
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion

Problems*

AKANKSHA AGRAWAL�, Institute for Computer Science and Control, Hungarian Academy of Sciences

(MTA SZTAKI)

DANIEL LOKSHTANOV, Department of Informatics, University of Bergen

PRANABENDU MISRA, Department of Informatics, University of Bergen

SAKET SAURABH, Department of Informatics, University of Bergen, The Institute of Mathematical

Sciences, and UMI ReLax

MEIRAV ZEHAVI, Department of Computer Science, Ben-Gurion University

Let F be a family of graphs. A canonical vertex deletion problem corresponding to F is defined as follows: given

an n-vertex undirected graph G and a weight function w : V (G)→ R, find a minimum weight subset S ⊆ V (G) such

that G − S belongs to F . This is known as Weighted F Vertex Deletion problem. In this paper we devise a

recursive scheme to obtain O(logO(1) n)-approximation algorithms for such problems, building upon the classical

technique of finding balanced separators in a graph. Roughly speaking, our scheme applies to those problems, where

an optimum solution S together with a well-structured set X, form a balanced separator of the input graph. In this

paper, we obtain the first O(logO(1) n)-approximation algorithms for the following vertex deletion problems.

• Let F be a finite set of graphs containing a planar graph, and F = G (F) be the maximal family of

graphs such that every graph H ∈ G (F) excludes all graphs in F as minors. The vertex deletion problem

corresponding to F = G (F) is the Weighted Planar F -Minor-Free Deletion (WPF -MFD) problem.

We give a randomized and a deterministic approximation algorithms for WPF -MFD with ratios O(log1.5 n)

and O(log2 n), respectively. Previously, only a randomized constant factor approximation algorithm for the

unweighted version of the problem was known [FOCS 2012].

• We give an O(log2 n)-factor approximation algorithm for Weighted Chordal Vertex Deletion (WCVD),

the vertex deletion problem to the family of chordal graphs. On the way to this algorithm, we also obtain a

constant factor approximation algorithm for Multicut on chordal graphs.

*A preliminary version of this work has been accepted for publication at the 21st International Conference on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX 2018).
This research has received funding from the European Research Council under ERC grant no. 306992 PARAPPROX, ERC
grant no. 715744 PaPaALG, and ERC grant no. 725978 SYSTEMATICGRAPH.
�The corresponding author

Author’s addresses: A. Agrawal, Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI),

Budapest, Hungary; D. Lokshtanov, P. Misra, and S. Saurabh, Department of Informatics, University of Bergen, Bergen,

Norway; S. Saurabh, The Institute of Mathematical Sciences, HBNI, Chennai, India; M. Zehavi, Department of Computer

Science, Ben-Gurion University, Beersheba, Israel.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM. Manuscript submitted to ACM

Manuscript submitted to ACM 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

2 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

• We give an O(log3 n)-factor approximation algorithm for Weighted Distance Hereditary Vertex Dele-

tion (WDHVD), also known as Weighted Rankwidth-1 Vertex Deletion (WR-1VD). This is the

vertex deletion problem to the family of distance hereditary graphs, or equivalently, the family of graphs of

rankwidth 1.

We believe that our recursive scheme can be applied to obtain O(logO(1) n)-approximation algorithms for many

other problems as well.

CCS Concepts: �Theory of computation �Graph algorithms analysis; Approximation algorithms anal-

ysis; Algorithm design techniques;

General Terms: Design, Approximation Algorithms, Performance

Additional Key Words and Phrases: approximation algorithm, balanced separators, chordal graphs, Planar F minor

free graphs, distance hereditary graphs, F-Vertex Deletion

ACM Reference format:

Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. 2017. Polylogarithmic

Approximation Algorithms for Weighted-F-Deletion Problems. ACM Trans. Comput. Theory 9, 4, Article 39

(January 2017), 38 pages.

DOI: 0000001.0000001

1 INTRODUCTION

Let F be a family of undirected graphs. Then a natural optimization problem is as follows.

Weighted F Vertex Deletion

Input: An undirected graph G and a weight function w : V (G)→ R.

Question: Find a minimum weight subset S ⊆ V (G) such that G− S belongs to F .

The Weighted F Vertex Deletion problem captures a wide class of node (or vertex) deletion problems that

have been studied from the 1970s. For example, when F is the family of independent sets, forests, bipartite

graphs, planar graphs, and chordal graphs, then the corresponding vertex deletion problem corresponds to

Weighted Vertex Cover, Weighted Feedback Vertex Set, Weighted Vertex Bipartization (also

called Weighted Odd Cycle Transversal), Weighted Planar Vertex Deletion and Weighted

Chordal Vertex Deletion, respectively. By a classic theorem of Lewis and Yannakakis [29], the decision

version of the Weighted F Vertex Deletion problem—deciding whether there exists a set S weight

at most k, such that removing S from G results in a graph with property Π—is NP-complete for every

non-trivial hereditary property1 Π.

Characterizing the graph properties, for which the corresponding vertex deletion problems can be

approximated within a bounded factor in polynomial time, is a long standing open problem in approximation

algorithms [43]. In spite of a long history of research, we are still far from a complete characterization.

Constant factor approximation algorithms for Weighted Vertex Cover are known since 1970s [4, 32].

Lund and Yannakakis observed that the vertex deletion problem for any hereditary property with a “finite

1A graph property Π is simply a family of graphs closed under isomorphism, and it is called non-trivial if there exists an
infinite number of graphs that are in Π, as well as an infinite number of graphs that are not in Π. A non-trivial graph
property Π is called hereditary if G ∈ Π implies that every induced subgraph of G is also in Π.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 3

number of minimal forbidden induced subgraphs” can be approximated within a constant ratio [30]. They

conjectured that for every nontrivial, hereditary property Π with an infinite forbidden set, the corresponding

vertex deletion problem cannot be approximated within a constant ratio. However, it was later shown that

Weighted Feedback Vertex Set, which doesn’t have a finite forbidden set, admits a constant factor

approximation [2, 5], thus disproving their conjecture. On the other hand a result by Yannakakis [42] shows

that, for a wide range of graph properties Π, approximating the minimum number of vertices to delete in

order to obtain a connected graph with the property Π within a factor n1−ε is NP-hard. We refer to [42]

for the precise list of graph properties to which this result applies to, but it is worth mentioning the list

includes the class of acyclic graphs and the class of outerplanar graphs.

In this paper, we explore the approximability of Weighted F Vertex Deletion for several different

families F and design O(logO(1) n)-factor approximation algorithms for these problems. More precisely, our

results are as follows.

(1) Let F be a finite set of graphs that includes a planar graph. Let F = G (F) be the family of

graphs such that every graph H ∈ G (F) does not contain a graph from F as a minor. The

vertex deletion problem corresponding to F = G (F) is known as the Weighted Planar F -

Minor-Free Deletion (WPF -MFD). The WPF -MFD problem is a very generic problem and

by selecting different sets of forbidden minors F , one can obtain various fundamental problems such

as Weighted Vertex Cover, Weighted Feedback Vertex Set or Weighted Treewidth

η-Deletion. Our first result is a randomized O(log1.5 n)-factor (deterministic O(log2 n)-factor)

approximation algorithm for WPF -MFD, for any finite F that contains a planar graph.

(2) We give an O(log2 n)-factor approximation algorithm for Weighted Chordal Vertex Deletion

(WCVD), the vertex deletion problem corresponding to the family of chordal graphs. On the way to

this algorithm, we also obtain a constant factor approximation algorithm for Weighted Multicut

in chordal graphs.

(3) We give anO(log3 n)-factor approximation algorithm for Weighted Distance Hereditary Vertex

Deletion (WDHVD). This is also known as the Weighted Rankwidth-1 Vertex Deletion

(WR-1VD) problem. This is the vertex deletion problem corresponding to the family of distance

hereditary graphs, or equivalently graphs of rankwidth 1.

All our algorithms follow the same recursive scheme: find “well structured balanced separators” in the

graph by exploiting the properties of the family F , and then use structure of the balanced separator to

obtain a approximate solution. In the following, we first describe the methodology by which we design

all these approximation algorithms. Then, we give a brief overview, consisting of known results and our

contributions, for each problem we study. Let us also mention that these problems inherit the hardness of

approximation of Vertex Cover via simple reductions. In particular, they don’t admit a PTAS (polynomial

time approximation scheme) unless P = NP.

Our Methods. Multicommodity max-flow min-cut theorems are a classical technique in designing approxi-

mation algorithms, which was pioneered by Leighton and Rao in their seminal paper [28]. This approach

can be viewed as using balanced vertex (or edge) separators2 in a graph to obtain a divide-and-conquer

2Roughly speaking, a balanced vertex separator is a set of vertices W , such that any connected component of G−W contains
at most 2

3 of the vertices of G.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

4 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

approximation algorithm. In a typical application, the optimum solution S, forms a balanced separator of

the graph. Thus, the idea is to find a minimum cost balanced separator W of the graph and add it to the

solution, and then recursively solve the problem on each of the connected components. This leads to an

O(logO(1) n)-factor approximation algorithm for the problem in question.

Our recursive scheme is a strengthening of this approach which exploits the structural properties of

the family F . Here the optimum solution S∗ need not be a balanced separator of the graph. Indeed, a

balanced separator of the graph could be much larger than S∗. Rather, S∗ along with a possibly large but

well-structured subset of vertices X, forms a balanced separator of the graph. We then exploit the presence

of such a balanced separator in the graph to compute an approximate solution. Consider a family F for

which Weighted F Vertex Deletion is amenable to our approach, and let G be an instance of this

problem. Let S be the approximate solution that we will compute. Our approximation algorithm has the

following steps:

(1) Find a well-structured set X, such that G−X has a balanced separator W which is not too costly.

(2) Next, compute the balanced separator W of G−X using the known factor O(
√

logn)-approximation

algorithm (or deterministic O(logn)-approximation algorithm) for Weighted Vertex Separa-

tors [11, 28]. Then add W into the solution set S and recursively solve the problem on each

connected component of G − (X ∪ S). Let S1, · · · , S` be the solutions returned by the recursive

calls. We add S1, · · · , S` to the solution S.

(3) Finally, we add X back into the graph and consider the instance (G − S) ∪ X. Observe that,

V (G − S) can be partitioned into V ′]X, where G[V ′] belongs to F and X is a well-structured

set. We call such instances, the special case of Weighted F Vertex Deletion. We apply an

approximation algorithm that exploits the structural properties of the special case to compute a

solution.

Now consider the problem of finding the structure X. One way is to enumerate all the candidates for X

and then pick the one where G−X has a balanced vertex separator of least cost — this separator plays

the role of W . However, the number of candidates for X in a graph could be too many to enumerate in

polynomial time. For example, in the case of Weighted Chordal Vertex Deletion, the set X will be

a clique in the graph, and the number of maximal cliques in a graph on n vertices could be as many as

3
n
3 [31]. Hence, we cannot enumerate and test every candidate structure in polynomial time. However, we

can exploit certain structural properties of family F , to reduce the number of candidates for X in the graph.

In our problems, we “tidy up” the graph by removing “short obstructions” that forbid the graph from

belonging to the family F . Then one can obtain an upper bound on the number of candidate structures. In

the above example, recall that a graph G is chordal if and only if there are no induced cycles of length 4

or more. It is known that a graph G without any induced cycle of length 4 has at most O(n2) maximal

cliques [10]. Observe that, we can greedily compute a set of vertices which intersects all induced cycles of

length 4 in the graph. Therefore, at the cost of factor 4 in the approximation ratio, we can ensure that the

graph has only polynomially many maximal cliques. Hence, one can enumerate all maximal cliques in the

remaining graph [41] to test for X.

Next consider the task of solving an instance of the special case of the problem. We again apply a recursive

scheme, but now with the advantage of a much more structured graph. By a careful modification of an

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 5

LP solution to the instance, we eventually reduce it to instances of Weighted Multicut. In the above

example, for Weighted Chordal Vertex Deletion we obtain instances of Weighted Multicut on a

chordal graph. We follow this approach for all three problems that we study in this paper. We believe our

recursive scheme can be applied to obtain O(logO(1) n)-approximation algorithms for Weighted F Vertex

(Edge) Deletion corresponding to several other graph families F .

Weighted Planar F -Minor-Free Deletion. Let F be a finite set of graphs containing a planar graph.

Formally, Weighted Planar F -Minor-Free Deletion is defined as follows.

Weighted Planar F -Minor-Free Deletion (WPF -MFD)

Input: An undirected graph G and a weight function w : V (G)→ R.

Question: Find a minimum weight subset S ⊆ V (G) such that G− S does not contain any graph in

F as a minor.

The WPF -MFD problem is a very generic problem that encompasses several known problems. To explain

the versatility of the problem, we require a few definitions. A graph H is called a minor of a graph G if

we can obtain H from G by a sequence of vertex deletions, edge deletions and edge contractions, and a

family of graphs F is called minor closed if G ∈ F implies that every minor of G is also in F . Given a graph

family F , by ForbidMinor(F) we denote the family of graphs such that G ∈ F if and only if G does not

contain any graph in ForbidMinor(F) as a minor. By the celebrated Graph Minor Theorem of Robertson

and Seymour, every minor closed family F is characterized by a finite family of forbidden minors [39]. That

is, ForbidMinor(F) has finite size. Indeed, the size of ForbidMinor(F) depends on the family F . Now for a

finite collection of graphs F , as above, we may define the Weighted F -Minor-Free Deletion problem.

And observe that, even though the definition of Weighted F -Minor-Free Deletion we only consider

finite sized F , this problem actually encompasses deletion to every minor closed family of graphs. Let G

be the set of all finite undirected graphs, and let L be the family of all finite subsets of G . Thus, every

element F ∈ L is a finite set of graphs, and throughout the paper we assume that F is explicitly given. In

this paper, we show that when F ∈ L contains at least one planar graph, then it is possible to obtain an

O(logO(1) n)-factor approximation algorithm for WPF -MFD.

The case where F contains a planar graph, while being considerably more restricted than the general case,

already encompasses a number of the well-studied instances of WPF -MFD. For example, when F = {K2},
a complete graph on two vertices, this is the Weighted Vertex Cover problem. When F = {C3}, a

cycle on three vertices, this is the Weighted Feedback Vertex Set problem. Another fundamental

problem, which is also a special case of WPF -MFD, is Weighted Treewidth-η Vertex Deletion or

Weighted η-Transversal. Here the task is to delete a minimum weight vertex subset to obtain a graph

of treewidth at most η. Since any graph of treewidth η excludes a (η + 1)× (η + 1) grid as a minor, we have

that the set F of forbidden minors of treewidth η graphs contains a planar graph. Treewidth-η Vertex

Deletion plays an important role in generic efficient polynomial time approximation schemes based on

Bidimensionality theory [15, 16]. Among other examples of Planar F -Minor-Free Deletion problems

that can be found in the literature on approximation and parameterized algorithms, are the cases of F

being {K2,3,K4}, {K4}, {θc}, and {K3, T2}, which correspond to removing vertices to obtain an outerplanar

graph, a series-parallel graph, a diamond graph, and a graph of pathwidth 1, respectively.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

6 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

Apart from the case of Weighted Vertex Cover [4, 32] and Weighted Feedback Vertex Set [2, 5],

there was not much progress on approximability/non-approximability of WPF -MFD until the work of

Fiorini, Joret, and Pietropaoli [12], which gave a constant factor approximation algorithm for the case of

WPF -MFD where F is a diamond graph, i.e., a graph with two vertices and three parallel edges. In 2011,

Fomin et al. [13] considered Planar F -Minor-Free Deletion (i.e. the unweighted version of WPF -

MFD) in full generality and designed a randomized (deterministic) O(log1.5 n)-factor (O(log2 n)-factor)

approximation algorithm for it. Later, Fomin et al. [14] gave a randomized constant factor approximation

algorithm for Planar F -Minor-Free Deletion. Our algorithm for WPF -MFD extends this result to

the weighted setting, at the cost of increasing the approximation factor to logO(1) n.

Theorem 1.1. For every set F ∈ L , WPF -MFD admits a randomized (deterministic) O(log1.5 n)-factor

(O(log2 n)-factor) approximation algorithm.

