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In a recent article Agrawal et al. (STACS 2016) studied a simultaneous variant of the classic FEEDBACK
VERTEX SET problem, called SIMULTANEOUS FEEDBACK VERTEX SET (SIM-FVS). In this problem the
input is an n-vertex graph G, an integer k and a coloring function col : E(G)→ 2[α], and the objective is to
check whether there exists a vertex subset S of cardinality at most k in G such that for all i ∈ [α], Gi − S
is acyclic. Here, Gi = (V (G), {e ∈ E(G) | i ∈ col(e)}) and [α] = {1, . . . , α}. In this paper we consider the
edge variant of the problem, namely, SIMULTANEOUS FEEDBACK EDGE SET (SIM-FES). In this problem,
the input is same as the input of SIM-FVS and the objective is to check whether there is an edge subset S of
cardinality at most k inG such that for all i ∈ [α],Gi−S is acyclic. Unlike the vertex variant of the problem,
when α = 1, the problem is equivalent to finding a maximal spanning forest and hence it is polynomial time
solvable. We show that for α = 3 SIM-FES is NP-hard by giving a reduction from VERTEX COVER on
cubic-graphs. The same reduction shows that the problem does not admit an algorithm of running time
O(2o(k)nO(1)) unless ETH fails. This hardness result is complimented by an FPT algorithm for SIM-FES
running in timeO(2ωkα+α log knO(1)), where ω is the exponent in the running time of matrix multiplication.
The same algorithm gives a polynomial time algorithm for the case when α = 2. We also give a kernel for
SIM-FES with (kα)O(α) vertices. Finally, we consider the problem MAXIMUM SIMULTANEOUS ACYCLIC
SUBGRAPH. Here, the input is a graph G, an integer q and, a coloring function col : E(G) → 2[α]. The
question is whether there is an edge subset F of cardinality at least q in G such that for all i ∈ [α], G[Fi] is
acyclic. Here, Fi = {e ∈ F | i ∈ col(e)}. We give an FPT algorithm for MAXIMUM SIMULTANEOUS ACYCLIC
SUBGRAPH running in time O(2ωqαnO(1)). All our algorithms are based on a parameterized version of the
MATROID PARITY problem.
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1. INTRODUCTION
Deleting at most k vertices or edges from a given graph G, so that the resulting graph
belongs to a particular family of graphs (F), is an important research direction in
the fields of graph algorithms and parameterized complexity. For a family of graphs
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F , given a graph G and an integer k, the F -DELETION (EDGE F -DELETION) prob-
lem asks whether we can delete at most k vertices (edges) in G so that the resulting
graph belongs to F . The F -DELETION (EDGE F -DELETION) problems generalize many
of the NP-hard problems like VERTEX COVER, FEEDBACK VERTEX SET, ODD CYCLE
TRANSVERSAL, EDGE BIPARTIZATION, etc. Inspired by applications, Cai and Ye in-
troduced variants of F -DELETION (EDGE F -DELETION) on edge colored graphs [Cai
and Ye 2014]. One of the natural generalizations to the classic F -DELETION (EDGE
F -DELETION) problems on edge colored graphs is the following. Given a graph G with
a coloring function col : E(G) → 2[α], and an integer k, we want to delete a set S of at
most k edges/vertices in G so that for each i ∈ [α], Gi − S belongs to F . Here, Gi is the
graph with vertex set V (G) and edge set as {e ∈ E(G) | i ∈ col(e)}. These problems are
also called simultaneous variant of F -DELETION (EDGE F -DELETION).

Cai and Ye studied the DUALLY CONNECTED INDUCED SUBGRAPH and DUAL SEP-
ARATOR on 2-edge colored graphs [Cai and Ye 2014]. Agrawal et al. [Agrawal et al.
2016] studied a simultaneous variant of FEEDBACK VERTEX SET, called SIMULTA-
NEOUS FEEDBACK VERTEX SET, in the realm of parameterized complexity. Here, the
input is a graph G, an integer k, and a coloring function col : E(G) → 2[α] and the
objective is to check whether there is a set S of at most k vertices in G such that for all
i ∈ [α], Gi − S is acyclic. Here, Gi = (V (G), {e ∈ E(G) | i ∈ col(e)}). In this paper we
consider the edge variant of the problem, namely, SIMULTANEOUS FEEDBACK EDGE
SET, in the realm of parameterized complexity.

In the Parameterized Complexity paradigm the main objective is to design an al-
gorithm with running time f(µ) · nO(1), where µ is the parameter associated with the
input, n is the size of the input and f(·) is some computable function whose value
depends only on µ. A problem which admits such an algorithm is said to be fixed pa-
rameter tractable parameterized by µ. Typically, for edge/vertex deletion problems one
of the natural parameters that is associated with the input is the size of the solution we
are looking for. Another objective in parameterized complexity is to design polynomial
time pre-processing routines that reduce the size of the input as much as possible. The
notion of such a pre-processing routine is captured by kernelization algorithms. A ker-
nelization algorithm for a parameterized problem Q takes as input an instance (I, k) of
Q, runs in polynomial time and returns an equivalent instance (I ′, k′) of Q. Moreover,
the size of the instance (I ′, k′) returned by the kernelization algorithm is bounded by
g(k), where g(·) is some computable function whose value depends only on k. If g(·) is
polynomial in k, then the problem Q is said to admit a polynomial kernel. The instance
returned by the kernelization is referred to as a kernel or a reduced instance. We refer
the readers to the recent book of Cygan et al. [Cygan et al. 2015] for a more detailed
overview of parameterized complexity and kernelization.

A feedback edge set in a graph G is S ⊆ E(G) such that G − S is a forest. For a
graph G with a coloring function col : E(G)→ 2[α], a simultaneous feedback edge set is
a subset S ⊆ E(G) such that Gi − S is a forest for all i ∈ [α]. Here, Gi = (V (G), Ei),
where Ei = {e ∈ E(G) | i ∈ col(e)}. Formally, the problem is stated below.

SIMULTANEOUS FEEDBACK EDGE SET (SIM-FES)
Input: An n-vertex graph G, k ∈ N and a coloring function col : E(G)→ 2[α].
Parameter: k, α.
Question: Is there a simultaneous feedback edge set of cardinality at most k in
G?

FEEDBACK VERTEX SET (FVS) is one of the classic NP-complete [Garey and
Johnson 1979] problems and has been extensively studied from all the algorithmic
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paradigms that are meant for coping with NP-hardness, such as approximation algo-
rithms, parameterized complexity and moderately exponential time algorithms. The
problem admits a factor 2-approximation algorithm [Bafna et al. 1999], an exact al-
gorithm with running time O(1.7217nnO(1)) [Fomin et al. 2016], a deterministic pa-
rameterized algorithm of running in time O(3.619knO(1)) [Kociumaka and Pilipczuk
2014], a randomized algorithm running in O(3knO(1)) time [Cygan et al. 2011], and a
kernel with O(k2) vertices [Thomassé 2010]. Agrawal et al. [Agrawal et al. 2016] stud-
ied SIMULTANEOUS FEEDBACK VERTEX SET (SIM-FVS) and gave an FPT algorithm
running in time 2O(αk)nO(1) and a kernel of size O(αk3(α+1)). Finally, unlike the FVS
problem, SIM-FES is polynomial time solvable when α = 1, because it is equivalent to
finding maximal spanning forest.

