓ. For the second part, assume that there exists a hitting set S of size k ′ such that for
some ordered pair, (x ,y), S includes vxi1 ∈ Ux and ex,yi2, j ∈ Ux,y , where i1 , i2. Since i1 , i2, then
bit(i1)[p] , bit(i2)[p] for at least one position p. For that position, we know that vxi1 and e

x,y
i2, j must

both belong to only one ofUx,y,p or Dx,y,p . Hence, either Ux,y,p or Dx,y,p is not hit by vxi1 and e
x,y
i2, j

when i1 , i2. �

Claim 7. If (H ,G, col , ℓ = |V (G)|,k = |E(G)|), whereG hasmaximum degree three, is a yes-instance

of PSI then (U,F = F1 ∪ . . . ∪ Fα ,k ′ = k + ℓ) is a yes-instance of PHS.
Proof. Let S , a subgraph of H , denote the solution graph and let V (S) = {h1i1 , . . . ,h

ℓ
iℓ }. We

claim that S ′ = {v1
i1 , . . . ,v

ℓ
iℓ } ∪ {ex,yj1, j2 |(дx ,дy ) ∈ E(G) ∧ j1, j2 ∈ {i1, . . . , iℓ}} is a hitting set of F .

That is, the hitting set picks ℓ elements corresponding to the ℓ vertices in S (or G) and k elements
corresponding to the k edges in G.
Clearly, all sets Qx and Qy,z , 1 ≤ x ,y, z ≤ ℓ, are hit since we pick one element from each. We

now show that all setsUx,y,p and Dx,y,p , 1 ≤ x ,y ≤ ℓ and 1 ≤ p ≤ t , are also hit. Assume, without
loss of generality, that for fixed x , y, and p, some setUx,y,p is not hit. Let vxi1 ∈ Ux be the element
we picked from Ux and let ex,yi2, j be the element we picked from Ux,y . IfUx,y,p is not hit, it must be
the case that i1 , i2 which, by the previous claim, is not possible. �

Claim 8. If (U,F = F1 ∪ . . . ∪ Fα ,k ′ = k + ℓ) is a yes-instance of PHS then (H ,G, col , ℓ =
|V (G)|,k = |E(G)|) is a yes-instance of PSI.
Proof. Let S = {v1

i1 , . . . ,v
ℓ
iℓ } ∪ {ex,yj1, j2 |(дx ,дy ) ∈ E(G) ∧ j1, j2 ∈ {i1, . . . , iℓ}} be a hitting set of F .

Note that we can safely assume that the hitting set picks such elements since it has to hit all setsQx
and Qy,z , 1 ≤ x ,y, z ≤ ℓ. We claim that the subgraph S ′ of H with vertex set V (S ′) = {h1i1 , . . . ,h

ℓ
iℓ }

is a solution to the PSI instance.
By construction, there is an injection inj : V (G) → V (S ′) such that for every i ∈ [ℓ], col(inj(дi )) =

i . In fact, S ′ contains exactly one vertex for each color i ∈ [ℓ]. Assume that there exists an
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edge (дi ,дj ) ∈ E(G) such that (inj(дi ), inj(дj )) < E(S ′). This implies that there exists two vertices
hxi ,h

y
j ∈ V (S ′) such that (hxi ,h

y
j ) < E(S ′). But we know that there exists at least one edge, say

(hxi′,h
y
j′), between vertices in Hx and vertices in Hy (from our assumptions). Since i ′ , i , j ′ , j,

vxi ,v
y
j ∈ S , and e

x,y
i, j < S , it follows that S cannot be a hitting set of F as at least one set in

Ux,y,p ∪ Dx,y,p and one set inUy,x,p ∪ Dy,x,p is not hit by S , a contradiction. �

This completes the proof of the theorem. �

We are now ready to state the main result of this section. The proof of Theorem 5.4 follows
the same steps as the proof of Theorem 5.1 with one exception, i.e we reduce from Partitioned
Hitting Set with α ∈ O(log(|U||F |)) and use O(log(|U||F |)) colors instead of |F |.

Theorem 5.4. SimFVS parameterized by solution size is W[1]-hard when α ∈ O(logn).