We mention some recent related works. Bansal et al. [3] have studied the edge deletion version of the

Treewidth-η Vertex Deletion problem, under the name Bounded Treewidth Interdiction Problem,

and gave a bicriteria approximation algorithm. In particular, for a graph G and an integer η > 0, they gave

a polynomial time algorithm that finds a subset of edges F ′ of G such that |F ′| ≤ O((logn log log n) · opt)
and the treewidth of G − F ′ is O(η log η). In our setting where η is a fixed constant, this immediately

implies a factor O(logn log log n) approximation algorithm for the edge deletion version of WPF -MFD.3

However, it is not immediately clear if their approach can be extended to WPF -MFD.4 Very recently,

Gupta et al. [21] have given O(log `) approximation algorithm for (unweighted) Planar F -Minor-Free

Deletion, where ` is the maximum number of vertices in any planar graph in F .

Weighted Chordal Vertex Deletion. Formally, the Weighted Chordal Vertex Deletion problem is

defined as follows.

Weighted Chordal Vertex Deletion (WCVD)

Input: An undirected graph G and a weight function w : V (G)→ R.

Question: Find a minimum weight subset S ⊆ V (G) such that G− S is a chordal graph.

The class of chordal graphs is a natural class of graphs that has been extensively studied from the

viewpoints of Graph Theory and Algorithm Design. Many important problems that are NP-hard on general

graphs, such as Independent Set, and Graph Coloring are solvable in polynomial time once restricted

to the class of chordal graphs [20]. Recall that a graph is chordal if and only if it does not have any induced

cycle of length 4 or more. Thus, Chordal Vertex Deletion (CVD) can be viewed as a natural variant of

the classic Feedback Vertex Set (FVS). Indeed, while the objective of FVS is to eliminate all cycles, the

CVD problem only asks us to eliminate induced cycles of length 4 or more. Despite the apparent similarity

between the objectives of these two problems, the design of approximation algorithms for WCVD is very

challenging. In particular, chordal graphs can be dense—indeed, a clique is a chordal graph. As we cannot

rely on the sparsity of output, our approach must deviate from those employed by approximation algorithms

3One can run their algorithm first and remove the solution output by their algorithm to obtain a graph of treewidth at most
O(η log η). Then one can find an optimal solution using standard dynamic programming.
4We thank Nikhil Bansal and Seeun William Umboh for several discussions and for pointing us that their algorithm does not
work for WPF -MFD.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 7

from FVS. That being said, chordal graphs still retain some properties that resemble those of trees, and

these properties are utilized by our algorithm.

Prior to our work, only two non-trivial approximation algorithms for CVD were known. The first one,

by Jansen and Pilipczuk [25], is a deterministic O(opt2 log opt logn)-factor approximation algorithm, and

the second one, by Agrawal et al. [1], is a deterministic O(opt log2 n)-factor approximation algorithm. The

second result implies that CVD admits an O(
√
n logn)-factor approximation algorithm.5 In this paper we

obtain the first O(logO(1) n)-approximation algorithm for WCVD.

Theorem 1.2. CVD admits a deterministic O(log2 n)-factor approximation algorithm.

While this approximation algorithm follows our general scheme, it also requires us to incorporate several

new ideas. In particular, to implement the third step of the scheme, we need to design a different O(logn)-

factor approximation algorithm for the special case of WCVD where the vertex-set of the input graph G

can be partitioned into two sets, X and V (G) \X, such that G[X] is a clique and G[V (G) \X] is a chordal

graph. This approximation algorithm is again based on recursion, but it is more involved. At each recursive

call, it carefully manipulates a fractional solution of a special form. Moreover, to ensure that its current

problem instance is divided into two subinstances that are independent and simpler than their origin, we

introduce multicut constraints. In addition to these constraints, we keep track of the complexity of the

subinstances, which is measured via the cardinality of the maximum independent set in the graph. Our

multicut constraints result in an instance of Weighted Multicut, which we ensure is on a chordal graph.

Formally, the Weighted Multicut problem is defined as follows.

Weighted Multicut

Input: An undirected graph G, a weight function w : V (G)→ R and a set T = {(s1, t1), . . . , (sk, tk)}
of k pairs of vertices of G.

Question: Find a minimum weight subset S ⊆ V (G) such that for any pair (si, ti) ∈ T , G− S does

not have any path between si and ti.

For Weighted Multicut on chordal graphs, no constant-factor approximation algorithm was previously

known. We remark that Weighted Multicut is NP-hard on trees [18], and hence it is also NP-hard on

chordal graphs. We design the first such algorithm, which our main algorithm employs as a black box.

Theorem 1.3. Weighted Multicut admits a constant-factor approximation algorithm on chordal

graphs.

This algorithm is inspired by the work of Garg, Vazirani and Yannakakis on Weighted Multicut on

trees [18]. Here, we carefully exploit the well-known characterization of the class of chordal graphs as the

class of graphs that admit clique forests. We believe that this result is of independent interest. The algorithm

by Garg, Vazirani and Yannakakis [18] is a classic primal-dual algorithm. A more recent algorithm, by

Golovin, Nagarajan and Singh [19], uses total unimodularity to obtain a different algorithm for Multicut

on trees.

5If opt ≥
√
n/ logn, we output a greedy solution to the input graph, and otherwise we have that opt log2 n ≤

√
n logn, hence

we call the O(opt log2 n)-factor approximation algorithm.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

8 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

Weighted Distance Hereditary Vertex Deletion. We start by formally defining the Weighted Distance

Hereditary Vertex Deletion problem.

Weighted Distance Hereditary Vertex Deletion (WDHVD)

Input: An undirected graph G and a weight function w : V (G)→ R.

Question: Find a minimum weight subset S ⊆ V (G) such that G− S is a distance hereditary graph.

A graph G is a distance hereditary graph (also called a completely separable graph [22]) if the distances

between vertices in every connected induced subgraph of G are the same as in the graph G. Distance

hereditary graphs were named and first studied by Hworka [24]. However, an equivalent family of graphs

was earlier studied by Olaru and Sachs [40] and shown to be perfect. It was later discovered that these

graphs are precisely the graphs of rankwidth 1 [33].

Rankwidth is a graph parameter introduced by Oum and Seymour [36] to approximate yet another graph

parameter called Cliquewidth. The notion of cliquewidth was defined by Courcelle and Olariu [8] as a

measure of how “clique-like” the input graph is. This is similar to the notion of treewidth, which measures

how “tree-like” the input graph is. One of the main motivations was that several NP-complete problems

become tractable on the family of cliques (complete graphs), the assumption was that these algorithmic

properties extend to “clique-like” graphs [7]. However, computing cliquewidth and the corresponding

cliquewidth decomposition seems to be computationally intractable. This then motivated the notion of

rankwidth, which is a graph parameter that approximates cliquewidth well while also being algorithmically

tractable [34, 36]. For more information on cliquewidth and rankwidth, we refer to the surveys by Hlinený

et al. [23] and Oum [35].

As algorithms for Treewidth-η Vertex Deletion are applied as subroutines to solve many graph

problems, we believe that algorithms for Weighted Rankwidth-η Vertex Deletion (WR-ηVD) will be

useful in this respect. In particular, Treewidth-η Vertex Deletion has been considered in designing

efficient approximation, kernelization and fixed parameter tractable algorithms for WPF -MFD and its

unweighted counterpart Planar F -Minor-Free Deletion [3, 13, 15–17]. Along similar lines, we believe

that WR-ηVD and its unweighted counterpart will be useful in designing efficient approximation, kernelization

and fixed parameter tractable algorithms for Weighted F Vertex Deletion where F is characterized by

a finite family of forbidden vertex minors [33].

Recently, Kim and Kwon [26] designed an O(opt2 logn)-factor approximation algorithm for Distance

Hereditary Vertex Deletion (DHVD). This result implies that DHVD admits an O(n2/3 logn)-factor

approximation algorithm. In this paper, we take first step towards obtaining a good approximation algorithm

for WR-ηVD by designing a O(logO(1) n)-factor approximation algorithm for WDHVD.

Theorem 1.4. WDHVD or WR-1VD admits an O(log3 n)-factor approximation algorithm.

We note that several steps of our approximation algorithm for WR-1VD can be generalized for an

approximation algorithm for WR-ηVD and thus we believe that our approach should yield an O(logO(1) n)-

factor approximation algorithm for WR-ηVD. We leave that as an interesting open problem for the future.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 9

2 PRELIMINARIES

For a positive integer k, we use [k] as a shorthand for {1, 2, . . . , k}. Given a function f : A→ B and a subset

A′ ⊆ A, we let f |A′ denote the function f restricted to the domain A′.

Graphs. Given a graph G, we let V (G) and E(G) denote its vertex-set and edge-set, respectively. In this

paper, we only consider undirected graphs. We let n = |V (G)| denote the number of vertices in the graph G,

where G will be clear from context. The open neighborhood, or simply the neighborhood, of a vertex v ∈ V (G)

is defined as NG(v) = {w | {v, w} ∈ E(G)}. The closed neighborhood of v is defined as NG[v] = NG(v)∪{v}.
The degree of v is defined as dG(v) = |NG(v)|. We can extend the definition of the neighborhood of a vertex to

a set of vertices as follows. Given a subset U ⊆ V (G), NG(U) =
⋃
u∈U NG(u) and NG[U] =

⋃
u∈U NG[u]. The

induced subgraph G[U] is the graph with vertex-set U and edge-set {{u, u′} | u, u′ ∈ U, and {u, u′} ∈ E(G)}.
Moreover, we define G− U as the induced subgraph G[V (G) \ U]. We omit subscripts when the graph G is

clear from context. For graphs G and H, by G ∩H, we denote the graph with vertex set as V (G) ∩ V (H)

and edge set as E(G) ∩ E(H). An independent set in G is a set of vertices such that there is no edge in G

between any pair of vertices in this set. The independence number of G, denoted by α(G), is defined as the

cardinality of the largest independent set in G. A clique in G is a set of vertices such that there is an edge

in G between every pair of vertices in this set.

A path P = (x1, x2, . . . , x`) in G is a subgraph of G where V (P) = {x1, x2, . . . , x`} ⊆ V (G) and

E(P) = {{x1, x2}, {x2, x3}, . . . , {x`−1, x`}} ⊆ E(G), where ` ∈ [n]. The vertices x1 and x` are called the

endpoints of the path P and the remaining vertices in V (P) are called the internal vertices of P . We also say

that P is a path between x1 and x` or connects x1 and x`. A cycle C = (x1, x2, . . . , x`) in G is a subgraph of

G where V (C) = {x1, x2, . . . , x`} ⊆ V (G) and E(C) = {{x1, x2}, {x2, x3}, . . . , {x`−1, x`}, {x`, x1}} ⊆ E(G),

i.e., it is a path with an additional edge between x1 and x`. The graph G is connected if there is a path

between every pair of vertices in G, otherwise G is disconnected. A connected graph without any cycles

is a tree, and a collection of vertex disjoint trees is a forest. A maximal connected subgraph of G is

called a connected component of G. Given a function f : V (G) → R and a subset U ⊆ V (G), we denote

f(U) =
∑
v∈U f(v). Moreover, we say that a subset U ⊆ V (G) is a balanced separator for G if for each

connected component C in G− U , it holds that |V (C)| ≤ 2
3
|V (G)|. We refer the reader to [9] for details on

standard graph theoretic notations and terminologies that are not explicitly defined here.

Forest Decompositions. A forest decomposition of a graph G is a pair (F, β) where F is forest, and

β : V (F)→ 2V (G) is a function that satisfies the following:

(i)
⋃
v∈V (F) β(v) = V (G);

(ii) for every edge {v, u} ∈ E(G), there is a node w ∈ V (F) such that v, u ∈ β(w);

(iii) for every v ∈ V (G), the collection of nodes Tv = {u ∈ V (F) | v ∈ β(u)} is a subtree of F .

For v ∈ V (F), we call β(v) the bag of v, and for the sake of clarity of presentation, we sometimes use

v and β(v) interchangeably. We refer to the vertices in V (F) as nodes. A tree decomposition is a forest

decomposition where F is a tree. For a graph G, by tw(G) we denote the minimum over all possible tree

decompositions of G, the maximum size of a bag minus one in that tree decomposition.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

10 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

Minors. Given a graph G and an edge {u, v} ∈ E(G), the graph G/e denotes the graph obtained from G

by contracting the edge {u, v}, that is, the vertices u, v are deleted from G and a new vertex uv? is added

to G which is adjacent to the all the neighbors of u, v previously in G (except for u, v). A graph H that is

obtained by a sequence of edge contractions in G is said to be a contraction of G. A graph H is a minor of

a G if H is the contraction of some subgraph of G. We say that a graph G is F -minor free when F is not a

minor of G. Given a family F of graphs, we say that a graph G is F-minor free, if for all F ∈ F , F is not a

minor of G. It is well known that if H is a minor of G, then tw(H) ≤ tw(G). It is well known that a graph

is planar if it is {K5,K3,3}-minor free. Here, K5 is a clique on 5 vertices and K3,3 is a complete bipartite

graph with both sides of bipartition having 3 vertices.

Chordal Graphs. Let G be a graph. For a cycle C on at least four vertices, we say that {u, v} ∈ E(G) is

a chord of C if u, v ∈ V (C) but {u, v} /∈ E(C). A cycle C is chordless if it contains at least four vertices

and has no chords. The graph G is a chordal graph if it has no chordless cycle as an induced subgraph. A

clique forest of G is a forest decomposition of G where every bag is a maximal clique. The following lemma

shows that the class of chordal graphs is exactly the class of graphs which have a clique forest.

Lemma 2.1 ([20]). A graph G is a chordal graph if and only if G has a clique forest. Moreover, a clique

forest of a chordal graph can be constructed in polynomial time.

Given a subset U ⊆ V (G), we say that U intersects a chordless cycle C in G if U ∩ V (C) 6= ∅. Observe

that if U intersects every chordless cycle of G, then G− U is a chordal graph.

3 APPROXIMATION ALGORITHM FOR WPF -MFD

In this section we prove Theorem 1.1. We can assume that the weight w(v) of each vertex v ∈ V (G) is

positive, else we can insert v into any solution. Below we state a result from [37], which will be useful in our

algorithm.

Proposition 3.1 ([37]). Let F be a finite set of graphs such that F contains a planar graph. Then, any

graph G that excludes any graph from F as a minor satisfies tw(G) ≤ c = c(F).

We let c = c(F) to be the constant returned by Proposition 3.1. The approximation algorithm for

WPF -MFD comprises of two components. The first component handles the special case where the vertex

set of input graph G can be partitioned into two sets C and X such that |C| ≤ c+ 1 and H = G[X] is an

F -minor free graph. We note that there can be edges between vertices in C and vertices in H. We show

that for these special instances, in polynomial time we can compute the size of the optimum solution and a

set realizing it.

The second component is a recursive algorithm that solves general instances of the problem. Here, we

gradually disintegrate the general instance until it becomes an instance of the special type where we can

resolve it in polynomial time. More precisely, for each guess of c+ 1 sized subgraph M of G, we find a small

separator S (using an approximation algorithm) that together with M breaks the input graph into two

graphs significantly smaller than their origin. It first removes M ∪ S, and solves each of the two resulting

subinstances by calling itself recursively; then, it inserts M back into the graph, and uses the solutions it

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 11

obtained from the recursive calls to construct an instance of the special case which is then solved by the

first component.

3.1 Constant sized graph + F -minor free graph

We first handle the special case where the input graph G consists of a graph M of size at most c+ 1 and

an F -minor free graph H. We refer to this algorithm as Special-WP. More precisely, along with the input

graph G and the weight function w, we are also given a graph M with at most c+ 1 vertices and an F -minor

free graph H such that V (G) = V (M) ∪ V (H), where the vertex-sets V (M) and V (H) are disjoint. Note

that the edge-set E(G) may contain edges between vertices in M and vertices in H. We will show that such

instances may be solved optimally in polynomial time. We start with the following easy observation.

Observation 3.2. Let G be a graph with V (G) = X] Y , such that |X| ≤ c+ 1 and G[Y] is an F -minor

free graph. Then, the treewidth of G is at most 2c+ 1.

Lemma 3.3. Let G be a graph of treewidth t with a non-negative weight function w on the vertices, and

let F be a finite family of graphs. Then, one can compute a minimum weight vertex set S such that G− S
is F -minor free, in time f (q, t) · n, where n is the number of vertices in G and q is a constant that depends

only on F .

Proof. This follows from the fact that finding such a set S is expressible as an MSO-optimization formula

φ whose length, q, depends only on the family F [14]. Then, by Theorem 7 [6], we can compute an optimal

sized set S in time f (q, t) · n. �

Now, we apply the above lemma to the graph G and the family F , and obtain a minimum weight set S

such that G− S is F -minor free.