1.1. Our results and approach
In Section 3 we design an FPT algorithm for SIM-FES by reducing to α-LINEAR
MATROID PARITY on the direct sum of elongated co-graphic matroids of Gi, i ∈
[α] (see Section 2 for definitions related to matroids). This algorithm runs in time
O(2ωkα+α log knO(1)). Unlike the vertex counterpart, we show that for α = 2 (2-edge
colored graphs) SIM-FES is polynomial time solvable. This follows from the polyno-
mial time algorithm for the MATROID PARITY problem. In Section 4 we show that
for α = 3, SIM-FES is NP-hard. Towards this, we give a reduction from the VERTEX
COVER problem in cubic graphs which is known to be NP-hard [Garey et al. 1976].
Furthermore, the same reduction shows that the problem cannot be solved in time
2o(k)nO(1) unless the Exponential Time Hypothesis (ETH) fails [Impagliazzo et al.
2001]. We complement our FPT algorithms by showing that SIM-FES is W[1]-hard
when parameterized by the solution size k even when α = O(log(|V (G)|)). We show
this by giving a parameter-preserving reduction from PARTITIONED HITTING SET, a
variant of the HITTING SET problem, defined in [Agrawal et al. 2016]. On the other
hand when α = O(|V (G)|), we prove that the problem is in fact W[2]-hard by giv-
ing a parameter-preserving reduction from the HITTING SET problem parameterized
by the solution size, a well known W[2]-hard problem [Cygan et al. 2015]. The W[1]
and W[2]-hardness results are proved in Section 5. In Section 6 we give a kernel with
O((kα)O(α)) vertices. Towards this we apply some of the standard preprocessing rules
for obtaining a kernel for FEEDBACK VERTEX SET and use the approach similar to the
one developed for designing the kernelization algorithm for SIM-FVS [Agrawal et al.
2016]. In Section 7 we give an FPT algorithm for the problem, when parameterized by
the dual parameter. Formally, this problem is defined as follows.

MAXIMUM SIMULTANEOUS ACYCLIC SUBGRAPH (MAX-SIM-SUBGRAPH)
Input: An n-vertex graph G, q ∈ N and a function col : E(G)→ 2[α].
Parameter: q.
Question: Is there a subset F ⊆ E(G) such that |F | ≥ q and for all i ∈ [α],
G[F ∩ E(Gi)] is acyclic?

For solving MAX-SIM-SUBGRAPH we reduce it to an equivalent instance of the α-
LINEAR MATROID PARITY problem. As an immediate corollary we get an exact algo-
rithm for SIM-FES running in time O(2ωnα

2

nO(1)).

2. PRELIMINARIES
We denote the set of natural numbers by N. For n ∈ N, by [n] we denote the set
{1, . . . , n}. For a set X, by 2X we denote the set of all subsets of X. We use the term
ground set/ universe to distinguish a set from its subsets. We will use ω to denote the
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exponent in the running time of matrix multiplication, the current best known bound
for ω is < 2.373 [Williams 2012].

2.1. Graphs
We use the term graph to denote an undirected graph. For a graph G, by V (G) and
E(G) we denote its vertex set and edge set, respectively. We will be considering finite
graphs possibly having loops and multi-edges. In the following, let G be a graph and
let H be a subgraph of G. By dH(v), we denote the degree of the vertex v in H, i.e., the
number of edges in H which are incident with v. A self-loop at a vertex v contributes 2 to
the degree of v. For any non-empty subsetW ⊆ V (G), the subgraphs ofG induced byW
and V (G)\W are denoted byG[W ] andG−W , respectively. Similarly, for F ⊆ E(G), the
subgraph of G induced by F is denoted by G[F ]; its vertex set is V (G) and its edge set
is F . For F ⊆ E(G), by G−F we denote the graph obtained by deleting the edges in F .
We use the convention that a double edge and a self-loop are cycles. An α-edge colored
graph is a graph G with a coloring function col : E(G)→ 2[α]. By Gi we will denote the
color i (or i-color) graph of G, where V (Gi) = V (G) and E(Gi) = {e ∈ E(G)|i ∈ col(e)}.
For an α-edge colored graphG, the total degree of a vertex v is

∑α
i=1 dGi

(v). For example
a vertex of degree 2 in G may have total degree x+ y where x and y are the sizes of the
color sets of its two incident edges. We refer the reader to [Diestel 2012] for details on
standard graph theoretic notations and terminologies.

2.2. Fields
Here we review some definitions of fields. For more details we refer to any graduate
textbook on algebra. We use Q to denote the field on rational numbers. The number
of elements in a field is called its order. For a prime number p, the set {0, 1, . . . , p − 1}
with addition and multiplication modulo p forms a field, which is denoted by Fp. For
every prime number p and a positive integer `, there exists a unique finite field (upto
isomorphism) of order p`, which is denoted by Fp` . For a finite field F, F[X] denotes the
ring of polynomials in X over F. For the ring F[X], we use F(X) to denote the field of
fractions of F[X].

2.3. Matroids
A pair M = (E, I), where E is a ground set and I is a family of subsets (called inde-
pendent sets) of E, is a matroid if it satisfies the following conditions:

(I1) φ ∈ I,
(I2) if A′ ⊆ A and A ∈ I then A′ ∈ I, and
(I3) if A,B ∈ I and |A| < |B|, then there is e ∈ (B \A) such that A ∪ {e} ∈ I.

The axiom (I2) is also called the hereditary property and a pair (E, I) satisfying only
(I2) is called hereditary family. An inclusion-wise maximal subset of I is called a basis
of the matroid. Using axiom (I3) it is easy to show that all the bases of a matroid have
the same size. This size is called the rank of the matroid M , and is denoted by rank(M).
We refer the reader to [Oxley 2006] for more details about matroids.

Representable Matroids. Let A be a matrix over an arbitrary field F and let E be the
set of columns of A. For A, we define matroid M = (E, I) as follows. A set X ⊆ E is
independent (that isX ∈ I) if the corresponding columns are linearly independent over
F. The matroids that can be defined by such a construction are called linear matroids,
and if a matroid can be defined by a matrix A over a field F, then we say that the
matroid is representable over F. A matroid M = (E, I) is called representable or linear
if it is representable over some field F.
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Direct Sum of Matroids. Let M1 = (E1, I1), M2 = (E2, I2), . . . , Mt = (Et, It) be t
matroids with Ei ∩ Ej = ∅ for all 1 ≤ i 6= j ≤ t. The direct sum M1 ⊕ · · · ⊕ Mt is
a matroid M = (E, I) with E :=

⋃t
i=1Ei and X ⊆ E is independent if and only if

X ∩ Ei ∈ Ii for all i ∈ [t]. Let Ai be a representation matrix of Mi = (Ei, Ii) over field
F. Then,

AM =


A1 0 0 · · · 0
0 A2 0 · · · 0
...

...
...

...
...

0 0 0 · · · At


is a representation matrix of M1 ⊕ · · · ⊕Mt. The correctness of this is proved in [Marx
2009; Oxley 2006].

Uniform Matroid. A matroid M = (E, I) over an n-element ground set E, is called a
uniform matroid if the family of independent sets is given by I = {A ⊆ E | |A| ≤ k},
where k is some constant. This matroid is also denoted as Un,k.

PROPOSITION 2.1 ([OXLEY 2006]). The uniform matroid Un,k is representable over
any field of size strictly more than n and such a representation can be found in time
polynomial in n.