Proof. Given an instance (U,F = F1 ∪ . . . ∪ Fα ,k) of PHS, we let U = {u1, . . . ,u |U |} and
Fi = { f i1 , . . . , f i|Fi |}, 1 ≤ i ≤ α . We assume, without loss of generality, that each element in U
belongs to at least one set in F .

For each f ij ∈ Fi , 1 ≤ i ≤ α and 1 ≤ j ≤ |Fi |, we create a vertex-disjoint cycleCi
j on 2|U| vertices

and assign all its edges color i . We let V (Ci
j ) = {ci, j1 , . . . , c

i, j
2 |U |} and we define β(i, j,up ) = ci, j2p−1,

1 ≤ i ≤ α , 1 ≤ j ≤ |Fi |, and 1 ≤ p ≤ |U|. In other words, every odd-numbered vertex of Ci
j is

mapped to an element inU. Now for every element up ∈ U, 1 ≤ p ≤ |U|, we create a vertex vp ,
we let γ (up ) = {ci, j2p−1 |1 ≤ i ≤ α ∧ 1 ≤ j ≤ |Fi | ∧ up ∈ f ij }, and we add an edge (of some special
color, say 0) between vp and every vertex in γ (up ). To finalize the reduction, we contract all the
edges colored 0 to obtain an instance (G,k) of SimFVS. Note that |V (G)| = |E(G)| = 2|U||F | and
the total number of used colors is α . Moreover, after contracting all special edges, |γ (up )| = 1 for
all up ∈ U.

Claim 9. If F admits a hitting set of size at most k then G admits an α-simfvs of size at most k .

Proof. Let X = {up1 , . . . ,upk } be such a hitting set. We construct a vertex set Y = {γ (up1 ), . . .,
γ (upk )}. If Y is not an α-simfvs ofG thenG[V (G) \Y ] must contain some monochromatic cycle. By
construction, only sets from the same family Fi , 1 ≤ i ≤ α , correspond to cycles assigned the same
color in G. But since we started with an instance of PHS, no two such sets intersect. Hence, the
contraction operations applied to obtain G cannot create new monochromatic cycles. Therefore, if
G[V (G) \ Y ] contains some monochromatic cycle then X cannot be a hitting set of F . �

Claim 10. If G admits an α-simfvs of size at most k then F admits a hitting set of size at most k .

Proof. Let X = {vp1 , . . . ,vpk } be such an α-simfvs. First, note that if some vertex in X does not
correspond to an element inU, then we can safely replace that vertex with one that does (since any
such vertex belongs to exactly one monochromatic cycle). We construct a set Y = {up1 , . . . ,upk }. If
there exists a set f ij ∈ Fi such that Y ∩ f ij = ∅ then, by construction, there exists an i-colored cycle
Ci in G such that X ∩V (Ci ) = ∅, a contradiction. �

Combining the previous two claims with the fact that our reduction runs in time polynomial in
|U|, |F |, and k , completes the proof of the theorem. �

6 CONCLUSION
We have showed that SimFVS parameterized by solution size k is fixed-parameter tractable and can
be solved by an algorithm running in O⋆(23αk ) time, for any constant α . For the special case of
α = 2, we gave a faster O⋆(81k ) time algorithm which follows from the observation that the base
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case of the general algorithm can be solved in polynomial time when α = 2. Moreover, for constant
α , we presented a kernel for the problem with O(αk3(α+1)) vertices.

It is interesting to note that our algorithm implies that SimFVS can be solved in (2O(α ))knO(1)

time. However, we have also seen that SimFVS becomesW[1]-hard when α ∈ O(logn). This implies
that (under plausible complexity assumptions) an algorithm running in (2o(α ))knO(1) time cannot
exist. In other words, the running time cannot be subexponential in either k or α .
As mentioned by Cai and Ye [3], we believe that studying generalizations of other classical

problems to edge-colored graphs is well motivated and might lead to interesting new insights about
combinatorial and structural properties of such problems. Some of the potential candidates are
Vertex Planarization, Odd Cycle Transversal, Interval Vertex Deletion, Chordal Vertex
Deletion, Planar F -Deletion, and, more generally, Simultaneous F -Deletion.
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