3.2 General Graphs

We proceed to handle general instances by developing a d · log2 n-factor approximation algorithm for WPF -

MFD, Gen-WP-APPROX, thus proving the correctness of Theorem 1.1. The exact value of the constant d

will be determined later.

Recursion. We define each call to our algorithm Gen-WP-APPROX to be of the form (G′, w′), where

(G′, w′) is an instance of WPF -MFD such that G′ is an induced subgraph of G, and we denote n′ = |V (G′)|.

Goal. For each recursive call Gen-WP-APPROX(G′, w′), we aim to prove the following. Recall that opt

denotes the cost of the current instance, i.e. (G′, w′).

Lemma 3.4. Gen-WP-APPROX returns a solution that is at least opt and at most d
2
· log2 n′ ·opt. Moreover,

it returns a subset U ⊆ V (G′) that realizes the solution.

At each recursive call, the size of the graph G′ becomes smaller. Thus, when we prove that Lemma 3.4 is

true for the current call, we assume that the approximation factor is bounded by d
2
· log2 n̂ · opt for any call

where the size n̂ of the vertex-set of its graph is strictly smaller than n′.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

12 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

Termination. In polynomial time we can test whether G′ has a minor F ∈ F [38]. Furthermore, for each

M ⊆ V (G) of size at most c+ 1, we can check if G−M has a minor F ∈ F . If G−M is F -minor free then

we are in a special instance, where G−M is F minor free and M is a constant sized graph. We optimally

resolve this instance in polynomial time using the algorithm Special-WP. Since we output an optimal sized

solution in the base cases, we thus ensure that at the base case of our induction Lemma 3.4 holds.

Recursive Call. For the analysis of a recursive call, let S∗ denote a hypothetical set that realizes the

optimal solution opt of the current instance (G′, w′). Let (F, β) be a forest decomposition of G′ − S∗ of

width at most c, whose existence is guaranteed by Proposition 3.1. Using standard arguments on forests we

have the following observation.

Observation 3.5. There exists a node v ∈ V (F) such that β(v) is a balanced separator for G′ − S∗.

From Observation 3.5 we know that there exists a node v ∈ V (F) such that β(v) is a balanced separator

for G′ − S∗. This together with the fact that G′ − S∗ has treewidth at most c results in the following

observation.

Observation 3.6. There exist a subset M ⊆ V (G′) of size at most c+ 1 and a subset S ⊆ V (G′) \M of

weight at most opt such that M ∪ S is a balanced separator for G′.

This gives us a polynomial time algorithm as stated in the following lemma.

Lemma 3.7. There is a deterministic (randomized) algorithm which in polynomial-time finds M ⊆ V (G′)

of size at most c+ 1 and a subset S ⊆ V (G′) \M of weight at most q · logn′ · opt (q∗ ·
√

logn′ · opt) for some

fixed constant q (q∗) such that M ∪ S is a balanced separator for G′.

Proof. Note that we can enumerate every M ⊆ V (G′) of size at most c+ 1 in time O(nc). For each such

M , we can either run the randomized q∗ ·
√

logn′-factor approximation algorithm by Feige et al. [11] or the

deterministic q · logn′-factor approximation algorithm by Leighton and Rao [28] to find a balanced separator

SM of G′−M . Here, q and q∗ are fixed constants. By Observation 3.6, there is a set S in {SM : M ⊆ V (G′)

and M ≤ c+ 1} such that w(S) ≤ q · logn′ · opt (w(S) ≤ q∗ ·
√

logn′ · opt). Thus, the desired output is a

pair (M,S) where M is one of the vertex subsets of size at most c+ 1 such that SM = S. �

We call the algorithm in Lemma 3.7 to obtain a pair (M,S). Since M ∪ S is a balanced separator for G′,

we can partition the set of connected components of G′ − (M ∪ S) into two sets, A1 and A2, such that for

V1 =
⋃
A∈A1

V (A) and V2 =
⋃
A∈A2

V (A) it holds that n1, n2 ≤ 2
3
n′ where n1 = |V1| and n2 = |V2|. We

remark that we use different algorithms for finding a balanced separator in Lemma 3.7 based on whether we

are looking for a randomized algorithm or a deterministic algorithm.

Next, we define two inputs of (the general case of) WPF -MFD: I1 = (G′[V1], w′|V1) and I2 =

(G′[V2], w′|V2). Let opt1 and opt2 denote the optimal solutions to I1 and I2, respectively. Observe that since

V1∩V2 = ∅, it holds that opt1+opt2 ≤ opt. We solve each of the subinstances by recursively calling algorithm

Gen-WP-APPROX. By the inductive hypothesis, we thus obtain two sets, S1 and S2, such that G′[V1]− S1

and G′[V2]− S2 are F -minor free graphs, and w′(S1) ≤ d
2
· log2 n1 · opt1 and w′(S2) ≤ d

2
· log2 n2 · opt2.

We proceed by defining an input of the special case of WPF -MFD: J = (G′[(V1 ∪ V2 ∪M) \ (S1 ∪
S2)], w′|(V1∪V2∪M)\(S1∪S2)). Observe that G′[V1\S1] and G′[V2\S2] are F -minor free graphs and there are no

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 13

edges between vertices in V1 and vertices in V2 in G′−M , and M is of constant size. Therefore, we resolve this

instance by calling algorithm Special-WP. We thus obtain a set, Ŝ, such that G′[(V1∪V2∪M)\ (S1∪S2∪ Ŝ)]

is a F -minor graph, and w′(Ŝ) ≤ opt (since |(V1 ∪ V2 ∪M) \ (S1 ∪ S2)| ≤ n′ and the optimal solution of

each of the special subinstances is at most opt).

Observe that any obstruction in G′ − S is either completely contained in G′[V1], or completely contained

in G′[V2], or it contains at least one vertex from M . This observation, along with the fact that G′[(V1 ∪
V2 ∪M) \ (S1 ∪ S2 ∪ Ŝ)] is a F -minor free graph, implies that G′ − T is a F -minor free graph where

T = S ∪ S1 ∪ S2 ∪ Ŝ. Thus, it is now sufficient to show that w′(T) ≤ d
2
· (logn′)2 · opt.

By the discussion above, we have that

w′(T) ≤ w′(S) + w′(S1) + w′(S2) + w′(Ŝ)

≤ q · logn′ · opt + d
2
· ((logn1)2 · opt1 + (logn2)2 · opt2) + opt

Recall that n1, n2 ≤ 2
3
n′ and opt1 + opt2 ≤ opt. Thus, we have that

w′(T) < q · logn′ · opt + d
2
· (log 2

3
n′)2 · opt + opt

< d
2
· (logn′)2 · opt + logn′ · opt · (q + 1 + d

2
· (log 3

2
)2 − d

2
· 2 · log 3

2
).

Overall, we conclude that to ensure that w′(T) ≤ d
2
· log2 n′ · opt, it is sufficient to ensure that q + 1 + d

2
·

(log 3
2
)2 − d

2
· 2 · log 3

2
≤ 0, which can be done by fixing d =

2

2 log 3
2
− (log 3

2
)2
· (q + 1).

If we use the O(
√

logn)-factor approximation algorithm by Feige et al. [11] for finding a balance separator

in Lemma 3.7, then we can do the analysis similar to the deterministic case and obtain a randomized

factor-O(log1.5 n)approximation algorithm for WPF -MFD.

4 WEIGHTED CHORDAL VERTEX DELETION ON GENERAL GRAPHS

In this section we prove Theorem 1.2. Clearly, we can assume that the weight w(v) of each vertex v ∈ V (G)

is positive, else we can insert v into any solution.

Roughly speaking, our approximation algorithm consists of two components. The first component handles

the special case where the input graph G consists of a clique C and a chordal graph H. Here, we also

assume that the input graph has no “short” chordless cycle. This component is comprised of a recursive

algorithm that is based on the method of divide and conquer. The algorithm keeps track of a fractional

solution x of a special form that it carefully manipulated at each recursive call, and which is used to analyze

the approximation ratio. In particular, we ensure that x does not assign high values, and that it assigns 0

to vertices of the clique C as well as vertices of some other cliques. To divide a problem instance into two

instances, we find a maximal clique M of the chordal graph H that breaks H into two “simpler” chordal

graphs. The clique C remains intact at each recursive call, and the maximal clique M is also a part of both

of the resulting instances. Thus, to ensure that we have simplified the problem, we measure the complexity

of instances by examining the maximum size of an independent set of their graphs. Since the input graph

has no “short” chordless cycle, the maximum depth of the recursion tree is bounded by O(logn). Moreover,

to guarantee that we obtain instances that are independent, we incorporate multicut constraints while

ensuring that we have sufficient “budget” to satisfy them. We ensure that these multicut constraints are

associated with chordal graphs, which allows us to utilize the algorithm we design in Section 5.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

14 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

The second component is a recursive algorithm that solves general instances of the problem. Initially, it

easily handles “short” chordless cycles. Then, it gradually disintegrates a general instance until it becomes

an instance of the special form that can be solved using the first component. More precisely, given a problem

instance, the algorithm divides it by finding a maximal clique M (using an exhaustive search which relies

on the guarantee that G has no “short” chordless cycle) and a small separator S (using an approximation

algorithm) that together break the input graph into two graphs significantly smaller than their origin. It

first removes M ∪ S and solves each of the two resulting subinstances by calling itself recursively; then, it

inserts M back into the graph, and uses the solutions it obtained from the recursive calls to construct an

instance of the special case solved by the first component.

4.1 Clique+Chordal Graphs

In this subsection we handle the special case where the input graph G consists of a clique C and a chordal

graph H. More precisely, along with the input graph G and the weight function w, we are also given a

clique C an a chordal graph H such that V (G) = V (C) ∪ V (H), where the vertex-sets V (C) and V (H)

are disjoint. Here, we also assume that G has no chordless cycle on at most 48 vertices. Note that the

edge-set E(G) may contain edges between vertices in C and vertices in H. We call this special case the

Clique+Chordal special case. Our objective is to prove the following result.

Lemma 4.1. The Clique+Chordal special case of WCVD admits an O(logn)-factor approximation

algorithm.

We assume that n ≥ 64,6 else the input instance can be solve by brute-force. Let c be a fixed constant

(to be determined). In the rest of this subsection, we design a c · logn-factor approximation algorithm for

the Clique+Chordal special case of WCVD.

Recursion. Our approximation algorithm is a recursive algorithm. We call our algorithm CVD-APPROX,

and define each call to be of the form (G′, w′, C,H ′,x). Here, G′ is an induced subgraph of G such that

V (C) ⊆ V (G′), and H ′ is an induced subgraph of H. The argument x is discussed below. We remark that

we continue to use n to refer to the size of the vertex-set of the input graph G rather than the current graph

G′.

Arguments. While the execution of our algorithm progresses, we keep track of two arguments: the size of

a maximum independent set of the current graph G′, denoted by α(G′), and a fractional solution x. Due to

the special structure of G′, the computation of α(G′) is simple:

Observation 4.2. The measure α(G′) can be computed in polynomial time.

Proof. Any maximum independent set of G′ consists of at most one vertex from C and an independent

set of H ′. It is well known that the computation of the size of a maximum independent set of a chordal

graph can be performed in polynomial time [20]. Thus, we can compute α(H ′) in polynomial time. Next,

we iterate over every vertex v ∈ V (C), and we compute αv = α(Ĥ) + 1 for the graph Ĥ = H ′ \NG′(v) in

polynomial time (since Ĥ is a chordal graph). Overall, we return max{α(H ′),maxv∈V (C){αv}}. �

6This assumption simplifies some of the calculations ahead.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 15

The necessity of tracking α(G′) stems from the fact that our recursive algorithm is based on the method

of divide-and-conquer, and to ensure that when we divide the current instance into two instances we obtain

two “simpler” instances, we need to argue that some aspect of these instances has indeed been simplified.

Although this aspect cannot be the size of the instance (since the two instances can share many common

vertices), we show that it can be the size of a maximum independent set.

A fractional solution x is a function x : V (G′) → [0,∞) such that for every chordless cycle Q of G′ it

holds that x(V (Q)) ≥ 1. An optimal fractional solution minimizes the weight w′(x) =
∑
v∈V (G′) w

′(v) ·x(v).

Clearly, the solution to the instance (G′, w′) of WCVD is at least as large as the weight of an optimal

fractional solution. Although we initially compute an optimal fractional solution x (at the initialization

phase that is described below), during the execution of our algorithm, we manipulate this solution so it may

no longer be optimal. Prior to any call to CVD-APPROX with the exception of the first call, we ensure that

x satisfies the following invariants:

• Low-Value Invariant: For any v ∈ V (G′), it holds that x(v) < (c·logn+9
c·logn)δ · 1

c·logn . Here, δ is the

depth of the current recursive call in the recursion tree.7

• Zero-Clique Invariant: For any v ∈ V (C), it holds that x(v) = 0.

Goal. The depth of the recursion tree will be bounded by q · logn for some fixed constant q. The correctness

of this claim is proved when we explain how to perform a recursive call. For each recursive call CVD-APPROX

(G′, w′, C,H ′,x) with the exception of the first call, we aim to prove the following.

Lemma 4.3. For any δ ∈ {1, 2, . . . , q · logn}, each recursive call to CVD-APPROX of depth δ ≥ 2 returns

a solution that is at least opt and at most (c·logn
c·logn+9

)δ−1 · c · log(α(G′)) ·w′(x). Moreover, it returns a subset

U ⊆ V (G′) that realizes the solution.

At the initialization phase, we see that in order to prove Lemma 4.1, it is sufficient to prove Lemma 4.3.

Initialization. Initially, the graphs G′ and H ′ are simply set to be the input graphs G and H, and the

weight function w′ is simply set to be input weight function w. Moreover, we compute an optimal fractional

solution x = xinit by using the ellipsoid method. Recall that the following claim holds.

Observation 4.4. The solution of the instance (G′, w′) of WCVD is lower bounded by w′(xinit).

Thus, to prove Lemma 4.1, it is sufficient to return a solution that is at least opt and at most c · logn ·w′(x).

We would like to proceed by calling our algorithm recursively. For this purpose, we first need to ensure

that x satisfies the low-value and zero-clique invariants, to which end we use the following notation. We let

h(x) = {v ∈ V (G′) : x(v) ≥ 1/(c · logn)} denote the set of vertices to which x assigns high values. Moreover,

given a clique M in G′, we let (x \M) : V (G′)→ [0,∞) denote the function that assigns 0 to any vertex in

M and (1 + 3 · max
u∈V (G′)

{x(u)})x(v) to any other vertex v ∈ V (G′). Now, to adjust x to be of the desired

form both at this phase and at later recursive calls, we rely on the two following lemmata.

Lemma 4.5. Define Ĝ = G′ − h(x), ŵ = w′|V (Ĝ) and x̂ = x|V (Ĝ). Then, c · logn · w′(x̂) + w′(h(x)) ≤
c · logn · w′(x).

7The depth of the first call is defined to be 1.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

16 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

Proof. By the definition of h(x), it holds that w′(x̂) ≤ w′(x)− 1
c·logn ·w

′(h(x)). Thus, c · logn ·w′(x̂) +

w′(h(x)) ≤ c · logn · w′(x). �

Thus, it is safe to update G′ to G′ − h(x), w′ to w′|V (Ĝ), H
′ to H ′ − h(x) and x to x|V (Ĝ), where we

ensure that once we obtain a solution to the new instance, we add w′(h(x)) to this solution and h(x) to the

set realizing it.

Lemma 4.6. Given a clique M in G′, the function (x \ M) is a valid fractional solution such that

w′(x \M) ≤ (1 + 3 ·maxv∈V (G′){x(v)})w′(x).

Proof. To prove that (x \M) is a valid fractional solution, let Q be some chordless cycle in G′. We need

to show that (x\M)(V (Q)) ≥ 1. Since M is a clique, Q can contain at most two vertices from M . Thus, since

x is a valid fractional solution, it holds that x(V (Q) \ V (M)) ≥ 1− 2 ·maxu∈V (G′){x(u)}. By the definition

(x \M), this fact implies that (x \M)(V (Q)) = (x \M)(V (Q) \ V (M)) ≥ (1 + 3 ·maxu∈V (G′){x(u)})(1−
2 ·maxu∈V (G′){x(u)}) ≥ min{(1 + 3

c·logn)(1 − 2
c·logn), 1} = min{1 + 1/(c · logn) − 6/((c · logn)2), 1} ≥ 1,

where the last inequality relies on the assumption n ≥ 64.