Graphic and Cographic Matroid. Given a graph G, the graphic matroid M = (E, I)
is defined by taking the edge set E(G) as universe and F ⊆ E(G) is in I if and only
if G[F ] is a forest. Let G be a graph and η be the number of components in G. The co-
graphic matroid M = (E, I) of G is defined by taking the the edge set E(G) as universe
and F ⊆ E(G) is in I if and only if the number of connected components in G− F is η.

PROPOSITION 2.2 ([OXLEY 2006]). Graphic and co-graphic matroids are repre-
sentable over any field of size ≥ 2 and such a representation can be found in time
polynomial in the size of the graph.

Elongation of a Matroid. Let M = (E, I) be a matroid and k be an integer such that
rank(M) ≤ k ≤ |E|. The k-elongation matroid Mk of M is the matroid with the universe
as E and S ⊆ E is a basis of Mk if and only if, it contains a basis of M and |S| = k.
Observe that the rank of the matroid Mk is k.

PROPOSITION 2.3 (COROLLARY 1.2 [LOKSHTANOV ET AL. 2018]). Let M be a lin-
ear matroid of rank r, over a ground set of size n, which is representable over a field F.
Given a number ` ≥ r, we can compute a representation of the `-elongation of M , over
the field F(X) in O(nr`) field operations over F.

Notice that in Proposition 2.3 the running time is measured in terms of the number
of field operations over F and not over the field F(X). So the the number of bits in the
`-elongation of M is upper bounded by a polynomial function in n, r, ` and the number
of bits in the representation of M .

PROPOSITION 2.4. Let G be a graph with η connected components and M be an
r-elongation of the co-graphic matroid associated with G, where r ≥ |E(G)|−|V (G)|+η.
Then B ⊆ E(G) is a basis of M if and only if the subgraph G−B is acyclic and |B| = r.

PROOF. In the forward direction let B ⊆ E(G) be a basis of M . By Definition of M it
follows that |B| = r and B contains a basis Bc of the co-graphic matroid of G. Suppose
G − B has a cycle. This implies that G − Bc has a cycle. But then, there is an edge
e ∈ E(G − Bc) whose removal from G − Bc does not increase the number of connected
components in G − Bc. This contradicts that Bc was a basis in the co-graphic matroid
of G.
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In the reverse direction let B ⊆ E(G) such that |B| = r and G − B is acyclic. Con-
sider an inclusion-wise maximal subset B′ ⊆ B such that the number of connected
components in G − B′ is η. Observe that G − B′ does not contain a cycle since G − B
is acyclic and B′ is inclusion-wise maximal. Therefore, it follows that B′ is a basis in
the co-graphic matroid of G. But then B contains a basis of the co-graphic matroid of
G and |B| = r, therefore B is a basis in M .

α-Matroid Parity. In our algorithms we use a known algorithm for the α-LINEAR
MATROID PARITY problem. Below we define α-LINEAR MATROID PARITY formally and
state one of its algorithmic results.

α-LINEAR MATROID PARITY
Input: Two positive integers α and q, a linear representation AM of a matroid
M = (E, I) and a partition P of E into blocks of size α.
Parameter: α, q.
Question: Does there exist an independent set which is a union of q blocks?

PROPOSITION 2.5. There is an algorithm for α-LINEAR MATROID PARITY, running
in time O(2ωqα||AM ||O(1)), where ||AM || is the total number of bits required to describe
all the elements of matrix AM , when one of the following is true.

(i) The representation matrix AM is over a field Fp` or Q.
(ii) Rank of M = (E, I) is kα and the representation matrix AM is over a field F(X), where

F is Fp` or Q.

Marx [Marx 2009] designed a randomized FPT algorithm for α-LINEAR MATROID
PARITY, when the representation matrix AM is over a field Fp` or Q. Lokshtanov et
al. [Lokshtanov et al. 2018] derandomized it through a deterministic computation of
a representation of truncation of a given linear matroid. Lokshtanov et al. proved
Proposition 2.5(i) and explicitly stated it. To prove the result, in fact Lokshtanov et
al. constructed a representation of kα-trunctation of M = (E, I) over the field F(X)
and then solved the problem. That is, the second step of the algorithm of Lokshtanov
et al. proves Proposition 2.5(ii).

3. FPT ALGORITHM FOR SIMULTANEOUS FEEDBACK EDGE SET
In this section we design an algorithm for SIM-FES by giving a reduction to α-LINEAR
MATROID PARITY on the direct sum of elongated co-graphic matroids associated with
graphs restricted to different color classes.

We describe our algorithm, Algo-SimFES, for SIM-FES. Let (G, k, col : E(G) → 2[α])
be an input instance to SIM-FES. Recall that for i ∈ [α], Gi is the graph with vertex
set as V (G) and edge set as E(Gi) = {e ∈ E(G) | i ∈ col(e)}. Note that n = |V (Gi)| for
all i ∈ [α]. Let ηi be the number of connected components in Gi. To make Gi acyclic we
need to delete at least |E(Gi)| − n+ ηi edges from Gi. Therefore, if there is i ∈ [α] such
that |E(Gi)| − n + ηi > k, then Algo-SimFES returns NO. We let ki = |E(Gi)| − n + ηi.
Observe that for i ∈ [α], 0 ≤ ki ≤ k. We need to delete at least ki edges from E(Gi)
to make Gi acyclic. Therefore, the algorithm Alg-SimFES for each i ∈ [α], guesses k′i,
where ki ≤ k′i ≤ k and computes a solution S of SIM-FES such that |S ∩ E(Gi)| = k′i.
Let Mi = (Ei, Ii) be the k′i-elongation of the co-graphic matroid associated with Gi.

By Proposition 2.4, for any basis Fi inMi,Gi−Fi is acyclic. Therefore, our objective is
to compute F ⊆ E(G) such that |F | = k and the elements of F restricted to the elements
of Mi form a basis for all i ∈ [α]. For this we will construct an instance of α-LINEAR
MATROID PARITY as follows. For each e ∈ E(G) and i ∈ col(e), we use ei to denote the
corresponding element in Mi. For each e ∈ E(G), by Original(e) we denote the set of ele-
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ALGORITHM 1: Pseudocode of Algo-SimFES

Input: A graph G, k ∈ N and col : E(G)→ 2[α].
Output: YES if there is a simultaneous feedback edge set of size ≤ k and NO otherwise.

1 Let ηi be the number of connected components in Gi for all i ∈ [α]
2 ki := |E(Gi)| − n+ ηi for all i ∈ [α]
3 if there exists i ∈ [α] such that ki > k then
4 return NO
5 end
6 for (k′1, . . . , k

′
α) ∈ ([k] ∪ {0})α such that ki ≤ k′i for all i ∈ [α] do

7 Let Mi be the k′i-elongation of the co-graphic matroid associated with Gi.
8 Let Mα+1 = Uτ,k′ over the gound set Fake(G), where, k′ =

∑
i∈[α]

(k − k′i).
9 Let M :=

⊕
i∈[α+1]

Mi.
10 For each e ∈ E(G), let Copies(e) be the block of elements of M .
11 if there is an independent set of M composed of k blocks then
12 return YES
13 end
14 end
15 return NO

ments {ej | j ∈ col(e)}. For each edge e ∈ E(G), and j ∈ [α]\col(e) we define an element
ej and a set Fake(e) = {ej | j ∈ [α] \ col(e)}. Finally, for each edge e ∈ E(G), by Copies(e)
we denote the set Original(e) ∪ Fake(e). Let Fake(G) =

⋃
e∈E(G) Fake(e). Furthermore, let

τ = |Fake(G)| =
∑
e∈E(G) |Fake(e)| and k′ =

∑
i∈[α](k − k′i). Let Mα+1 = (Eα+1, Iα+1) be

the uniform matroid of rank k′ over the ground set Fake(G). That is, Mα+1 = Uτ,k′ . By
Propositions 2.1 and Proposition 2.3 we know that Mis are representable over Fp(X),
where p > max(τ, 2) is a prime number and their representation can be computed in
polynomial time. Let Ai be the linear representation of Mi for all i ∈ [α+1]. Notice that
Ei∩Ej = ∅ for all 1 ≤ i 6= j ≤ α+1. LetM denote the direct sumM1⊕· · ·⊕Mα+1 with its
representation matrix being AM . Note that the ground set of M is

⋃
e∈E(G) Copies(e).