For the proof of the second part of the claim, note that w′(x \ M) = (1 + 3 · maxv∈V (G′){x(v)})
w′(x|V (G′)\V (M)) ≤ (1 + 3 ·maxv∈V (G′){x(v)})w′(x). �

Next, it is possible to call CVD-APPROX recursively with the fractional solution (x \ C). In the context

of the low-value invariant, observe that indeed, for any v ∈ V (G′), it now holds that (x \ C)(v) =

(1 + 3 ·maxu∈V (G′){x(u)})x(v) < (1 + 3
c·logn) · 1

c·logn < (c·logn+9
c·logn)δ · 1

c·logn for δ = 1. Similarly, by Lemma

4.6, w′(x \C) ≤ (c·logn+9
c·logn)δ ·w′(x) for δ = 1. It is also clear that α(G′) ≤ n. Thus, if Lemma 4.3 is true, we

return a solution that is at least opt and at most c · logn ·w(x) as desired. In other words, to prove Lemma

4.1, it is sufficient that we next focus only on the proof of Lemma 4.3. The proof of this lemma is done by

induction. When we consider some recursive call, we assume that the solutions returned by the additional

recursive calls that it performs, which are associated with graphs G̃ such that α(G̃) ≤ 3
4
α(G′), comply with

the demands of the lemma.

Termination. Once G′ becomes a chordal graph, we return 0 as our solution and ∅ as the set that realizes

it. Clearly, we thus satisfy the demands of Lemma 4.3. In fact, we thus also ensure that the execution of

our algorithm terminates once α(G′) < 24:

Lemma 4.7. If α(G′) < 24, then G′ is a chordal graph.

Proof. Suppose, by way of contradiction, that G′ is not a chordal graph. Then, it contains a chordless

cycle Q. Since G′ is an induced subgraph of G, where G is assumed to exclude any chordless cycle on at

most 48 vertices, we have that |V (Q)| > 48. Note that if we traverse Q in some direction, and insert every

second vertex on Q into a set, excluding the last vertex in case |V (Q)| is odd, we obtain an independent set.

Thus, we have that α(G) ≥ 24, which is a contradiction. �

Thus, since we will ensure that each recursive calls is associated with a graph whose independence number

is at most 3/4 the independence number of the current graph, we have the following observation.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 17

C

M

G1
G2

Fig. 1. Subinstances created by a recursive call

Observation 4.8. The maximum depth of the recursion tree is bounded by q · logn for some fixed constant

q.

Recursive Call. Since H ′ is a chordal graph, it admits a clique forest (Lemma 2.1). In particular, it

contains only O(n) maximal cliques, and one can find the set of these maximal cliques in polynomial time

[20]. By standard arguments on trees, we deduce that H ′ has a maximal clique M such that after we

remove M from G′ we obtain two (not necessarily connected) graphs, Ĥ1 and Ĥ2, such that α(Ĥ1), α(Ĥ2) ≤
2
3
α(H ′), and that the clique M can be found in polynomial time. Let G1 = G′[V (Ĥ1) ∪ V (M) ∪ V (C)],

H1 = H ′[V (Ĥ1) ∪ V (M)], G2 = G′[V (Ĥ2) ∪ V (M) ∪ V (C)] and H2 = H ′[V (Ĥ2) ∪ V (M)], and observe that

α(G1), α(G2) ≤ 2
3
α(G′) + 2 ≤ 3

4
α(G′). Here, the last inequality holds because α(G′) ≥ 24, else by Lemma

4.7, the execution should have already terminated.

We proceed by replacing x by (x \M). For the sake of clarity, we denote x∗ = (x \M). By Lemmata

4.5 and 4.6, to prove Lemma 4.3, it is now sufficient to return a solution that is at least opt and at most

(1/(1 + 3 · (c · logn+ 9

c · logn
)δ · 1

c · logn
)) · (c · logn

c · logn+ 9
)δ−1 · logα(G′) · w(x∗), along with a set that realizes

it. Moreover, for any v ∈ V (G′), it holds that x∗(v) < (1 + 3 · (c · logn+ 9

c · logn
)δ · 1

c · logn
) · (c · logn+ 9

c · logn
)δ

· 1

c · logn
. Note that by Observation 4.8, by setting c ≥ 9q, we have that (

c · logn+ 9

c · logn
)δ ≤ e < 3, and

therefore 1 + 3 · (c · logn+ 9

c · logn
)δ · 1

c · logn
≤ c · logn+ 9

c · logn
. In particular, to prove Lemma 4.3, it is sufficient

to return a solution that is at least opt and at most (
c · logn

c · logn+ 9
)δ · logα(G′) · w(x∗).

Next, we define two subinstances, I1 = (G1, w|V (G1), C,H1,x
∗|V (G1)) and I2 = (G2, w|V (G2), C,H2,x

∗|V (G2))

(see Figure 1). We solve each of these subinstances by a recursive call to CVD-APPROX (by the above

discussion, these calls are valid — we satisfy the low-value and zero-clique invariants). Thus, we obtain

two solutions, s1 to I1 and s2 to I2, and two sets that realize these solutions, S1 and S2. By the inductive

hypothesis, we have the following observations.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

18 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

C

M

G1
G2

Q

Fig. 2. An illustration of a bad cycle

Observation 4.9. S1 ∪ S2 intersects any chordless cycle in G′ that lies entirely in either G1 or G2.

Observation 4.10. Given i ∈ {1, 2}, si ≤ (c·logn
c·logn+9

)δ · c · log(α(Gi)) · w(x∗i).

Moreover, since x∗(V (C) ∪ V (M)) = 0, we also have the following observation.

Observation 4.11. w(x∗1) + w(x∗2) = w(x∗).

We say that a cycle of G′ is bad if it is a chordless cycle that belongs entirely to neither G1 nor G2 (see

Figure 2). Next, we show how to intersect bad cycles.

Bad Cycles. For any pair (v, u) of vertices v ∈ V (C) and u ∈ V (M), we let P1(v, u) denote the set of any

(simple) path P1 between v and u whose internal vertices belong only to G1 and which does not contain a

vertex v′ ∈ C and a vertex u′ ∈M such that {v′, u′} ∈ E(G′). Symmetrically, we let P2(v, u) denote the set

of any path P2 between v and u whose internal vertices belong only to G2 and which does not contain a

vertex v′ ∈ C and a vertex u′ ∈M such that {v′, u′} ∈ E(G′). We note here that when {v, u} ∈ E(G′) then

P1(v, u) = P2(v, u) = ∅.
We first examine the relation between bad cycles and pairs (v, u) of vertices v ∈ V (C) and u ∈ V (M).

Lemma 4.12. For any bad cycle Q there exist a pair (v, u) of vertices v ∈ V (C), u ∈ V (M), a path

P1 ∈ P1(v, u) such that V (P1) ⊆ V (Q), and a path P2 ∈ P2(v, u) such that V (P2) ⊆ V (Q).

Proof. Let Q be some bad cycle. By the definition of a bad cycle, Q must contain at least one vertex

a from H1 \ V (M) and at least one vertex b from H2 \ V (M). Since C and M are cliques, Q can contain

at most two vertices from C and at most two vertices from M , and if it contains two vertices from C

(resp. M), then these two vertices are neighbors. Moreover, since the set V (C) ∪ V (M) contains all vertices

common to G1 and G2, Q must contain at least one vertex v ∈ V (C) and at least one vertex u ∈ V (M)

with {v, u} /∈ E(G′). Overall, we conclude that the subpath of Q between v and u that contains a belongs

to P1(v, u), while the subpath of Q between v and u that contains b belongs to P2(v, u). �
Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 19

In light Lemma 4.12, to intersect bad cycles, we now examine how the fractional solution x∗ handles pairs

(v, u) of vertices v ∈ V (C) and u ∈ V (M).

Lemma 4.13. For each pair (v, u) of vertices v ∈ V (C) and u ∈ V (M) with {v, u} /∈ E(G′), there exists

i ∈ {1, 2} such that for any path P ∈ Pi(v, u), x∗(V (P)) ≥ 1/2.

Proof. Suppose, by way of contradiction, that the lemma is incorrect. Thus, there exist a pair (v, u)

of vertices v ∈ V (C) and u ∈ V (M) with {v, u} /∈ E(G′), a path P1 ∈ P1(v, u) such that x∗(V (P1)) < 1/2,

and a path P2 ∈ P2(v, u) such that x∗(V (P2)) < 1/2. Since x∗ is a valid fractional solution, we deduce that

G′[V (P1) ∪ V (P2)] does not contain any chordless cycle. Consider a shortest subpath P̂1 of P1 between a

vertex a1 ∈ V (C) and a vertex b1 ∈ V (M), and a shortest subpath P̂2 of P2 between a vertex a2 ∈ V (C)

and a vertex b2 ∈ V (M). Since neither P1 nor P2 contains any edge such that one of its endpoints belongs

to V (C) while the other endpoint belongs to V (M), we have that |V (P̂1)|, |V (P̂2)| ≥ 3. Furthermore, since

vertices common in P1 and P2 must belong to V (C) ∪ V (M), we have that P̂1 does not contain internal

vertices that belong to P̂2 or adjacent to internal vertices on P̂2. Overall, since C and M are cliques, we

deduce that G′[V (P̂1) ∪ V (P̂2)] contains a chordless cycle. To see this, let a be the vertex closest to b2 on

P̂2 that is a neighbor of a1. Observe that a exists as a1 and a2 are neighbors, and a 6= b2. Moreover, we

assume without loss of generality that if a = a2, then a2 has no neighbor on P̂1 apart from a1. Now, let b

be the vertex closest to a on the subpath of P̂2 between a and b2 that is a neighbor of b1. If b 6= b2, then the

vertex-sets of P̂1 and the subpath of P̂1 between a and b together induce a chordless cycle. Else, let b′ be the

vertex closest to a1 on P̂1 that is a neighbor of b2. Then, the vertex-sets of the subpath of P̂1 between a1

and b′ and the subpath of P̂1 between a and b2 together induce a chordless cycle. Since G′[V (P̂1) ∪ V (P̂2)]

is an induced subgraph of G′[V (P1) ∪ V (P2)], we have reached a contradiction. �

Given i ∈ {1, 2}, let 2x∗i denote the fractional solution that assigns to each vertex the value assigned

by x∗i times 2. Moreover, let Ĝ1 = G1 \ (V (C) ∪ V (M)) and Ĝ2 = G2 \ (V (C) ∪ V (M)). Observe

that Ĝ1 and Ĝ2 are chordal graphs. Now, for every pair (v, u) such that v ∈ V (C), u ∈ V (M), we

perform the following operation. We initialize T1(v, u) = ∅. Next, we consider every pair (v′, u′) such

that v′ ∈ V (C), u′ ∈ V (M), {v, v′} ∩ NG1(u′) = ∅ and {u, u′} ∩ NG1(v′) = ∅, and insert each pair in

{(a, b) : a ∈ NG1(v′) ∩ V (Ĝ1), b ∈ NG1(u′) ∩ V (Ĝ1), Ĝ1 has a path between a and b} into T1(v, u). We

remark that the vertices in a pair in T1(v, u) are not necessarily distinct. The definition of T2(v, u) is

symmetric to the one of T1(v, u).

The following lemma translates Lemma 4.13 into an algorithm.

Lemma 4.14. For each pair (v, u) of vertices v ∈ V (C), u ∈ V (M) and {v, u} /∈ E(G′), one can compute

(in polynomial time) an index i(v, u) ∈ {1, 2} such that for any path P ∈ Pi(v, u), 2x∗i (V (P)) ≥ 1.

Proof. Let (v, u) be a pair of vertices such that v ∈ V (C), u ∈ V (M) and {v, u} /∈ E(G′). If there is

i ∈ {1, 2} such that P ∈ Pi(v, u) = ∅, then we have trivially obtained the required index which is i(v, u) = i.

Otherwise, we proceed as follows. For any index j ∈ {1, 2}, we perform the following procedure. For each

pair (a, b) ∈ Ti(v, u), we use Dijkstra’s algorithm to compute the minimum weight of a path between a

and b in the graph Ĝi where the weights are given by 2x∗i . In case for every pair (a, b) the minimum

weight is at least 1, we have found the desired index i(v, u). Moreover, by Lemma 4.13 and since for all

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

20 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

v′ ∈ V (C) ∪ V (M) it holds that x∗1(v′) = x∗2(v′) = 0, for at least one index j ∈ {1, 2}, the maximum weight

among the minimum weights associated with the pairs (a, b) should be at least 1 (if this value is at least 1

for both indices, we arbitrarily decide to fix i(v, u) = 1). �

At this point, we need to rely on approximate solutions to Weighted Multicut in chordal graphs (in

this context, we will employ the algorithm given by Theorem 6.16 in Section 5). Here, a fractional solution

y is a function y : V (G′)→ [0,∞) such that for every pair (si, ti) ∈ T and any path P between si and ti, it

holds that y(V (P)) ≥ 1. An optimal fractional solution minimizes the weight w(y) =
∑
v∈V (G′) w(v) · y(v).

Let fopt denote the weight of an optimal fractional solution.

By first employing the algorithm given by Lemma 4.14, we next construct two instances of Weighted

Multicut. The first instance is J1 = (Ĝ1, w1, T1) and the second instance is J2 = (Ĝ2, w2, T2), where

the sets T1 and T2 are defined as follows. We initialize T1 = ∅. Now, for every pair (v, u) such that

v ∈ V (C), u ∈ V (M), i(v, u) = 1 and P1(v, u) 6= ∅, we insert each pair in T1(v, u) into T1. The definition of

T2 is symmetric to the one of T1.

By Lemma 4.14 and since for all v ∈ V (C) ∪ V (M) it holds that x∗1(v) = x∗2(v) = 0, we deduce that 2x∗1

and 2x∗2 are valid solutions to J1 and J2, respectively. Thus, by calling the algorithm given by Theorem

6.16 with each instance, we obtain a solution r1 to the first instance, along with a set R1 that realizes it,

such that r1 ≤ 2d · w(x∗1), and we also obtain a solution r2 to the second instance, along with a set R2 that

realizes it, such that r2 ≤ 2d · w(x∗2), for some fixed constant d.

By Observation 4.9 and Lemma 4.12, we obtained a set S∗ = S1 ∪ S2 ∪R1 ∪R2 for which we have the

following observation.

Observation 4.15. S∗ intersects any chordless cycle in G′, and it holds that w(S∗) ≤ s1 + s2 + r1 + r2.

Recall that to prove Lemma 4.3 we need to show that s1 +s2 +r1 +r2 ≤ (c·logn
c·logn+9

)δ−1 ·c · log(α(G′)) ·w′(x)

and we have δ ≥ 2. Furthermore, we have (c·logn
c·logn+9

)δ ·c·log(α(G′))·w′(x) ≤ (c·logn
c·logn+9

)δ−1 ·c·log(α(G′))·w′(x).

This together with Lemma 4.6 implies that it is enough to show s1 +s2 +r1 +r2 ≤ (c·logn
c·logn+9

)δ ·c · log(α(G′)) ·
w(x∗). Recall that for any i ∈ {1, 2}, ri ≤ 2d ·w(x∗i). Thus, by Observation 4.10 and since for any i ∈ {1, 2},
α(Gi) ≤ 3

4
α(G′), we have that

w(S∗) ≤ (
c · logn

c · logn+ 9
)δ · c · log(

3

4
α(G′)) · (w(x∗1) + w(x∗2)) + 2d · (w(x∗1) + w(x∗2)).

By Observation 4.11, we further deduce that

w∗(S∗) ≤
(

(
c · logn

c · logn+ 9
)δ · c · log(

3

4
α(G′)) + 2d

)
· w(x∗).

Now, it only remains to show that (c logn
c logn+9

)δ · c · log(3
4
α(G′)) + 2d ≤ (c logn

c logn+9
)δ · c · logα(G′), which is

equivalent to 2d ≤ (c logn
c logn+9

)δ · c · log(4
3
). Recall that δ ≤ q · logn (Observation 4.8). Thus, it is sufficient

that we show that 2d ≤ (c logn
c logn+9

)q·logn · c · log(4
3
). However, the term (c logn

c logn+9
)q·logn is lower bounded by

1/e9q. In other words, it is sufficient that we fix c ≥ 2 · e9q · d · 1/ log(4
3
).

4.2 General Graphs

In this subsection we handle general instances by developing a d · log2 n-factor approximation algorithm for

WCVD, Gen-CVD-APPROX, thus proving the correctness of Theorem 1.2. The exact value of the constant

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 21

d ≥ max{96, 2c} is determined later.8 This algorithm is based on recursion, and during its execution, we

often encounter instances that are of the form of the Clique+Chordal special case of WCVD, which will be

dealt with using the algorithm CVD-APPROX of Section 4.1.

Recursion. We define each call to our algorithm Gen-CVD-APPROX to be of the form (G′, w′), where

(G′, w′) is an instance of WCVD such that G′ is an induced subgraph of G, and we denote n′ = |V (G′)|.
We ensure that after the initialization phase, the graph G′ never contains chordless cycles on at most 48

vertices. We call this invariant the C48-free invariant. In particular, this guarantee ensures that the graph

G′ always contains only a small number of maximal cliques:

Lemma 4.16 ([10, 41]). The number of maximal cliques of a graph G′ that has no chordless cycles on

four vertices is bounded by O(n′
2
), and they can be enumerated in polynomial time using a polynomial delay

algorithm.

Goal. For each recursive call Gen-CVD-APPROX(G′, w′), we aim to prove the following.

Lemma 4.17. Gen-CVD-APPROX returns a solution that is at least opt and at most d
2
· log2 n′ · opt.

Moreover, it returns a subset U ⊆ V (G′) that realizes the solution.

At each recursive call, the size of the graph G′ becomes smaller. Thus, when we prove that Lemma 4.17

is true for the current call, we assume that the approximation factor is bounded by d
2
· log2 n̂ · opt for any

call where the size n̂ of the vertex-set of its graph is strictly smaller than n′.

Initialization. Initially, we set (G′, w′) = (G,w). However, we need to ensure that the C48-free invariant

is satisfied. For this purpose, we update G′ as follows. First, we let C48 denote the set of all chordless cycles

on at most 48 vertices of G′. Clearly, C48 can be computed in polynomial time and it holds that |C48| ≤ n48.

Now, we construct an instance of Weighted 48-Hitting Set, where the universe is V (G′), the family of

48-sets is C48, and the weight function is w′. Since each chordless cycle must be intersected, it is clear that

the optimal solution to our Weighted 48-Hitting Set instance is at most opt. By using the standard

c′-approximation algorithm for Weighted c′-Hitting Set [27], which is suitable for any fixed constant c′,

we obtain a set S ⊆ V (G′) that intersects all cycles in C48 and whose weight is at most 48 · opt. Having the

set S, we remove its vertices from G′. Now, the C48-free invariant is satisfied, which implies that we can

recursively call our algorithm. To the outputted solution, we add w(S) and S. If Lemma 4.17 is true, we

obtain a solution that is at most d
2
· log2 n · opt + 48 · opt ≤ d · log2 n · opt, which allows us to conclude the

correctness of Theorem 1.2. We remark that during the execution of our algorithm, we only update G′ by

removing vertices from it, and thus it will always be safe to assume that the C48-free invariant is satisfied.

Termination. Observe that due to Lemma 4.16, we can test in polynomial time whether G′consists of a

clique and a chordal graph: we examine each maximal clique of G′, and check whether after its removal we

obtain a chordal graph. Once G′ becomes such a graph that consists of a chordal graph and a clique, we

solve the instance (G′, w′) by calling algorithm CVD-APPROX. Since c · logn′ ≤ d
2
· log2 n′, we thus ensure

that at the base case of our induction, Lemma 4.17 holds.

8Recall that c is the constant we fixed to ensure that the approximation ratio of CVD-APPROX is bounded by c · logn.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

22 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

Recursive Call. For the analysis of a recursive call, let S∗ denote a hypothetical set that realizes the

optimal solution opt of the current instance (G′, w′). Moreover, let (F, β) be a clique forest of G′ − S∗,
whose existence is guaranteed by Lemma 2.1. Using standard arguments on forests, we have the following

observation.

Observation 4.18. There exist a maximal clique M of G′ and a subset S ⊆ V (G′) \M of weight at most

opt such that M ∪ S is a balanced separator for G′.

The following lemma translates this observation into an algorithm.

Lemma 4.19. There is a polynomial-time algorithm that finds a maximal clique M of G′ and a subset

S ⊆ V (G′) \M of weight at most q · logn′ · opt for some fixed constant q such that M ∪ S is a balanced

separator for G′.

Proof. We examine every maximal clique of G′. By Lemma 4.16, we need only consider O(n′
2
) maximal

cliques, and these cliques can be enumerated in polynomial time. For each such clique M , we run the

q · logn′-factor approximation algorithm by Leighton and Rao [28] to find a balanced separator SM of

G′ −M . Here, q is some fixed constant. We let S denote some set of minimum weight among the sets in

{SM : M is a maximal clique of G′}. By Observation 4.18, w(S) ≤ q · logn′ · opt. Thus, the desired output

is a pair (M,S) where M is one of the examined maximal cliques such that SM = S. �

We call the algorithm in Lemma 4.19 to obtain a pair (M,S). Since M ∪ S is a balanced separator for G′,

we can partition the set of connected components of G′ − (M ∪ S) into two sets, A1 and A2, such that for

V1 =
⋃
A∈A1

V (A) and V2 =
⋃
A∈A2

V (A) it holds that n1, n2 ≤ 2
3
n′ where n1 = |V1| and n2 = |V2|. We

remark that we used the O(logn)-factor approximation algorithm by Leighton and Rao [28] in Lemma 4.19

to find the balanced separator instead of the O(
√

logn)-factor approximation algorithm by Feige et al. [11],

as the algorithm by Feige et al. is randomized.

Next, we define two inputs of (the general case of) WCVD: I1 = (G′[V1], w′|V1) and I2 = (G′[V2], w′|V2).

Let opt1 and opt2 denote the optimal solutions to I1 and I2, respectively. Observe that since V1 ∩ V2 = ∅,
it holds that opt1 + opt2 ≤ opt. We solve each of the subinstances by recursively calling algorithm

Gen-CVD-APPROX. By the inductive hypothesis, we thus obtain two sets, S1 and S2, such that G′[V1]− S1

and G′[V2]− S2 are chordal graphs, and w′(S1) ≤ d
2
· log2 n1 · opt1 and w′(S2) ≤ d

2
· log2 n2 · opt2.

We proceed by defining an input of the Clique+Chordal special case of WCVD: J = (G′[(V1 ∪ V2 ∪M) \
(S1 ∪ S2)], w′|(V1∪V2∪M)\(S1∪S2)). Observe that since G′[V1]− S1 and G′[V2]− S2 are chordal graphs and M

is a clique, this is indeed an instance of the Clique+Chordal special case of WCVD. We solve this instance

by calling algorithm CVD-APPROX. We thus obtain a set, Ŝ, such that G′[(V1 ∪ V2 ∪M)− (S1 ∪ S2 ∪ Ŝ)] is

a chordal graphs, and w′(Ŝ) ≤ c · logn′ · opt (since |(V1 ∪ V2 ∪M) \ (S1 ∪ S2)| ≤ n′ and the optimal solution

of each of the subinstances is at most opt).

Observe that since M is a clique and there is no edge in E(G′) between a vertex in V1 and a vertex in V2,

any chordless cycle of G′− (S∪S1∪S2) entirely belongs to either G′[(V1∪M)\S1] or G′[(V2∪M)\S2]. This

observation, along with the fact that G′[(V1∪V2∪M)\ (S1∪S2∪ Ŝ)] is a chordal graphs, implies that G′−T
is a chordal graphs where T = S ∪S1 ∪S2 ∪ Ŝ. Thus, it is now sufficient to show that w′(T) ≤ d

2
· log2 n′ ·opt.

By the discussion above, we have that

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 23

w′(T) ≤ w′(S) + w′(S1) + w′(S2) + w′(Ŝ)

≤ q · logn′ · opt + d
2
· (log2 n1 · opt1 + log2 n2 · opt2) + c · logn′ · opt.

Recall that n1, n2 ≤ 2
3
n′ and opt1 + opt2 ≤ opt. Thus, we have that

w′(T) ≤ q · logn′ · opt + d
2
· (log2 2

3
n′) · opt + c · logn′ · opt

≤ d
2
· log2 n′ · opt + (q + c− d

2
log 3

2
) · logn′ · opt.

Overall, we conclude that to ensure that w′(T) ≤ d
2
·log2 n′·opt, it is sufficient to ensure that q+c− d

2
log 3

2
≤

0, which can be done by fixing d =
2

log 3
2

· (q + c).

5 WEIGHTED MULTICUT IN CHORDAL GRAPHS

In this section we prove Theorem 1.3. Let us denote c = 8. Recall that for Weighted Multicut, a fractional

solution x is a function x : V (G)→ [0,∞) such that for every pair (s, t) ∈ T and any path P between s and t,

it holds that x(V (P)) ≥ 1. An optimal fractional solution minimizes the weight w(x) =
∑
v∈V (G) w(v) ·x(v).

Let fopt denote the weight of an optimal fractional solution. Theorem 1.3 follows from the next result, whose

proof is the focus of this section.

Lemma 5.1. Given an instance of Weighted Multicut in chordal graphs, one can find (in polynomial

time) a solution that is at least opt and at most 4c · fopt, along with a set that realizes it.

Preprocessing. By using the ellipsoid method, we may next assume that we have optimal fractional

solution x at hand. We say that x is nice if for all v ∈ V (G), there exists i ∈ {0} ∪ N such that x(v) = i
n

.

Let h(x) = {v ∈ V (G) : x(v) ≥ 1/c} denote the set of vertices to which x assigns high values.

Lemma 5.2. Define a function x̂ : V (G) → [0,∞) as follows. For all v ∈ V (G), if x(v) < 1/2n then

x̂(v) = 0, and otherwise x̂(v) is the smallest value of the form i/n, for some i ∈ N, that is at least 2x(v).

Then, x̂ is a fractional solution such that w(x̂) ≤ 4w(x).

Proof. To show that x̂ is a fractional solution, consider some path P between s and t such that (s, t) ∈ T .

Let `′(x) = {v ∈ V (G) : x(v) < 1/2n}. We have that x̂(V (P)) =
∑
v∈V (P)\`′(x) x̂(v) ≥ 2

∑
v∈V (P)\`′(x) x(v).

Thus, to show that x̂(V (P)) ≥ 1, it is sufficient to show that 1
2
≤
∑
v∈V (P)\`′(x) x(v). Since x is a

fractional solution, it holds that x(V (P)) =
∑
v∈V (P)∩`′(x) x(v) +

∑
v∈V (P)\`′(x) x(v) ≥ 1. Thus, 1 ≤

1
2n
|V (P) ∩ `′(x)|+

∑
v∈V (P)\`′(x) x(v). Since |V (P) ∩ `′(x)| ≤ n, we conclude that 1

2
≤
∑
v∈V (P)\`′(x) x(v).

The second part of the claim follows from the observation that for all v ∈ V (G), x̂(v) ≤ 4x(v). �

Accordingly, we update x to x̂. Our preprocessing step also relies on the following standard lemma.

Lemma 5.3. Define Ĝ = G− h(x), ŵ = w|V (Ĝ) and x̂ = x|V (Ĝ). Then, c · w(x̂) + w(h(x)) ≤ c · w(x).

Proof. By the definition of h(x), it holds that w(x̂) ≤ w(x)− 1
c
w(h(x)). Thus, c · w(x̂) + w(h(x)) ≤

c · (w(x)− 1
c
· w(h(x))) + w(h(x)) = c · w(x). �

We thus further update G to Ĝ, w to ŵ and x to x̂, where we ensure that once we obtain a solution to

the new instance, we add w(h(x)) to this solution and h(x) to the set realizing it. Overall, we may next

focus only on the proof of the following lemma.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

24 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

Lemma 5.4. Let (G,w) be an instance of Weighted Multicut in chordal graphs, and x be a nice

fractional solution such that h(x) = ∅. Then, one can find (in polynomial time) a solution that is at least

opt and at most c · w(x), along with a set that realizes it.

The Algorithm. Since G is a chordal graph, we can first construct in polynomial time a clique forest (F, β)

of G (Lemma 2.1). Without loss of generality, we may assume that F is a tree, else G is not a connected

graph and we can handle each of its connected components separately. Now, we arbitrarily root F at some

node rF , and we arbitrarily choose a vertex rG ∈ β(rF). We then use Dijkstra’s algorithm to compute (in

polynomial time) for each vertex v ∈ V (G), the value d(v) = min
P∈P(v)

x(V (P)), where P(v) is the set of paths

in G between rG and v.

We define n+ 1 bins: for all i ∈ {0, 1, . . . , n}, the bin Bi contains every vertex v ∈ V (G) for which there

exists j ∈ {0} ∪ N such that d(v)− x(v) < (i
n

+ 2j) 1
c
≤ d(v) (i.e., 0 ≤ d(v)− (i

n
+ 2j) 1

c
< x(v)). Let Bi∗ ,

i∗ ∈ {0, 1, . . . , n}, be a bin that minimizes w(Bi∗). The output consists of w(Bi∗) and Bi∗ .

Approximation Factor. Given r ∈ [0, 1], let B̂r be the set that contains every vertex v ∈ V (G) for which

there exists j ∈ {0} ∪ N such that 0 ≤ d(v)− (r + 2j) 1
c
< x(v). We start with the following claim.

Lemma 5.5. There exists r∗ ∈ [0, 1] such that w(B̂r∗) ≤ c · w(x).

Proof. For any d ≥ 0, observe that there exists exactly one j ∈ {0} ∪ N for which there exists r ∈ [0, 1]

such that 0 ≤ d − (r + 2j) 1
c
< 1

c
, and denote it by j(d). Suppose that we choose r ∈ [0, 1] uniformly at

random. Consider some vertex v ∈ V (G). Then, since h(x) = ∅, the probability that there exists j ∈ {0}∪N
such that 0 ≤ d(v)− (r + 2j) 1

c
< x(v) is equal to the probability that 0 ≤ d(v)− (r + 2j(d(v))) 1

c
< x(v).

Now, the probability that 0 ≤ d(v)− (r+ 2j(d(v))) 1
c
< x(v) is equal to c · x(v). The expected weight w(B̂r)

is c ·
∑
v∈V (G) x(v) · w(v) = c · w(x). Thus, there exists r∗ ∈ [0, 1] such that w(B̂r∗) ≤ c · w(x). �

Now, the proof of the approximation factor follows from the next claim.

Lemma 5.6. There exists i ∈ {0, 1, . . . , n} such that Bi ⊆ B̂r∗ .

Proof. Let i be the smallest index in {0, 1, . . . , n} such that r∗ ≤ i
n

. Consider some vertex v ∈ Bi.
Then, for some j ∈ {0} ∪ N, d(v)− x(v) < (i

n
+ 2j) 1

c
≤ d(v). Since r∗ ≤ i

n
, we have that (r∗ + 2j) 1

c
≤ d(v).

Since x is nice, it holds that there exists t ∈ {0}∪N such that d(v)−x(v) = t
n

. Thus, for any p < 1
n

, it holds

that d(v)− x(v) < (i
n

+ 2j − p) 1
c
. By the choice of i, i

n
− r∗ < 1

n
, and therefore d(v)− x(v) < (r∗ + 2j) 1

c
,

which implies that v ∈ B̂r∗ . �

Feasibility. We need to prove that for any pair (s, t) ∈ T , G−Bi∗ does not have any path between s and

t. Consider some path P = (v1, v2, · · · , v`) between s and t. Here, v1 = s and v` = t. Suppose, by way of

contradiction, that V (P) ∩Bi∗ = ∅. Then, for all vi ∈ V (P), it holds that there is no j ∈ {0} ∪ N such that

0 ≤ d(vi)− (i
∗

n
+ 2j) 1

c
< x(vi).

Let s ∈ V (F) be the closest node to rF that satisfies β(s) ∩ V (P) 6= ∅ (since F is a clique tree and P is a

path, the node s is uniquely defined). Let vî be some vertex in β(s) ∩ V (P) 6= ∅. For the sake of clarity, let

us denote the subpath of P between vî and v` by Q = (u1, u2, · · · , ut), where u1 = vî and ut = v`. Let j∗

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 25

House Gem Domino Cycle on at least
 5 vertices

Fig. 3. Obstruction set for distance hereditary graphs

be the smallest value in {0} ∪ N that satisfies d(u1)− x(u1) < (i
∗

n
+ 2j∗) 1

c
. Note that d(u1) < (i

∗

n
+ 2j∗) 1

c
.

It is thus well defined to let p denote the largest index in [t] such that d(up) < (i
∗

n
+ 2j∗) 1

c
.