Now we define an instance of α-LINEAR MATROID PARITY, which is the linear rep-
resentation AM of M and the partition of ground set into Copies(e), e ∈ E(G). No-
tice that for all e ∈ E(G), |Copies(e)| = α. Also for each i ∈ [α], rank(Mi) = k′i and
rank(Mα+1) = k′ =

∑
i∈[α](k − k′i). This implies that rank(M) = αk.

Now Algo-SimFES outputs YES if there is a basis (an independent set of cardinality
αk) of M which is a union of k blocks in M and otherwise outputs NO. Algo-SimFES
uses the algorithm mentioned in Proposition 2.5 to check whether there is an inde-
pendent set of M , composed of blocks. A pseudocode of Algo-SimFES can be found in
Algorithm 1.

LEMMA 3.1. Algo-SimFES is correct.

PROOF. Let (G, k, col : E(G) → 2[α]) be a YES instance of SIM-FES and let F ⊆
E(G), where |F | = k be a solution of (G, k, col : E(G) → 2[α]). Let ki = |E(Gi)| − n+ ηi,
where ηi is the number of connected components in Gi, for all i ∈ [α]. For all i ∈ [α],
let k′i = |F ∩ E(Gi)|. Since F is a solution, ki ≤ k′i for all i ∈ [α]. This implies that
Algo-SimFES will not execute Step 4. Consider the for loop for the choice (k′1, . . . , k

′
α).

We claim that the columns corresponding to S =
⋃
e∈F Copies(e) form a basis in M

and it is union of k blocks. Note that |S| = αk by construction. For all i ∈ [α], let
F i = {ei | e ∈ F, i ∈ col(e)}, which is subset of ground set of Mi. By Proposition 2.4, for
all i ∈ [α], F i is a basis for Mi. This takes care of all the edges in ∪e∈FOriginal(e). Now
let S∗ = S −∪i∈[α]F i = ∪e∈FFake(e). Observe that |S∗| =

∑
i∈[α](k− k′i) = k′. Also, S∗ is
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a subset of the ground set of Uτ,k′ and thus is a basis since |S∗| = k′. Hence S is a basis
of M . Note that S is the union of blocks corresponding to e ∈ F and hence is union of k
blocks. Therefore, Algo-SimFES will output YES.

In the reverse direction suppose Algo-SimFES outputs YES. This implies that there
is a basis, say S, that is the union of k blocks. By construction S corresponds to union of
the sets Copies(e) for some k edges in G. Let these edges be F = {e1, . . . , ek}. We claim
that F is a solution of (G, k, col : E(G)→ 2[α]). Clearly |F | = k. Since S is a basis of M ,
for each i ∈ [α], B(i) = S ∩ {ei | e ∈ E(Gi)} is a basis in Mi. Let F (i) = {e | ei ∈ B(i)} ⊆
F . Since B(i) is a basis of Mi, by Proposition 2.4, Gi − F (i) is an acyclic graph.

LEMMA 3.2. Algo-SimFES runs in time O(2ωkα+α log k|V (G)|O(1)).

PROOF. The for loop (in Step 6) runs (k+1)α times. Step 11 uses the algorithm men-
tioned in Proposition 2.5, which takes time O(2ωkα||AM ||O(1)) = O(2ωkα|V (G)|O(1)).
Each of the other steps in the algorithm takes polynomial time. Thus, the total run-
ning time is O(2ωkα+α log k|V (G)|O(1)).

Since α-LINEAR MATROID PARITY for α = 2 can be solved in polynomial
time [Lovász 1980] algorithm Algo-SimFES runs in polynomial time for α = 2. This
gives us the following theorem.

THEOREM 3.3. SIM-FES is in FPT and when α = 2 SIM-FES is in P.

4. HARDNESS RESULTS FOR SIM-FES
In this section we show that when α = 3, SIM-FES is NP-Hard. Furthermore, from our
reduction we conclude that it is unlikely that SIM-FES admits a subexponential-time
algorithm. We give a reduction from VERTEX COVER (VC) in cubic graphs (i.e., every
vertex has degree exactly 3) to the special case of SIM-FES where α = 3. Let (G, k) be
an instance of VC in cubic graphs, which asks whether the graph G has a vertex cover
of size at most k. We assume without loss of generality that k ≤ |V (G)|. It is known
that VC in cubic graphs is NP-hard [Garey et al. 1976] and unless ETH fails, it cannot
be solved in time O?(2o(|V (G)|+|E(G)|))1 [Johnson and Szegedy 1999]. Thus, to prove
that when α = 3, it is unlikely that SIM-FES admits a parameterized subexponential
time algorithm (an algorithm of running time O?(2o(k))), it is sufficient to construct (in
polynomial time) an instance of the form (G′, k′ = O(|V (G)| + |E(G)|), col′ : E′ → 2[3])
of SIM-FES that is equivalent to (G, k). Refer to Figure 1 for an illustration of the
construction.

To construct (G′, k′, col′ : E(G′)→ 2[3]), we first construct an instance (Ĝ, k̂) of VC in
subcubic graphs which is equivalent to (G, k). The graph Ĝ is obtained from the graph
G by subdividing each edge in E(G) twice. Formally, we set

V (Ĝ) = V (G) ∪ (
⋃

{v,u}∈E(G)

{xv,u, xu,v}), and

E(Ĝ) =
⋃

{v,u}∈E(G)

{{v, xv,u}, {xv,u, xu,v}, {u, xu,v}}.

LEMMA 4.1. G has a vertex cover of size k if and only if Ĝ has a vertex cover of size
k̂ = k + |E(G)|

1O? notation suppresses polynomial factors in the running-time expression.
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PROOF. In the forward direction, let S be a vertex cover in G. We will construct a
vertex cover Ŝ in Ĝ of size at most k + |E(G)|. Consider an edge {v, u} ∈ E(G). If both
u, v belongs to S, then we arbitrarily add one of the vertices from {xv,u, xu,v} to Ŝ. If
exactly one of {v, u} belongs to S, say v ∈ S then, we add xu,v to Ŝ. If u ∈ S, then we
add xv,u to Ŝ. Clearly, Ŝ is a vertex cover in Ĝ and is of size at most k + |E(G)|.

In the reverse direction, given a vertex cover in Ĝ. For each {v, u} ∈ E(G) such
that both xv,u and xu,v are in the vertex cover, we can replace xu,v by u, and then,
by removing all of the remaining vertices of the form xv,u (whose number is exactly
|E(G)|), we obtain a vertex cover of G.