First, suppose that p ∈ [t− 1]. We then have that (i
∗

n
+ 2j∗) 1

c
≤ d(up+1). For all 2 ≤ i ≤ t, it holds that

d(ui) ≤ d(ui−1) + x(ui). We thus obtain that d(up+1) − x(up+1) ≤ d(up) < (i
∗

n
+ 2j∗) 1

c
. This statement

implies that up+1 ∈ Bi∗ , which is a contradiction.

Now, we suppose that p = t. Note that (i
∗

n
+ 2j∗ − 2) 1

c
≤ d(u1)− x(u1) (by the minimality of j∗), and

d(ut) < (i
∗

n
+ 2j∗) 1

c
. We get that d(ut) < d(u1) − x(u1) + 2

c
. In other words, d(ut) − d(u1) + x(u1) < 2

c
.

Let des(s) denote the set consisting of s and its descendants in F . Since F is a clique tree, we have

that V (Q) ⊆
⋃
s′∈des(s) β(s′). Thus, any path from rG to ut that realizes d(ut) contains a vertex from

β(s). Since there exists a path from rG to ut that realizes d(ut), we deduce that there exists a path,

Pt, from rG to ut that realizes d(ut) and contains a vertex x ∈ NG[u1]. Let P ∗t denote the subpath

of Pt between x and ut, and let P ∗ denote the path that starts at u1 and then traverses P ∗t . Then,

x(V (P ∗)) ≤ x(u1) +x(V (P ∗t)) = x(u1) + d(ut)− d(x) +x(x). Note that d(u1) ≤ d(x) +x(u1), and therefore

x(V (P ∗)) ≤ x(u1) + d(ut)− (d(u1)−x(u1)) +x(x) = x(u1) +x(x) + (d(ut)− d(u1) +x(u1)). Since h(x) = ∅
and d(ut) − d(u1) + x(u1) < 2

c
, we get that x(V (P ∗)) < 4

c
. The symmetric analysis of the subpath of P

between u1 = vî and v1 shows that there exists a path P ∗∗ between u1 and v1 such that x(V (P ∗∗)) < 4
c
.

Overall, we get that there exists a path, P ′, between v1 = s and v` = u` = t such that x(V (P ′)) < 8
c
. Since

c ≥ 8, we reach a contradiction to the assumption that x is a fractional solution.

6 DISTANCE-HEREDITARY VERTEX DELETION

In this section we prove Theorem 1.4. We start with preliminaries.

Preliminaries. A graph G is distance hereditary if every connected induced subgraph H of G, for all

u, v ∈ V (H) the number of vertices in shortest path between u and v in G is same as the number of vertices

in shortest path between u and v in H. Another characterization of distance hereditary graphs is the graph

not containing an induced sub-graph isomorphic to a house, a gem, a domino or an induced cycle on 5

or more vertices (refer Figure 3). We refer to a house, a gem, a domino or an induced cycle on at least 5

vertices as a DH-obstruction. A DH-obstruction on at most 48 vertices is a small DH-obstruction. A biclique

is a graph G with vertex bipartition X,Y each of them being non-empty such that for each x ∈ X and

y ∈ Y we have {x, y} ∈ E(G). We note here that, X and Y need not be independent sets in a biclique G.

Clearly, we can assume that the weight w(v) of each vertex v ∈ V (G) is positive, else we can insert v into

any solution. Our approximation algorithm for WDHVD comprises of two components. The first component

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

26 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

handles the special case where the input graph G consists of a biclique C and a distance hereditary H. Here,

we also assume that the input graph has no “small” DH-obstruction. We show that when input restricted to

these special instances WDHVD admits an O(log2 n)-factor approximation algorithm.

The second component is a recursive algorithm that solves general instances of the problem. Initially, it

easily handles “small” DH-obstruction. Then, it gradually disintegrates a general instance until it becomes

an instance of the special form that can be solved in polynomial time. More precisely, given a problem

instance, the algorithm divides it by finding a maximal biclique M (using an exhaustive search which relies

on the guarantee that G has no “small” DH-obstruction) and a small separator S (using an approximation

algorithm) that together break the input graph into two graphs significantly smaller than their origin.

6.1 Biclique+ Distance Hereditary Graph

In this subsection we handle the special case where the input graph G consists of a biclique C and a distance

hereditary graph H. More precisely, along with the input graph G and the weight function w, we are also

given a biclique C and a distance hereditary graph H such that V (G) = V (C)∪V (H), where the vertex-sets

V (C) and V (H) are disjoint. Here, we also assume that G has no DH-obstruction on at most 48 vertices,

which means that every DH-obstructionin G is a chordless cycle of strictly more than 48 vertices. Note that

the edge-set E(G) may contain edges between vertices in C and vertices in H. We call this special case the

Biclique + Distance Hereditary special case. Our objective is to prove the following result.

Lemma 6.1. The Biclique + Distance Hereditary special case of WDHVD admits an O(log2 n)-factor

approximation algorithm.

We assume that n ≥ 212, else the input instance can be solve by brute-force 9. Let c be a fixed constant

(to be determined later). In the rest of this subsection, we design a c · logn-factor approximation algorithm

for the Biclique + Distance Hereditary special case of WDHVD.

Recursion. Our approximation algorithm is a recursive algorithm. We call our algorithm DHD-APPROX,

and define each call to be of the form (G′, w′, C,H ′,x). Here, G′ is an induced subgraph of G such that

V (C) ⊆ V (G′), and H ′ is an induced subgraph of H. The argument x is discussed below. We remark that

we continue to use n to refer to the size of the vertex-set of the input graph G rather than the current graph

G′.

Arguments. While the execution of our algorithm progresses, we keep track of two arguments: the number

of vertices in the current distance hereditary graph H ′ that are assigned a non-zero value by x, which we

denote by α(G′) and the fractional solution x.

Observation 6.2. The measure α(G′) can be computed in polynomial time.

A fractional solution x is a function x : V (G′) → [0,∞) such that for every chordless cycle Q of G′

on at least 5 vertices it holds that x(V (Q)) ≥ 1. An optimal fractional solution minimizes the weight

w′(x) =
∑
v∈V (G′) w

′(v) · x(v). Clearly, the solution to the instance (G′, w′) of WDHVD is at least as large

as the weight of an optimal fractional solution. Although we initially compute an optimal fractional solution

9This assumption simplifies some of the calculations ahead.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 27

x (at the initialization phase that is described below), during the execution of our algorithm, we manipulate

this solution so it may no longer be optimal. Prior to any call to DHD-APPROX with the exception of the

first call, we ensure that x satisfies the following invariants:

• Low-Value Invariant: For any v ∈ V (G′), it holds that x(v) < 1/ logn.

• Zero-Biclique Invariant: For any v ∈ V (C), it holds that x(v) = 0.

We note that the Low-Value Invariant used here is simpler than the one used in Section 4.1 since it is

enough for the purpose of this section.

Goal. The depth of the recursion tree will be bounded by ∆ = O(logn), where the depth of initial call is 1.

The correctness of this claim is proved when we explain how to perform a recursive call. For each recursive

call to DHD-APPROX(G′, w′, C,H ′,x), we aim to prove the following.

Lemma 6.3. For any δ ∈ {1, 2, . . . ,∆}, each recursive call to DHD-APPROX of depth δ ≥ 2 returns a

solution that is at least opt and at most (logn
logn+4

)δ · c · logn · log(α(G′)) ·w′(x). Moreover, it returns a subset

U ⊆ V (G′) that realizes the solution.

At the initialization phase, we see that in order to prove Lemma 6.1, it is sufficient to prove Lemma 6.3.

Initialization. Initially, the graphs G′ and H ′ are simply set to be the input graphs G and H, and the

weight function w′ is simply set to be input weight function w. Moreover, we compute an optimal fractional

solution x = xinit by using the ellipsoid method. Recall that the following claim holds.

Observation 6.4. The solution of the instance (G′, w′) of WDHVD is lower bounded by w′(xinit).

Moreover, it holds that α(G′) ≤ n, and therefore to prove Lemma 6.1, it is sufficient to return a solution

that is at least opt and at most c · logn · log(α(G)) ·w(x) (along with a subset that realizes the solution). Part

of the necessity of the stronger claim given by Lemma 6.3 will become clear at the end of the initialization

phase.

We would like to proceed by calling our algorithm recursively. For this purpose, we first need to ensure

that x satisfies the low-value and zero-biclique invariants, to which end we use the following notation. We

let h(x) = {v ∈ V (G′) : x(v) ≥ 1/ logn} denote the set of vertices to which x assigns high values. Note

that we can assume for each v ∈ h(x), we have x(v) ≤ 1. Moreover, given a biclique M in G′, we let

(x \M) : V (G′)→ [0,∞) denote the function that assigns 0 to any vertex in M and (1 + 4
logn

)x(v) to any

other vertex v ∈ V (G′). Now, to adjust x to be of the desired form both at this phase and at later recursive

calls, we rely on the following lemmata.

Lemma 6.5. Define Ĝ = G′ − h(x), ŵ = w′|V (Ĝ) and x̂ = x|V (Ĝ). Then, c′ · logn · log(α(Ĝ)) · w′(x̂) +

w′(h(x)) ≤ c′ · logn · log(α(G)) · w′(x), where c′ ≥ 1.

Proof. By the definition of h(x), it holds that w′(x̂) ≤ w′(x)− 1
logn

· w′(h(x)). Since Ĝ is an induced

subgraph of G′, it also holds that α(Ĝ) ≤ α(G′). Thus, c′ · logn · log(α(Ĝ)) · w′(x̂) + w′(h(x)) ≤ c′ · logn ·
log(α(G′)) · (w′(x)− 1

logn
· w′(h(x))) + w′(h(x)) ≤ c′ · logn · log(α(G)) · w′(x). �

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

28 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

Thus, it is safe to update G′ to G′ − h(x), w′ to w′|V (Ĝ), H
′ to H ′ − h(x) and x to x|V (Ĝ), where we

ensure that once we obtain a solution to the new instance, we add w′(h(x)) to this solution and h(x) to the

set realizing it.

Lemma 6.6. Let Q be a chordless cycle on at least 5 vertices and M be a biclique in G′ with vertex

partitions as V (M) = M1]M2 such that V (Q) ∩ V (M) 6= ∅. Then there is a chordless cycle Q′ on at least

5 vertices that intersects M in at most 3 vertices such that E(Q′ \M) ⊆ E(Q \M). Furthermore, Q′ is of

one of the following three types.

• Q′ ∩M is a single vertex

• Q′ ∩M is an edge in G[M]

• Q′ ∩M is an induced path on 3 vertices in M .

Proof. Observe that no chordless cycle on 5 or more vertices may contain two vertices from each of

M1 and M2, as that would imply a chord in it. Now, if the chordless cycle Q already satisfies the required

conditions we output it as Q′.

First consider the case, when Q ∩M contains exactly two vertices that don’t have an edge between them.

Then the two vertices, say v1, v2, are both either in M1 or in M2. Suppose that they are both in M1 and

consider some vertex u ∈M2. Let P1 is the longer of the two path segments of Q between v1 and v2, and

note that it must length at least 3. Then observe that G′[P1∪{u, v1, v2}] contains a DH-obstruction, as v1, v2

have different distances depending on if u is included in an induced subgraph or not. And further, it is easy

to see that this DH-obstruction contains the induced path v1, u, v2. However, as all small obstructions have

been removed from the graph, we have that Q′ is a chordless cycle in G′ on at least 5 vertices. Furthermore,

Q′ ∩M is the induced path (v1, u, v2), in G′ and E(Q′ \M) ⊆ E(Q \M).

Now consider the case when Q ∩M contains exactly three vertices. Observe that it cannot contain two

vertices of M1 and one vertex of M2, or vice versa, as Q doesn’t satisfy the required conditions. Therefore,

Q ∩M contains exactly three vertices from M1 (or from M2), which again don’t form an induced path of

length 3. So there is an independent set of size 2 in Q ∩M , and now, as before, we can again obtain the

chordless cycle Q′ on at least 5 vertices with E(Q′ \M) ⊆ E(Q \M). Before we consider the other cases,

we have the following claim.

Claim 1. Let M be a biclique in G′ with vertex partition as V (M) = M1]M2. Then G′[M] has no induced

P4.

Proof. Let P be any induced path of length 4 in G′[M]. Then, either V (P) ⊆M1 or V (P) ⊆M2. Now

consider any such path P in M1 and some vertex u ∈M2. Then G′[P ∪ {u}] contains a DH-obstruction of

size 5 which is a contradiction to the fact that G′ has no small obstructions. �

Next, let Q ∩M contain 4 or more vertices. Note that in this case all these vertices are all either in

M1 or in M2 since otherwise, Q would not be a chordless cycle in G′ on at least 5 vertices. Let us assume

these vertices lie in M1 (other case is symmetric). Let v1, v2, v3, · · · , v` ∈M1 ∩Q be the sequence of vertices

obtained when we traverse Q starting from an arbitrary vertex, where ` ≥ 4. By Claim 1 they cannot form

an induced path on 4 vertices, i.e. G′[V (Q) ∩M1] consists of at least two connected components. Without

loss of generality we may assume that v1 and v` are in different components. Observe that the only possible

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 29

edges between these vertices may be at most two of the edges (v1, v2), (v2, v3), and (v3, v`). Hence, we

conclude that either v1, v3 or v2, v` are a distance of at least 3 in Q. Let us assume that v2, v` are at distance

3 or more in Q, and the other case is symmetric and P23, P3` be the paths not containing v1 in Q between

v2 and v3, and v3 and v`, respectively. Notice that for any u ∈ M2 the graph G′[{u} ∪ V (P23) ∪ V (P3`)]

contains a DH-obstruction. Since the graph is free of all small obstruction, this DH-obstruction, denoted Q̂,

must be a chordless cycle on at least 5 vertices. Furthermore this obstruction can contain at most 2 vertices

from {v2, v3, v`}, as otherwise there would be a chord in it. Hence Q̂ ∩M contains strictly fewer vertices

than Q ∩M . Moreover, we have E(Q̂ \M) ⊆ E(Q \M). Now, by a recursive application of this lemma to

Q̂, we obtain the required Q′. �

A consequence of the above lemma is that, whenever M is a biclique in G′, we may safely ignore any

DH-obstructionthat intersects M in more than 3 vertices. This leads us to the following lemma.

Lemma 6.7. Given a biclique M in G′, the function (x \M) is a valid fractional solution such that

w′(x \M) ≤ (1 + 4
logn

)w′(x).

Proof. To prove that (x \M) is a valid fractional solution, let Q be some chordless cycle (not on 4

vertices) in G′. We need to show that (x \M)(V (Q)) ≥ 1. By our assumption Q can contain at most 3

vertices from M . Thus, since x is a valid fractional solution, it holds that x(V (Q)\V (M)) ≥ 1− 3
logn

. By the

definition of (x\M), this fact implies that (x\M)(V (Q)) = (x\M)(V (Q)\V (M)) ≥ (1+ 4
logn

)(1− 3
logn

) =

1 + 1
logn

− 12
(logn)2

≥ 1, where the last inequality relies on the assumption n ≥ 212.

For the proof of the second part of the claim, note that w′(x \M) = (1 + 4
logn

) w′(x|V (G′)\V (M)) ≤
(1 + 4

logn
)w′(x). �

We call DHD-APPROX recursively with the fractional solution (x \ C), and by Lemma 6.7, w′(x \
C) ≤ (1 + 4

logn
)w′(x). If Lemma 6.3 were true, we return a solution that is at least opt and at most

(logn
logn+4

) · c · logn · log(α(G)) · w(x \M) ≤ c · logn · log(α(G)) · w(x) as desired. In other words, to prove

Lemma 6.1, it is sufficient that we next focus only on the proof of Lemma 6.3. The proof of this lemma is

done by induction. When we consider some recursive call, we assume that the solutions returned by the

additional recursive calls that it performs, which are associated with graphs G̃ such that α(G̃) ≤ 3
4
α(G′),

complies with the conclusion of the lemma.

Termination. Once G′ becomes a distance hereditary graph, we return 0 as our solution and ∅ as the set

that realizes it. Clearly, we thus satisfy the demands of Lemma 6.3. In fact, we thus also ensure that the

execution of our algorithm terminates once α(G′) < logn.

Lemma 6.8. If α(G′) < logn, then G′ is a distance hereditary graph.

Proof. Suppose that G′ is not a distance hereditary graph. Then, it contains an obstruction Q. Since x

is a valid fractional solution, it holds that x(V (Q)) ≥ 1. But x satisfies the low-value invariant therefore, it

holds that x(V (Q)) < |V (Q)|/ logn. These two observations imply that |V (Q)| > logn. Furthermore, at

least logn of these vertices are assigned a non-zero value by x, i.e. α(G′) ≥ logn. Therefore, if α(G′) < logn,

then G′ must be a distance hereditary graph. �
Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

30 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

The fact that, the recursive calls are made onto graphs where the distance hereditary subgraph contains

at most 3/4 the number of vertices in the current distance hereditary subgraph, we observe the following.

Observation 6.9. The maximum depth of the recursion tree is bounded by q · logn for some fixed constant

q.

Recursive Call. Since H ′ is a distance hereditary graph, it has a rank-width-one decomposition (T , φ),

where T is a binary tree and φ is a bijection from V (G′) to the leaves of T . Furthermore, rank-width of T
is 1, which means that for any edge of the tree, by deleting it, we obtain a partition of the leaves in T . This

partition induces a cut of the graph, where the set of edges crossing this cut forms a biclique M , with vertex

partition as V (M) = M1]M2 in the graph. By standard arguments on trees, we deduce that T has an edge

that defines a partition such that after we remove the biclique edges between M1 and M2 from G′ we obtain

two (not necessarily connected) graphs, H1 and H2, such that |V (H1)|, |V (H2)| ≤ 3
4
|V (H ′)| and M1 ⊆ H1,

M2 ⊆ H2. Note that the bicliques M and C are vertex disjoint. We proceed by replacing the fractional

solution x by (x \M). For the sake of clarity, we denote x∗ = (x \M). Let G1 = G′[V (H1)∪V (C)∪V (M)],

G2 = G′[V (H2) ∪ V (C) ∪ V (M)].

We adjust the current instance by relying on Lemma 6.5 so that x∗ satisfies the low-value invariant (in

the same manner as it is adjusted in the initialization phase). In particular, we remove h(x∗) from G′,H ′,

G1, H1, G2 and H2, and we let (G∗, w∗, C,H∗,x∗), G∗1, H∗1 G
∗
2 and H∗2 denote the resulting instance and

graphs. Observe that, now we have α(G∗1), α(G∗2) ≤ 3
4
α(G′). We will return a solution that is at least opt

and at most (logn
logn+4

)δ+1 · c · logn · log(α(G′)) ·w∗(x∗), along with a set that realizes it.10 In the analysis we

will argue this it is enough for our purposes.

Next, we define two subinstances, I∗1 = (G∗1, w
∗|V (G∗1)

, C,H∗1 ,x
∗|V (G∗1)

) and I∗2 = (G∗2, w
∗|V (G∗2)

, C,H∗2 ,x
∗|V (G∗2)

).

We solve each of these subinstances by a recursive call to DHD-APPROX, and thus we obtain two solutions

of sizes, s∗1 to I∗1 and s∗2 to I∗2 , and two sets that realize these solutions, S∗1 and S∗2 . By the inductive

hypothesis, we have the following observations.

Observation 6.10. S∗1 ∪ S∗2 intersects any chordless cycle on at least 6 vertices in G∗ that lies entirely

in either G∗1 or G∗2.

Observation 6.11. Given i ∈ {1, 2}, s∗i ≤ (logn
logn+4

)δ+1 · c · logn · log(α(G∗i)) · w(x∗i).

Moreover, since x∗(V (C) ∪ V (M)) = 0, we also have the following observation.

Observation 6.12. w∗(x∗1) + w∗(x∗2) = w∗(x∗).

We say that a cycle in G∗ is bad if it is a chordless cycle not on four vertices that belongs entirely to

neither G∗1 nor G∗2. Next, we show how to intersect bad cycles.

Bad Cycles. Let us recall the current state of the graph G′. G′ is partitioned into a biclique C and a

distance hereditary graph H ′. Furthermore, there is a biclique M with vertex bipartition as M1 and M2 so

that deleting the edges between M1 and M2, gives a balanced partition of H ′ into H1 and H2. Now, by

10Here, the coefficient (logn
logn+4)δ has been replaced by the smaller coefficient (logn

logn+4)δ+1.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 31

Lemma 6.6, we may ignore any chordless cycle that intersects either of the two bicliques C and M in more

than three vertices each, and this allows us to update our fractional feasible solution to x∗ = (x/M). Then

we recursively solve the instances G∗1 and G∗2 and remove the returned solution. Now consider the remaining

graph, and any obstructions that are left. As the graph no longer contains small obstructions, it is clear that

any remaining obstruction is a chordless cycle on at least 6 vertices and is a bad cycle. We first examine the

relation between bad cycles and pairs (v, u) of vertices v ∈ V (C) and u ∈ V (M).

Lemma 6.13. If a bad cycle exists, then there must also be a bad cycle Q such that Q \ (M ∪ C) is a

union of two internally vertex disjoint and non-adjacent path-segments, P1 and P2 such that, P1 ⊆ G1 and

P2 ⊆ G2, and each of them connect a pair of vertices in M × C.

Proof. Let Q′ be a bad cycle. Let us recall that the input graph G′ can be partitioned into the biclique

C and a distance hereditary graph H ′. Hence Q′ ∩C 6= ∅. Furthermore, if Q′ ∩M = ∅, then Q′ is preserved

in G′ −M . This means that Q′ is either present in G∗1, or in G∗2, and hence it cannot be a bad cycle, which

is a contradiction. Hence Q′ ∩M 6= ∅ as well. Finally, Q′ contains vertices from both H1 and H2, which

implies Q′ ∩G1 and Q′ ∩G2 are both non-empty as well.

Now, by applying Lemma 6.6 to Q′ and C, we obtain a bad cycle Q̂ such that Q̂ ∩ C is either a single

vertex, or an edge or an induced path of length three. Since, M ∩ C = ∅, we can again apply Lemma 6.6 to

Q̂ and M , and obtain a bad cycle Q such that each of Q ∩ C and Q ∩M is either a single vertex, or, an

edge or an induced path of length three. Hence, Q− (V (M) ∪ V (C)) is a pair of internally disjoint paths,

whose endpoints are in M × C. Furthermore, one of these paths, denoted P1, is contained in G1, and the

other, denoted P2, is contained in G2. �

The above lemma (Lemma 6.13) implies that it is safe to ignore all the bad cycles that don’t satisfy the

conclusion of this lemma. We proceed to enumerate some helpful properties of those bad cycles that satisfy

the above lemma. We call P1, P2 the path segments of the bad cycle Q.

Lemma 6.14. Suppose P1, P2 are path segments of a bad cycle Q where P1 ⊆ G1 − S∗1 and P2 ⊆ G2 − S∗2 ,

where S∗1 and S∗2 are a solution to G∗1 and G∗2, respectively. Then for any P ′1 which is an induced path in

G1 − S∗1 with the same endpoints as P1 we have that Q′ = G′[(Q ∩ (M ∪C)) ∪ V (P ′1) ∪ V (P2)] is also a bad

cycle.

Proof. Observe that, P1 and P ′1 are paths between the same endpoints in G1 − S∗1 , which is a distance

hereditary graph. Therefore, P ′1 is an induced path of the same length as P1. Furthermore, no vertex in P ′1

is adjacent to a vertex in Q− P1. Hence Q′ is also a bad cycle. �

The above lemma allows us to reduce the problem of computing a solution that intersects all bad-cycles,

to computing a solution for an instance of Weighted Multicut. More formally, let Q be a bad cycle with

path segments P1 and P2 , the feasible fractional solution x∗ assigns a total value of at least 1 to the vertices

in Q. As x∗ assigns 0 to every vertex in M ∪ C, we have that at least one of P1 or P2 is assigned a total

value of at least 1/2. Suppose that it were P1 then 2x∗ assigns a total value 1 to P1 in G1. This fractional

solution is a solution to the Weighted Multicut problem defined on the pairs of vertices in C ×M , which

are separated by 2x∗ in G′ (whose description is given below).

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

32 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

Given i ∈ {1, 2}, let 2x∗i denote the fractional solution that assigns to each vertex the value assigned by

x∗i times 2. For a pair (v, u) of vertices such that v ∈ V (C) and u ∈ V (M) we call (v, u) an important pair

if there is a bad cycle Q with path segments P1 and P2 that connects v and u. Let S∗1 and S∗2 be a solution

to G∗1 and G∗2, respectively (obtained recursively). For an important pair (v, u) we let P1(v, u) denote the

set of any (simple) path P1 between v and u whose internal vertices belong only to G1 − S∗1 and which

does not contain any edge such that one of its endpoints belongs to V (C) while the other endpoint belongs

to V (M). Symmetrically, we let P2(v, u) denote the set of any path P2 between v and u whose internal

vertices belong only to G2 − S∗2 and which does not contain any edge such that one of its endpoints belongs

to V (C) while the other endpoint belongs to V (M).

Lemma 6.15. For an important pair (v, u) of vertices where v ∈ V (C) and u ∈ V (M), in polynomial time

we can compute an index i(v, u) ∈ {1, 2} such that for any path P ∈ Pi(v, u), 2x∗i (V (P)) ≥ 1.

Proof. Let (v, u) be an important pair of vertices with v ∈ V (C) and u ∈ V (M). We start by arguing

that such an index exists. Assuming a contradiction, suppose there exists P1 ∈ P1(v, u) and P2 ∈ P2(v, u)

such that 2x∗1(V (P1)) < 1 and 2x∗2(V (P2)) < 1. Recall that we have a bad cycle bad cycle Q in G′−(S∗1 ∪S∗2)

with paths segments as P1 and P2 which connects v and u. But this implies that 2x∗(Q) < 1, contradicting

that x∗ was a feasible solution to G′ − (S∗1 ∪ S∗2). Therefore, such an index always exists.

For any index j ∈ {1, 2}, we use Dijkstra’s algorithm to compute the minimum weight of a path between

v and u in the graph Ĝ∗i where the weights are given by 2x∗i . In case the minimum weight is at least 1, we

have found the desired index i(v, u). Moreover, we know that for at least one index j ∈ {1, 2}, the minimum

weight should be at least 1 (if the minimum weight is at least 1 for both induces, we arbitrarily decide to fix

i(v, u) = 1). �

We say that an important pair (u, v) is separated in Gi, if the index assigned by Lemma 6.15 assigns

i to Pi(u, v). Now, for every important pair (v, u) such that v ∈ V (C), u ∈ V (M) and {v, u} /∈ E(G′),

we perform the following operation. We check if this pair is separated in G1, and if so, then we initialize

T1(v, u) = ∅. Then for each pair of neighbors of x of v and y of u, we add the pair (x, y) to T1(u, v). The

set T2(u, v) is similarly defined. At this point, we need to rely on approximate solutions to the Weighted

Multicut problem which is given by theorem below (Theorem 6.16).

Theorem 6.16 ([18]). Given an instance of Weighted Multicut, one can find (in polynomial time) a

solution that is at least opt and at most d · logn · fopt for some fixed constant d > 0, along with a set that

realizes it.

Here, a fractional solution y is a function y : V (G)→ [0,∞) such that for every pair (si, ti) ∈ T and any

path P between si and ti, it holds that y(V (P)) ≥ 1. An optimal fractional solution minimizes the weight

w(y) =
∑
v∈V (G) w(v) · y(v). Let fopt denote the weight of an optimal fractional solution.

By employing the algorithm given by Lemma 6.15, we next construct two instances of Weighted Multi-

cut. The first instance is J1 = (Ĝ∗1, w
∗
1 , T1 = {T1(v, u) : v ∈ V (C), u ∈ V (M), i(v, u) = 1, and (v, u) is an important pair})

and the second instance is J2 = (Ĝ∗2, w
∗
2 , T2 = {T2(v, u) : v ∈ V (C), u ∈ V (M), i(v, u) = 2, and (v, u) is an important pair}).

By Lemma 6.15, 2x∗1 and 2x∗2 are valid solutions to J1 and J2, respectively. Thus, by calling the algorithm

given by Theorem 6.16 with each instance, we obtain a solution r1 to the first instance, along with a set

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 33

R1 that realizes it, such that r1 ≤ 2d · log |V (G∗1)| · w∗(x∗1), and we also obtain a solution r2 to the second

instance, along with a set R2 that realizes it, such that r2 ≤ 2d · log |V (G∗2)| · w∗(x∗2). Now by Observation

6.10 and Lemma 6.13, we have obtained a set S∗ = S∗1 ∪ S∗2 ∪ R1 ∪ R2 for which we have the following

observation.

Observation 6.17. S∗ intersects any chordless cycle in G∗, and it holds that w∗(S∗) ≤ s∗1 + s∗2 + r1 + r2.

We start by showing that s∗1 + s∗2 + r1 + r2 +w(h(x)) ≤ (logn
logn+4

)δ+1 · c · logn · log(α(G′)) ·w∗(x∗). Recall

that for any i ∈ {1, 2}, ri ≤ 2d · log |V (G∗i)| ·w∗(x∗i). Thus, by Observation 6.11 and since for any i ∈ {1, 2},
|V (G∗i)| ≤ n and α(G∗i) ≤ 3

4
α(G′), we have that

w∗(S∗) ≤ (
logn

logn+ 4
)δ+1 · c · logn · log(

3

4
α(G′)) · (w∗(x∗1) + w∗(x∗2)) + 2d · logn · (w∗(x∗1) + w∗(x∗2)).

By Observation 6.12, we further deduce that

w∗(S∗) ≤
(

(
logn

logn+ 4
)δ+1 · c · log(

3

4
α(G′)) + 2d

)
· logn · w∗(x∗).

Now, it only remains to show that (logn
logn+4

)δ+1 · c · log(3
4
α(G′)) + 2d ≤ (logn

logn+4
)δ+1 · c · logα(G′), which is

equivalent to 2d ≤ (logn
logn+4

)δ+1 · c · log(4
3
). Observe that δ ≤ q · logn− 1 for some fixed constant q. Indeed,

it initially holds that α(G) ≤ n, at each recursive call, the number of vertices assigned a non-zero value by

x∗ decreases to at most a factor of 3/4 of its previous value, and the execution terminates once this value

drops below (logn)/2. Thus, it is sufficient to choose the constant c so that 2d ≤ (logn
logn+4

)q·logn · c · log(4
3
).

As the term (logn
logn+4

)q·logn is lower bounded by 1/(e4q), it is sufficient that we fix c = 2 · e4q · d · 1/ log(4
3
).

Note that 2d ≤ (logn
logn+4

)q·logn · c · log(4
3
), where d ≥ 1. Therefore, (logn

logn+4
)q·logn · c ≥ 1. This together

with Lemma 6.5 and 6.7 implies that w′(S∗) + w′(h(x)) ≤ (logn
logn+4

)δ · c · log(α(G′))w′(x), which proves

Lemma 6.3.

6.2 General Graphs

In this section we handle general instances by developing a d · log2 n-factor approximation algorithm for

WDHVD, Gen-DHD-APPROX, thus proving the correctness of Theorem 1.4.

The Recursive Algorithm. We define each call to our algorithm Gen-DHD-APPROX to be of the form

(G′, w′), where (G′, w′) is an instance of WDHVD such that G′ is an induced subgraph of G, and we denote

n′ = |V (G′)|. We ensure that after the initialization phase, the graph G′ never contains a DH-obstruction on

at most 50 vertices. We call this invariant the O50-free invariant. In particular, this guarantee ensures that

the graph G′ always contains only a small number of maximal bicliques, as stated in the following lemma.

Lemma 6.18 (Lemma 3.5 [26]). Let G be a graph on n vertices with no DH-obstruction on at most 6

vertices. Then G contains at most (n3 + 5n)/6 maximal bicliques, and they can be enumerated in polynomial

time.

Goal. For each recursive call Gen-DHD-APPROX(G′, w′), we aim to prove the following.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

34 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

Lemma 6.19. Gen-DHD-APPROX returns a solution that is at least opt and at most d
2
· log3 n′ · opt.

Moreover, it returns a subset U ⊆ V (G′) that realizes the solution. Here d is a constant, which will be

determined later.

At each recursive call, the size of the graph G′ becomes smaller. Thus, when we prove that Lemma 6.19

is true for the current call, we assume that the approximation factor is bounded by d
2
· log3 n̂ · opt for any

call where the size n̂ of the vertex-set of its graph is strictly smaller than n′.

Initialization. We are given (G,w) as input, and first we need to ensure that the O50-free invariant is

satisfied. For this purpose, we update G as follows. First, we let O50 denote the set of all DH-obstruction on

at most 50 vertices of G. Clearly, O50 can be computed in polynomial time and it holds that |O50| ≤ nO(1).