Observe that in Ĝ every path between two degree-3 vertices contains an edge of the
form {xv,u, xu,v}. Thus, the following procedure results in a partition (M1,M2,M3) of
E(Ĝ) such that each Mi, i ∈ [3], is a matching. Initially, M1 = M2 = M3 = ∅. For each
degree-3 vertex v, let {v, x}, {v, y} and {v, z} be the edges containing v. We insert {v, x}
into M1, {v, y} into M2, and {v, z} into M3 (the choice of which edge is inserted into
which set is arbitrary). Finally, we insert each edge of the form {xv,u, xu,v} into a set
Mi that contains neither {v, xv,u} nor {u, xu,v}.

We are now ready to construct the instance (G′, k′, col′ : E(G′) → 2[3]). Let V (G′) =

V (Ĝ) ∪ V ?, where V ? = {v? : v ∈ V (Ĝ)} contains a copy v? of each vertex v in V (Ĝ).
The set E(G′) and coloring col′ are constructed as follows. For each vertex v ∈ V (Ĝ),
add an edge {v, v?} into E(G′) and its color-set is {1, 2, 3}. For each i ∈ [3] and for each
{v, u} ∈ Mi, add the edges {v, u} and {v?, u?} into E(G′) and its color-set is {i}. We set
k′ = k̂. Clearly, the instance (G′, k′, col′ : E(G′)→ 2[3]) can be constructed in polynomial
time, and it holds that k′ = O(|V (G)|+ |E(G)|).

Lemma 4.2 proves that (Ĝ, k̂) is a YES instance of VC if and only if (G′, k′, col′ :

E(G′) → 2[3]) is a YES instance of SIM-FES. Since (M1,M2,M3) is a partition of E(Ĝ)
and each Mi is a matching, by construction, each monochromatic cycle in G′ is of the
form v − v? − u? − u− v, where {v, u} ∈ E(Ĝ).

LEMMA 4.2. (Ĝ, k̂) is a YES instance of VC if and only if (G′, k′, col′ : E(G′) → 2[3])
is a YES instance of SIM-FES.

PROOF. In the forward direction, let U be a vertex cover in Ĝ of size at most k̂.
Define Q as the set of edges {{v, v?} : v ∈ U} ⊆ E(G′). We claim that Q is a solution to
(G′, k′, col′ : E(G′) → 2[3]). Since |Q| = |U |, it holds that |Q| ≤ k̂ = k′. Now, consider a
monochromatic cycle in G′. Recall that such a cycle is of the form v − v? − u? − u − v,
where {v, u} ∈ E(Ĝ). Since U is a vertex cover of Ĝ, it holds that U ∩ {v, u} 6= ∅, which
implies that Q ∩ {{v, v?}, {u, u?}} 6= ∅.

In the reverse direction, let Q be a solution to (G′, k′, col′). Recall that for each edge
{v, u} ∈ E(G′), where either v, u ∈ V (Ĝ) or v, u ∈ V ? Moreover each monochromatic
cycle in G′ is of the form v−v?−u?−u−v, where {v, u} ∈ E(Ĝ). Therefore, if Q contains
an edge of the form {v, u} or of the form {v?, u?}, such an edge can be replaced by the
edge {v, v?}. Thus, we can assume thatQ only contains edges of the form {v, v?}. Define
U as the set of vertices {v : {v, v?} ∈ Q} ⊆ V (Ĝ). We claim that U is a vertex cover of Ĝ
of size at most k̂. Since |U | ≤ |Q|, it holds that |U | ≤ k̂. Now, recall that for each edge
{v, u} ∈ E(Ĝ), G′ contains a monochromatic cycle of the form v − v? − u? − u− v. Since
Q is a solution to (G′, k′, col′), it holds that Q∩{{v, v?}, {u, u?}} 6= ∅, which implies that
U ∩ {v, u} 6= ∅.
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Input (partial) Output (partial)

Fig. 1. The construction given in the proof of Theorem 4.3.

The following theorem is an immediate consequence of Lemma 4.1 and Lemma 4.2.

THEOREM 4.3. SIM-FES where α = 3 is NP-hard. Furthermore, unless the Expo-
nential Time Hypothesis (ETH) fails, SIM-FES when α = 3 cannot be solved in time
O∗(2o(k)).

5. W -HARDNESS RESULTS FOR SIMULTANEOUS FEEDBACK EDGE SET
We show that SIM-FES parameterized by k is W [2] hard when α = O(|V (G)|) and
W [1] hard when α = O(log(|V (G)|)). Our reductions follow the approach of Agrawal et
al. [Agrawal et al. 2016].

5.1. W[2] Hardness of SIM-FES when α = O(|V (G)|)
We give a reduction from HITTING SET (HS) to SIM-FES where α = O(|V (G)|). Let
(U = {u1, . . . , u|U |},F = {F1, . . . , F|F|}, k) be an instance of HS, where F ⊆ 2U , which
asks whether there exists a subset S ⊆ U of size at most k such that for all F ∈ F ,
S ∩F 6= ∅. It is known that HS parameterized by k is W[2]-hard (see, e.g., [Cygan et al.
2015]). Thus, to prove the result, it is sufficient to construct (in polynomial time) an
instance of the form (G, k, col : E(G)→ 2[α]) of SIM-FES that is equivalent to (U,F , k),
where α = O(|V (G)|). We construct a graph G such that V (G) = O(|U ||F|) and the
number of colors used will be α = |F|. The intuitive idea is the following. For each
element in the universe we will have an edge and this will be colored with the indices
of the sets in F , in which the element belongs to. For each Fi ∈ F we create a unique
monochromatic cycle with color i which passes through all the edges corresponding to
the elements it contain. Then it is easy to see that hitting monochromatic cycles in the
reduced graph is equivalent to hitting all sets in F .

Now we explain our reduction formally. Without loss of generality we assume that
each set in F contains at least two elements from U . The instance (G, k, col : E(G) →
2[α]) is constructed as follows. For each element ui ∈ U , insert two new vertices into
V (G), vi and wi, add the edge {vi, wi} into E(G) and let {j | Fj ∈ F , ui ∈ Fj} be its
color-set. Now, for all 1 ≤ i < j ≤ |U | and for all 1 ≤ t ≤ |F| such that ui, uj ∈
Ft and {ui+1, . . . , uj−1} ∩ Ft = ∅, perform the following operation: add a new vertex
into V (G), si,j,t, add the edges {wi, si,j,t} and {si,j,t, vj} into E(G) and let their color-
set be {t}. Moreover, for each 1 ≤ t ≤ |F|, let ui and uj be the elements with the
largest and smallest index contained in Ft, respectively, and perform the following
operation: add a new vertex into V (G), si,j,t, add the edges {wi, si,j,t} and {si,j,t, vj}
into E(G), and let their color-set be {t}. Observe that |V (G)| = O(|U ||F|) and that
α = |F|. Therefore, α = O(|V (G)|). It remains to show that the instances (G, k, col)
and (U,F , k) are equivalent. By construction, each monochromatic cycle in G is of the
form vi1 − wi1 − si1,i2,t − vi2 − wi2 − si2,i3,t − · · · − vi|Ft|

− wi|Ft|
− si|Ft|,i1,t

− vi1 , where
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{ui1 , ui2 , . . . , ui|Ft|
} = Ft ∈ F , and for each set Ft ∈ F , G contains exactly one such

monochromatic cycle.

LEMMA 5.1. (U,F , k) is a YES instance of HS if and only if (G, k, col : E(G)→ 2[α])
is a YES instance of SIM-FES.

PROOF. In the forward direction, let S be a solution to (U,F , k). Define Q as the set
of edges {{vi, wi} : ui ∈ S} ⊆ E(G). We claim that Q is a solution to (G, k, col). Since
|Q| = |S|, it holds that |Q| ≤ k. Now, consider a monochromatic cycle C inG. Recall that
this cycle is of the form vi1−wi1−si1,i2,t−vi2−wi2−si2,i3,t−· · ·−vi|Ft|

−wi|Ft|
−si|Ft|,i1,t

−vi1 ,
where {ui1 , ui2 , . . . , ui|Ft|

} = Ft ∈ F . In particular, observe that {{vi, wi} : ui ∈ Ft} ⊆
E(C). Since S is is a hitting set of F , it holds that S ∩ Ft 6= ∅. This implies that
Q ∩ {{vi, wi} : ui ∈ Ft} 6= ∅, and therefore Q is a solution of (G, k, col : E(G)→ 2[α]).

In the reverse direction, let Q be a solution to (G, k, col : E(G)→ 2[α]). By the form of
each monochromatic cycle in G, if Q contains an edge that includes a vertex of the form
si,j,t, such an edge can be replaced by the edge {vi, wi}. Thus, we can assume that Q
only contains edges of the form {vi, wi}. Define S as the set of elements {ui : {vi, wi} ∈
Q} ⊆ U . We claim that S is a solution to (U,F , k). Since |S| ≤ |Q|, it holds that |S| ≤ k.
Now, recall that for each set {ui1 , ui2 , . . . , ui|Ft|

} = Ft ∈ F , G contains a monochromatic
cycle of the form vi1 −wi1 − si1,i2,t−vi2 −wi2 − si2,i3,t−· · ·−vi|Ft|

−wi|Ft|
− si|Ft|,i1,t

−vi1 .
Since Q is a solution of (G, k, col : E(G)→ 2[α]), it holds that Q∩{{vi, wi} : ui ∈ Ft} 6= ∅.
This implies that S ∩ Ft 6= ∅.

THEOREM 5.2. SIM-FES parameterized by k, when α = O(|V (G)|), is W [2]-hard.

5.2. W[1] Hardness of SIM-FES when α = O(log |V (G)|)
We modify the reduction given in the proof of Theorem 5.2 to show that when α =
O(log |V (G)|), SIM-FES is W[1]-hard with respect to the parameter k. This result im-
plies that the dependency on α of our O((2O(α))knO(1))-time algorithm for SIM-FES is
optimal in the sense that it is unlikely that there exists an O((2o(α))knO(1))-time algo-
rithm for this problem. More precisely, a O((2o(α))knO(1))-time algorithm for SIM-FES
with α = O(log n) will leads to an FPT algorithm for a W[1]-hard problem. Notice that
when α = O(log n), O((2o(α))knO(1)) is upper bounded by nO( k

f(n)
) for some monoton-

ically increasing function n. Therefore, when k < f(n), nO( k
f(n)

) is upper bounded by
a polynomial function in n and when f(n) ≤ k, the input size is upper bounded by a
function in k. This will leads to an FPT-algorithm for the W[1]-hard problem we used
in this section for the reduction.

We give a reduction from a variant of HS, called Partitioned Hitting Set (PHS),
to SIM-FES where α = O(log |V (G)|). The input of PHS consists of a universe U , a
collection F = {F1, F2, . . . , F|F|}, where each Fi is a family of disjoint subsets of U ,
and a parameter k. The goal is to decide the existence of a subset S ⊆ U of size at
most k such that for all f ∈ (

⋃
F∈F F ), S ∩ f 6= ∅. Here we consider a special case of

PHS where |F| = O(log(|U | · |(
⋃
F)|)). It is known that this special case is W[1]-hard

when parameterized by k (see, e.g., [Agrawal et al. 2016]). Thus, to prove the theorem,
it is sufficient to construct (in polynomial time) an instance of the form (G, k, col :
E(G) → 2[α]) of SIM-FES that is equivalent to (U,F , k), where α = O(log |V (G)|). The
construction of the graph G is exactly similar to the one in Theorem 5.2. But instead of
creating a unique monochromatic cycle with a color i for each fi ∈

⋃
F , for each Fi ∈ F

we create |Fi| vertex disjoint cycles of same color i. Since for each F ∈ F the sets in F
are pairwise disjoint, guarantees the correctness. Formal description of the reduction
is given below.
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Without loss of generality we assume that each set in
⋃
F∈F F contains at least

two elements from U and each element in U is present in some set in (
⋃
F∈F F ). The

instance (G, k, col : E(G) → 2[α]) is constructed as follows. For each element ui ∈ U ,
insert two new vertices vi and wi into V (G), and add the edge {vi, wi} into E(G) with
its color-set being {j : Fj ∈ F , ui ∈ (

⋃
Fj)}. Now, for all 1 ≤ i < j ≤ |U | and for all

1 ≤ t ≤ |F| such that there exists f ∈ Ft satisfying ui, uj ∈ f and {ui+1, . . . , uj−1} ∩ f =
∅, perform the following operation: add a new vertex si,j,t into V (G), add the edges
{wi, si,j,t} and {si,j,t, vj} into E(G) with both of its color-set being {t}. Moreover, for
each 1 ≤ t ≤ |F| and f ∈ Ft, let ui and uj be the elements with the largest and
smallest index contained in f , respectively, we perform the following operation: add
a new vertex into V (G), si,j,t, add the edges {wi, si,j,t} and {si,j,t, vj} into E(G), and
let their color-set be {t}. Observe that |V (G)| = Ω(|U | + |(

⋃
F)|) and that α = |F|.

Since |F| = O(log(|U ||(
⋃
F)|)), we have that α = O(log |V (G)|). Since the sets in each

family Fi are disjoint, the construction implies that each monochromatic cycle in G is
of the form vi1 − wi1 − si1,i2,t − vi2 − wi2 − si2,i3,t − · · · − vi|f| − wi|f| − si|f|,i1,t − vi1 ,
where {ui1 , ui2 , . . . , ui|Ft|

} = f for a set f ∈ Ft ∈ F , and for each set f ∈ Ft ∈ F , G
contains a monochromatic cycle of this form. By using the arguments similar to one in
the proof of Lemma 5.1, we get that the instances (G, k, col : E(G)→ 2[α]) and (U,F , k)
are equivalent. Hence we get the following theorem.

THEOREM 5.3. SIM-FES parameterized by k, when α = O(log |V (G)|) isW [1]-hard.

6. KERNEL FOR SIMULTANEOUS FEEDBACK EDGE SET
In this section we give a kernel for SIM-FES with O((kα)O(α)) vertices. We start by
applying preprocessing rules similar in spirit to the ones used to obtain a kernel for
FEEDBACK VERTEX SET, but it requires subtle differences due to the fact that we
handle a problem where edges rather than vertices are deleted, as well as the fact that
the edges are colored (in particular, each edge in SIM-FES has a color-set, while each
vertex in SIM-FVS is uncolored). We obtain an approximate solution by computing a
spanning tree per color. We rely on the approximate solution to bound the number of
vertices whose degree in certain subgraphs of G is not equal to 2. Then, the number
of the remaining vertices is bounded by adapting the “interception”-based approach of
Agrawal et al. [Agrawal et al. 2016] to a form relevant to SIM-FES.