Now, we construct an instance of Weighted 50-Hitting Set, where the universe is V (G), the family of all

setsof size at most 50 in O50, and the weight function is w′. Since each DH-obstruction must be intersected,

therefore, the optimal solution to our Weighted 50-Hitting Set instance is at most opt. By using the

standard c′-approximation algorithm for Weighted c′-Hitting Set [27], which is suitable for any fixed

constant c′, we obtain a set S ⊆ V (G) that intersects all the DH-obstruction in O50 and whose weight is at

most 50 · opt. Having the set S, we remove its vertices from G to obtain the graph G′, and w′ = w|G′ . Now

that the O50-free invariant is satisfied, we can call Gen-DHD-APPROX on (G′, w′) and to the outputted

solution, we add w(S) and S.

We note that during the execution of the algorithm, we update G′ only by removing vertices from it, and

thus it will always be safe to assume that the O50-free invariant is satisfied. Now, by Lemma 6.19, we obtain

a solution of weight at most d
2
· log3 n · opt + 50 · opt ≤ d · log3 n · opt, then combined with S, it allows us to

conclude the correctness of Theorem 1.4.

Termination. Observe that due to Lemma 6.18, we can test in polynomial time, if our current graph G′ is

of the special kind that can be partitioned into a biclique and a distance hereditary graph: we examine each

maximal biclique of G′, and check whether after its removal we obtain a distance hereditary graph. Once G′

becomes such a graph that consists of a biclique and a distance hereditary graph, we solve the instance

(G′, w′) by calling algorithm DHD-APPROX. Observe that this returns a solution of value O(log2 n · opt)
which is also O(log3 n · opt).

Recursive Call. Similar to the case for WCVD, instead computing a balanced separators with a maximal

clique and some additional vertices, here we find a balanced separator that comprises of a biclique and some

additional, but small number of vertices. Existence of such a separator is guaranteed by Lemma 6.20. From

Lemma 6.18, it follows that the graph with no DH-obstruction of size at most 50 contains at most O(n3)

maximal bicliques and they can enumerated in polynomial time. We use the weighted variant of Lemma 3.8

from [26] in Lemma 6.20. The proof of Lemma 6.20 remains exactly the same as that in Lemma 3.8 of [26].

Lemma 6.20 (Lemma 3.8 [26]). Let G′ be a connected graph on n′ vertices not containing any DH-

obstruction of size at most 50 and w : V (G)→ R be a weight function. Then in polynomial time we can find

a balanced vertex separator K]X such that the following conditions are satisfied.

• K is a biclique in G or an empty set;

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 35

• w(X) ≤ q · logn′ · opt, where q is some fixed constant.

Here, opt is the weight of the optimum solution to WDHVD of G.

We note that we used theO(logn′)-factor approximation algorithm by Leighton and Rao [28] in Lemma 6.20

to find the balanced separator, instead of the O(
√

logn′)-factor approximation algorithm by Feige et al. [11],

as the algorithm by Feige et al. is randomized. Let us also remark that if K is a biclique, then there is a

bipartition of the vertices in K into A] B, where both A and B are non-empty, which will be crucially

required in later arguments.

Next, we apply in Lemma 6.20 to (G′, w′) to obtain a pair (K,X). Since K ∪X is a balanced separator

for G′, we can partition the set of connected components of G′ \ (M ∪S) into two sets, A1 and A2, such that

for V1 =
⋃
A∈A1

V (A) and V2 =
⋃
A∈A2

V (A) it holds that n1, n2 ≤ 2
3
n′ where n1 = |V1| and n2 = |V2|. We

then define two inputs of (the general case) WDHVD: I1 = (G′[V1], w′V1
) and I2 = (G′[V2], w′V2

). Let opt1

and opt2 denote the optimal solutions to I1 and I2, respectively. Observe that since V1∩V2 = ∅, it holds that

opt1 + opt2 ≤ opt. We solve each of the two sub-instances by recursively calling algorithm Gen-DH-APPROX.

By the inductive hypothesis, we obtain two sets, S1 and S2, such that G′[V1] \ S1 and G′[V2] \ S2 are both

distance hereditary graphs, and w′(S1) ≤ d
2
· log3 n1 · opt1 and w′(S2) ≤ d

2
· log3 n2 · opt2. Now, if K were

an empty set then it is easy to see that X ∪ S1 ∪ S2 is a feasible solution to the instance (G′, w′). Now let

us bound the total weight of this subset.

w′(X ∪ S1 ∪ S2) ≤ w′(X) + w′(S1) + w′(S2)

≤ q · logn′ · opt + d
2
· (log3 n1 · opt1 + log3 n2 · opt2)

Recall that n1, n2 ≤ 2
3
n′ and opt1 + opt2 ≤ opt.

< q · logn′ · opt + d
2
· log3 2

3
n′ · opt

< d
2
· log3 n′ · opt

The more interesting case is whenK is a biclique. Then, we first removeX∪S1∪S2 from the graph, and note

that the above bound also holds for this subset of vertices. Now observe that the graph G′′ = G′−(X∪S1∪S2)

can be partitioned into a biclique K and a distance hereditary graph H = G[(V1 ∪ V2) \ (S1 ∪ S2)], along

with the weight function w′′ = w′V (G′′). Thus we have an instance of the Biclique + Distance Hereditary

Graph spacial case of WDHVD. Furthermore, note that we retained a fractional feasible solution x to the

LP of the initial input G′, w′, which upperbounds the value of a fractional feasible solution x′′ to the LP of

the instance G′′, w′′. We apply the algorithm DHD-APPROX on (G′′, w′′,K,H,x′′) which outputs a solution

S such that w′′(S) = w′(S) = O(log2 n · opt).
Observe that, any obstruction in G′ \ S is either completely contained in G′[V1 \ S], or completely

contained in G′[V2 \ S] or it contains at least one vertex from K. This observation, along with the fact that

G′[(V1 ∪ V2 ∪K) \ (S1 ∪ S2 ∪ Ŝ)] is a distance hereditary graph, implies that G′ \ T is a distance hereditary

graph where T = X ∪ S1 ∪ S2 ∪ Ŝ. Thus, it is now sufficient to show that w′(T) ≤ d
2
· (logn′)3 · opt. By

the discussion above, we have that DHD-APPROX returns a solution of value c log2 n · opt, where c is some

constant.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

36 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

w′(T) ≤ w′(S) + w′(S1) + w′(S2) + w′(Ŝ1) + w′(Ŝ2)

≤ q · logn′ · opt + d
2
· (log3 n1 · opt1 + log3 n2 · opt2) + c · log2 n′ · opt.

Recall that n1, n2 ≤ 2
3
n′ and opt1 + opt2 ≤ opt. Thus, we have that

w′(T) ≤ q · logn′ · opt + d
2
· (log3 2

3
n′) · opt + c · log2 n′ · opt

≤ d
2
· log3 n′ · opt + (c− d log 3

2
) · log2 n′ · opt.

Overall, we conclude that to ensure that w′(T) ≤ d
2
·log3 n′ ·opt, it is sufficient to ensure that c−d log 3

2
≤ 0,

which can be done by fixing d =
c

log 3
2

.

7 CONCLUSION

In this paper, we designed O(logO(1) n)-approximation algorithms for Weighted Planar F -Minor-Free

Deletion, Weighted Chordal Vertex Deletion and Weighted Distance Hereditary Vertex

Deletion (or Weighted Rankwidth-1 Vertex Deletion). These algorithms are the first ones for these

problems whose approximation factors are bounded by O(logO(1) n). Along the way, we also obtained a

constant-factor approximation algorithm for Weighted Multicut on chordal graphs. All our algorithms

are based on the same recursive scheme. We believe that the scope of applicability of our approach is very

wide. We would like to conclude our paper with the following concrete open problems.

• Does Weighted Planar F -Minor-Free Deletion admit a constant-factor approximation

algorithm? Furthermore, studying families F that do not necessarily contain a planar graph is

another direction for further research.

• Does Weighted Chordal Vertex Deletion admit a constant-factor approximation algorithm?

• Does Weighted Rankwidth-η Vertex Deletion admit a O(logO(1) n)-factor approximation

algorithm?

• On which other graph classes does Weighted Multicut admits a constant-factor approximation?

Acknowledgments. We sincerely thank Nikhil Bansal and Seeun William Umboh for explaining us their

paper and for several discussions on WPF -MFD.

REFERENCES

[1] Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. 2017. Feedback Vertex

Set Inspired Kernel for Chordal Vertex Deletion. In Proceedings of the 28th ACM-SIAM Symposium on Discrete

Algorithms (SODA). 1383–1398.

[2] Vineet Bafna, Piotr Berman, and Toshihiro Fujito. 1999. A 2-approximation algorithm for the undirected feedback

vertex set problem. SIAM Journal on Discrete Mathematics 12, 3 (1999), 289–297.

[3] Nikhil Bansal, Daniel Reichman, and Seeun William Umboh. 2017. LP-based Robust Algorithms for Noisy Minor-free

and Bounded Treewidth Graphs. In Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA).

1964–1979.

[4] Reuven Bar-Yehuda and Shimon Even. 1981. A Linear-Time Approximation Algorithm for the Weighted Vertex Cover

Problem. Journal of Algorithms 2, 2 (1981), 198–203.

[5] Reuven Bar-Yehuda, Dan Geiger, Joseph Naor, and Ron M. Roth. 1998. Approximation algorithms for the feedback

vertex set problem with applications to constraint satisfaction and Bayesian inference. SIAM J. Comput. 27, 4 (1998),

942–959.

[6] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. 1992. Automatic Generation of Linear-Time Algorithms from

Predicate Calculus Descriptions of Problems on Recursively Constructed Graph Families. Algorithmica 7, 5&6 (1992),

555–581.

Manuscript submitted to ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Polylogarithmic Approximation Algorithms for Weighted-F-Deletion Problems 37

[7] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. 2000. Linear Time Solvable Optimization Problems on Graphs

of Bounded Clique-Width. Theory of Computing Systems 33, 2 (2000), 125–150.

[8] Bruno Courcelle and Stephan Olariu. 2000. Upper bounds to the clique width of graphs. Discrete Applied Mathematics

101, 1-3 (2000), 77–114.

[9] Reinhard Diestel. 2012. Graph Theory, 4th Edition. Graduate texts in mathematics, Vol. 173. Springer.

[10] M Farber. 1989. On diameters and radii of bridged graphs. Discrete Mathematics 73 (1989), 249–260.

[11] Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. 2008. Improved Approximation Algorithms for Minimum

Weight Vertex Separators. SIAM J. Comput. 38, 2 (2008), 629–657.

[12] Samuel Fiorini, Gwenaël Joret, and Ugo Pietropaoli. 2010. Hitting Diamonds and Growing Cacti. In Proceedings of the

14th Conference on Integer Programming and Combinatorial Optimization (IPCO), Vol. 6080. 191–204.

[13] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket Saurabh. 2016. Hitting Forbidden

Minors: Approximation and Kernelization. SIAM Journal on Discrete Mathematics 30, 1 (2016), 383–410.

[14] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. 2012. Planar F-Deletion: Approximation,

Kernelization and Optimal FPT Algorithms. In Proceedings of IEEE 53rd Annual Symposium on Foundations of

Computer Science (FOCS). 470–479.

[15] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, and Saket Saurabh. 2011. Bidimensionality and EPTAS. In

Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA). 748–759.

[16] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. 2012. Bidimensionality and geometric graphs. In Proceedings

of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA). 1563–1575.

[17] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. 2010. Bidimensionality and Kernels. In

Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA). 503–510.

[18] Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. 1996. Approximate Max-Flow Min-(Multi)Cut Theorems and

Their Applications. SIAM J. Comput. 25, 2 (1996), 235–251.

[19] Daniel Golovin, Viswanath Nagarajan, and Mohit Singh. 2006. Approximating the k-multicut problem. In ACM-SIAM

Symposium on Discrete Algorithms (SODA). 621–630.

[20] Martin Charles Golumbic. 1980. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York.

[21] Anupam Gupta, Euiwoong Lee, Jason Li, Pasin Manurangsi, and Micha l W lodarczyk. 2018. Losing Treewidth by

Separating Subsets. arXiv preprint arXiv:1804.01366 (2018).

[22] Peter L Hammer and Frédéric Maffray. 1990. Completely separable graphs. Discrete applied mathematics 27, 1 (1990),

85–99.

[23] Petr Hlinený, Sang-il Oum, Detlef Seese, and Georg Gottlob. 2008. Width Parameters Beyond Tree-width and their

Applications. Comput. J. 51, 3 (2008), 326–362.

[24] Edward Howorka. 1977. A characterization of distance-hereditary graphs. The quarterly journal of mathematics 28, 4

(1977), 417–420.

[25] Bart M. P. Jansen and Marcin Pilipczuk. 2017. Approximation and Kernelization for Chordal Vertex Deletion. In

Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA). 1399–1418.

[26] E. J. Kim and O. Kwon. 2016. A Polynomial Kernel for Distance-Hereditary Vertex Deletion. ArXiv e-prints (2016).

arXiv:1610.07229 https://arxiv.org/abs/1610.07229v2

[27] J. Kleinberg and E. Tardos. 2005. Algorithm design. Addison-Wesley.

[28] T Leighton and S Rao. 1999. Multicommodity max-flow min-cut theorems and their use in designing approximation

algorithms. J. ACM 46 (1999), 787–832.

[29] John M. Lewis and Mihalis Yannakakis. 1980. The Node-Deletion Problem for Hereditary Properties is NP-Complete.

J. Comput. System Sci. 20, 2 (1980), 219–230.

[30] Carsten Lund and Mihalis Yannakakis. 1993. The Approximation of Maximum Subgraph Problems. In Proceedings of

the 20nd International Colloquium on Automata, Languages and Programming (ICALP), Vol. 700. 40–51.

[31] John W Moon and Leo Moser. 1965. On cliques in graphs. Israel journal of Mathematics 3, 1 (1965), 23–28.

[32] G. L. Nemhauser and L. E. Trotter, Jr. 1974. Properties of vertex packing and independence system polyhedra.

Mathematical Programming 6 (1974), 48–61.

[33] Sang-il Oum. 2005. Rank-width and vertex-minors. Journal of Combinatorial Theory, Series B 95, 1 (2005), 79–100.

[34] Sang-il Oum. 2008. Approximating rank-width and clique-width quickly. ACM Transactions on Algorithms 5, 1 (2008).

[35] Sang-il Oum. 2016. Rank-width: Algorithmic and structural results. CoRR abs/1601.03800 (2016).

[36] Sang-il Oum and Paul D. Seymour. 2006. Approximating clique-width and branch-width. Journal of Combinatorial

Theory, Series B 96, 4 (2006), 514–528.

[37] Neil Robertson and P D Seymour. 1986. Graph Minors. V. Excluding a Planar Graph. Journal of Combinatorial

Theory Series B 41, 1 (1986), 92–114.

Manuscript submitted to ACM

http://arxiv.org/abs/1610.07229
https://arxiv.org/abs/1610.07229v2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

38 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi

[38] Neil Robertson and Paul D. Seymour. 1995. Graph Minors .XIII. The Disjoint Paths Problem. Journal of Combinatorial

Theory, Series B 63, 1 (1995), 65–110.

[39] Neil Robertson and Paul D. Seymour. 2004. Graph Minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory,

Series B 92, 2 (2004), 325–357.

[40] Horst Sachs. 1970. On the Berge conjecture concerning perfect graphs. Combinatorial Structures and their Applications

37 (1970), 384.

[41] Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. 1977. A New Algorithm for Generating All the

Maximal Independent Sets. SIAM J. Comput. 6, 3 (1977), 505–517.

[42] Mihalis Yannakakis. 1979. The Effect of a Connectivity Requirement on the Complexity of Maximum Subgraph Problems.

J. ACM 26, 4 (1979), 618–630.

[43] Mihalis Yannakakis. 1994. Some Open Problems in Approximation. In Proceedings of 2nd Italian Conference on

Algorithms and Complexity, Second (CIAC). 33–39.

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Preliminaries
	3 Approximation Algorithm for WPF-MFD
	3.1 Constant sized graph + F-minor free graph
	3.2 General Graphs

	4 Weighted Chordal Vertex Deletion on General Graphs
	4.1 Clique+Chordal Graphs
	4.2 General Graphs

	5 Weighted Multicut in Chordal Graphs
	6 Distance-Hereditary Vertex Deletion
	6.1 Biclique+ Distance Hereditary Graph
	6.2 General Graphs

	7 Conclusion
	References