Let (G, k, col : E(G)→ 2[α]) be an instance of SIM-FES. Recall that for each color i ∈
[α], Gi is the graph consisting of the vertex-set V (G) and the edge-set E(Gi) includes
every edge in E(G) whose color-set contains the color i. It is easy to verify that the
following rules are correct when applied exhaustively in the order in which they are
listed. We note that the resulting instance can contain multiple edges.

— Reduction Rule 1: If k < 0, return that (G, k, col : E(G)→ 2[α]) is a NO instance.
— Reduction Rule 2: If for all i ∈ [α], Gi is acyclic, return that (G, k, col : E(G)→ 2[α])

is a YES instance.
— Reduction Rule 3: If there is a self-loop at a vertex v ∈ V (G), then remove v from
G and decrement k by 1.

— Reduction Rule 4: If there exists an isolated vertex in G, then remove it.
— Reduction Rule 5: If there exists i ∈ [α] and an edge whose color-set contains i but

it does not participate in any cycle in Gi, remove i from its color-set. If the color-set
becomes empty, remove the edge.

— Reduction Rule 6: If there exists i ∈ [α] and a vertex v of degree exactly two in G,
remove v and connect its two neighbors by an edge whose color-set is the same as the
color-set of the two edges incident to v (we prove in Lemma 6.1 that the color sets of
the two edges are same).
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LEMMA 6.1. Reduction rule 6 is safe.

PROOF. Let G be a graph with coloring function col : E(G)→ 2[α]. Let v be a vertex
in V (G) such that v has total degree 2 in G. We have applied Reduction Rule 1 to 5
exhaustively (in that order). Therefore, when Rule 6 is applied, the edges incident to v
have the same color-set (say Q), since otherwise Rule 5 would be applicable. Let u,w be
the neighbors of v in G. Consider the graph G′ with vertex set as V (G) \ {v} and edge
set as E(G′) = (E(G) \ {{v, u}, {v, w}}) ∪ {euw = {u,w}} (we add a new edge euw even
if there exist one or more edges between u and w in G). We define a coloring function
col′ such that col′(euw) = Q and for all other edges e ∈ E(G′) \ {euw}, col′(e) = col(e).
We show that (G, k, col : E(G) → 2[α]) is a YES instance of SIM-FES if and only if
(G′, k, col′) is a YES instance of SIM-FES.

In the forward direction, let S be a solution to SIM-FES in G of size at most k.
Suppose S is not a solution in G′. Then, there is a cycle C in G′t, for some t ∈ [α]. Note
that C cannot be a cycle in G′j as G′j = Gj , for j ∈ [α]\Q. Therefore C must be a cycle in
G′i for some i ∈ Q. All the cycles C ′ not containing the edge euw are also cycles in Gi and
therefore S must contain some edge from C ′. It follows that C must contain the edge
euw. Note that the edges (E(C) \ {euw}) ∪ {{v, u}, {w, v}} form a cycle in Gi. Therefore
S must contain an edge from E(C) ∪ {{v, u}, {w, v}}. We consider the following cases:

— Case 1: {v, u}, {w, v} /∈ S. In this case S must contains an edge from E(C) \ {{u,w}}.
Hence, S is a solution in G′.

— Case 2: At least one of {v, u}, {w, v} belongs to S, say {v, u} ∈ S. Let S′ = (S\{{v, u}})∪
{euw}. Observe that S′ intersects all cycles in G′i. Therefore S′ is a solution in G′ of
size at most k.

In the reverse direction, consider a solution S′ to SIM-FES in G′. We construct a
solution S to SIM-FES in G′ as follows. If euw /∈ S, then S′ = S. Otherwise S =
(S \ {euw}) ∪ {u,w}. If S is a solution in G we have a proof of the claim. Therefore,
for the sake of contradiction we assume that S is not a solution in G. Notice that S
intersects all cycles in Gj , for all j ∈ [α] \ Q (since Gj = G′j and euw /∈ E(Gj)). Also
notice that for all i ∈ Q, all cycles in Gi not containing v are also cycles in G′i and
therefore S intersects all such cycles. If S does not hit a cycle C in Gi, then i ∈ Q and
C must contain uvw as a subpath (because v is a degree-two vertex in G). Note that
in G′i we added an edge euw and we keep multi-edges. There S′ must contain the edge
euw. This implies that {u, v} ∈ S. This contradicts the assumption that S does not hit
C. This completes the proof.

We apply Reduction Rule 1 to 6 exhaustively (in that order). The safeness of Reduc-
tion Rules 1 to 5 are easy to see. Lemma 6.1 proves the safeness Reduction Rule 6.
After this, we follow an approach similar to that in [Agrawal et al. 2016] to bound the
size of the instance. This gives the following theorem.

THEOREM 6.2. SIM-FES admits a kernel with (kα)O(α) vertices.

PROOF. Let (G, k, col : E(G) → 2[α]) be an instance of SIM-FES where none of the
Reduction rules are applicable. For each graph Gi, we compute a spanning forest, Fi,
maximizing |E(Fi)|. Let Xi = E(Gi) \ E(Fi). If |Xi| > k, the instance is a no-instance.
Thus, we can assume that for each i ∈ [α],Xi contains at most k edges. LetX =

⋃α
i=1Xi

denote the union of the sets Xi. Clearly, |X| ≤ kα. Let U denote the subset of V (G) that
contains the vertices incident to at least one edge in X. Since Reduction Rule 5 is not
applicable, therefore |U | ≤ 2kα. Thus, the number of leaves in each Gi −X is bounded
by 2kα. Accordingly, the number of vertices in each Gi −X whose degree is at least 3
is bounded by 2kα. It remains to bound the number of vertices that are not incident to
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any edge in X and whose degree in each Gi is 0 or 2 (their degree in G is at least 3).
Let T be the set of vertices in G which is either a leaf or a degree 3 vertex in some Gi,
for i ∈ [α]. Denote the set of vertices which are not in T , not incident to any edge in
X and whose degree in Gi is 2 by Di. Let Pi denote the set of paths in Gi, for i ∈ [α],
whose internal vertices belong to Di and whose first and last vertices do not belong to
Di. Moreover, let D =

⋃α
i=1Di and P =

⋃α
i=1 Pi. Observe that for i ∈ [α], |Pi| ≤ 4kα and

|P| ≤ 4kα2.
Now we prove that |D| = O((kα)O(α)). For each edge e ∈ E(G), let P[e] be the set of

paths in P to which e belongs. Each edge belongs to at most one path in each Pi, for any
i ∈ [α]. For each v ∈ D, by E(v) we denote the set of edges incident to v in G. Observe
that each vertex in D is incident to at most 2α edges. For each vertex v ∈ D, there are
at most (4kα + 1)α options of choosing to which paths in P the vertex v belongs. Note
that here the extra additive one is to include the case when a vertex does not belong
to any path in a color class. Thus, there exists a constant c such that if |D| > (kα)cα,
then D contains (at least) three vertices, r, s and t, such that for all q, p ∈ {r, s, t}, there
is a bijection f : E(q) → E(p) such that P[e] = P[f(e)] for all e ∈ E(q). In particular, if
|D| > (kα)cα, then D contains two non-adjacent vertices, v and u, such that there is a
bijection f : E(v)→ E(u) satisfying P[e] = P[f(e)] for all e ∈ E(v). In this case, it is not
necessary to insert any edge e ∈ E(v) into a solution, since it has the same affect as
inserting the edge f(e). Thus, we can remove the vertex v, and for each two neighbors
of v, x and y, and for each color i ∈ [α] such that i ∈ col({v, x}) ∩ col({v, y}), we insert
an edge {x, y} whose color-set is {i}. After an exhaustive application of this operation
(as well as Reduction Rules 1–6), we obtain the desired bound on |D|, which concludes
the proof of Theorem 6.2.

7. MAXIMUM SIMULTANEOUS ACYCLIC SUBGRAPH
In this section we design an algorithm for MAXIMUM SIMULTANEOUS ACYCLIC SUB-
GRAPH. Let (G, q, col : E(G) → 2[α]) be an input to MAX-SIM-SUBGRAPH. A set
F ⊆ E(G) such that for all i ∈ [α], G[Fi] is acyclic is called simultaneous forest. Here,
Fi = {e ∈ F | i ∈ col(e)}, denotes the subset of edges of F which has the integer i in
its image when the function col is applied to it. We will solve MAX-SIM-SUBGRAPH by
reducing to an equivalent instance of the α-LINEAR MATROID PARITY problem and
then using the algorithm for the same.

We start by giving a construction that reduces MAX-SIM-SUBGRAPH to α-LINEAR
MATROID PARITY. Let (G, q, col : E(G) → 2[α]) be an input to MAX-SIM-SUBGRAPH.
Given, (G, q, col : E(G) → 2[α]), for i ∈ [α], recall that by Gi we denote the graph with
the vertex set V (Gi) = V (G) and the edge set E(Gi) = {ei | e ∈ E(G) and i ∈ col(e)}.
For each edge e ∈ E(G), we will have its distinct copy in Gi if i ∈ col(e). Thus, for each
edge e ∈ E(G), by Original(e) we denote the set of edges {ej |j ∈ col(e)}. On the other
hand for each edge e ∈ E(G), by Fake(e) we denote the set of edges {ej |j ∈ [α] \ col(e)}.
Finally, for each edge e ∈ E(G), by Copies(e) we denote the set Original(e) ∪ Fake(e). Let
Mi = (Ei, Ii) denote the graphic matroid on Gi. That is, the edges of Gi form universe
Ei and Ii contains, S ⊆ E(Gi) such that Gi[S] forms a forest. By Proposition 2.2 we
know that graphic matroids are representable over any field and given a graph G one
can find the corresponding representation matrix in time polynomial in |V (G)|. Let Ai
denote the linear representation of Mi. That is, Ai is a matrix over F2, where the set
of columns of Ai are denoted by E(Gi). In particular, Ai has dimension d × |E(Gi)|,
where d = rank(Mi). A set X ⊆ E(Gi) is independent (that is X ∈ Ii) if and only if
the corresponding columns are linearly independent over F2. Let Fake(G) denote the
set of edges in

⋃
e∈E(G) Fake(e). Furthermore, let τ = |Fake(G)| =

∑
e∈E(G) |Fake(e)|.

Let Mα+1 be the uniform matroid over Fake(G) of rank τ . That is, Eα+1 = Fake(G)
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and Mα+1 = Uτ,τ . Let Iτ denote the identity matrix of dimension τ × τ . Observe that,
Aα+1 = Iτ is a linear representation of Mα+1 over F2. Notice that Ei ∩ Ej = ∅ for all
1 ≤ i 6= j ≤ α+1. LetM denote the direct sum ofM1⊕· · ·⊕Mα+1 with its representation
matrix being AM .

Now we are ready to define an instance of α-LINEAR MATROID PARITY. The ground
set is the columns of AM , which is indexed by edges in

⋃
e∈E(G) Copies(e). Furthermore,

the ground set is partitioned into Copies(e), e ∈ E(G), which are called blocks. The main
technical lemma of this section on which the whole algorithm is based is the following.

LEMMA 7.1. Let (G, q, col : E(G) → 2[α]) be an instance of MAX-SIM-SUBGRAPH.
Then G has a simultaneous forest of size q if and only if (AM ,

⊎
e∈E(G) Copies(e), q) is a

YES instance of α-LINEAR MATROID PARITY. Furthermore, given (G, q, col : E(G) →
2[α]) we can obtain an instance (AM ,

⊎
e∈E(G) Copies(e), q) in polynomial time.

PROOF. We first show the forward direction of the proof. Let F be a simultaneous
forest of size q. Then we claim that the columns corresponding to S =

⋃
e∈F Copies(e)

form an independent set in M and furthermore, it is the union of q blocks. That is,
we need to show that the columns corresponding to S =

⋃
e∈F Copies(e) are linearly

independent in AM over F2. By the definition of direct sum and its linear representa-
tion, it reduces to showing that F is linearly independent if and only if F ∩ Ei ∈ Ii
for all i ≤ α + 1. Since F is a simultaneous forest of size q, we have that G[Fi],
Fi = {e ∈ F | i ∈ col(e)}, is a forest. Hence, this implies that Qi = {ei | e ∈ Fi}
forms a forest in Gi. This takes care of all the edges in ∪e∈FOriginal(e). Now let
S∗ = S \ (

⋃
i∈[α]Qi) = ∪e∈FFake(e) = Qα+1. However, S∗ is a subset of Uτ,τ and thus is

an independent set since |S∗| ≤ τ . This completes the proof of the forward direction.
Now we show the reverse direction of the proof. Since, (AM ,

⊎
e∈E(G) Copies(e), q) is

a yes instance of α-LINEAR MATROID PARITY, there exists an independent set, say
S, that is the union of q blocks. By construction S corresponds to union of the sets
Copies(e) for some q edges inG. Let these edges be F = {e1, . . . , eq}. We claim that F is a
simultaneous forest of size q. Towards this, we need to show thatG[Fi], where Fi = {e ∈
F | i ∈ col(e)}, is a forest. This happens if and only if Qi = {ei | e ∈ Fi} forms a forest in
Gi. However, we know that the columns corresponding to Qi are linearly independent
in Mi and in particular in Ai – the linear representation of graphic matroid of Gi.
This shows that Qi forms a forest in Gi and hence G[Fi] is a forest. This completes the
equivalence proof.

Finally, it easily follows from the discussion preceding the lemma that given
(G, q, col : E(G) → 2[α]) we can obtain an instance (AM ,

⊎
e∈E(G) Copies(e), q) in time

polynomial in |V (G)|. This completes the proof of the lemma.

Given an instance (G, q, col : E(G) → 2[α]) of MAX-SIM-SUBGRAPH we first apply
Lemma 7.1 and obtain an instance (AM ,

⊎
e∈E(G) Copies(e), q) of α-LINEAR MATROID

PARITY and then apply Proposition 2.5 to obtain the following result.

THEOREM 7.2. MAX-SIM-SUBGRAPH can be solved in time O(2ωqα|V (G)|O(1)).

Let (G, q, col : E(G) → 2[α]) be an instance of MAX-SIM-SUBGRAPH. Observe that q
is upper bounded by α(|V (G)| − 1). Thus, as a corollary to Theorem 7.2 we get an exact
algorithm for finding the largest sized simultaneous acyclic subgraph, running in time
O(2ωnα

2 |V (G)|O(1)).
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