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Given a digraph D and an integer k, Directed Feedback Vertex Set (DFVS) asks whether 
there exists a set of vertices S of size at most k such that F = D \ S is DAG. Mnich and van 
Leeuwen [STACS 2016 ] considered the kernelization complexity of DFVS with an additional 
restriction on F , namely that F must be an out-forest (Out-Forest Vertex Deletion Set), 
an out-tree (Out-Tree Vertex Deletion Set), or a (directed) pumpkin (Pumpkin Vertex 
Deletion Set). Their objective was to shed light on the kernelization complexity of DFVS, 
a well-known open problem in Parameterized Complexity. We improve the kernel sizes of
Out-Forest Vertex Deletion Set from O(k3) to O(k2) and of Pumpkin Vertex Deletion Set

from O(k18) to O(k3). We also prove that the former kernel size is tight under certain 
complexity theoretic assumptions.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Feedback Set problems form a family of fundamental combinatorial optimization problems. The input for Directed Feed-

back Vertex Set (DFVS) (Directed Feedback Edge Set (DFES)) consists of a directed graph (digraph) D and a positive integer k, 
and the question is whether there exists a subset S ⊆ V (D) (S ⊆ E(D)) such that the graph obtained after deleting the 
vertices (edges) in S is a directed acyclic graph (DAG). Similarly, the input for Undirected Feedback Vertex Set (UFVS)

(Undirected Feedback Edge Set (UFES)) consists of an undirected graph G and a positive integer k, and the question is 
whether there exists a subset S ⊆ V (G) (S ⊆ E(G)) such that the graph obtained after deleting the vertices (edges) in S is 
a forest.

All of these problems, excluding Undirected Feedback Edge Set, are NP-complete. Furthermore, Feedback Set problems 
are among Karp’s 21 NP-complete problems and have been topic of active research from algorithmic [1–17] as well as 
structural points of view [18–24]. In particular, such problems constitute one of the most important topics of research in 
Parameterized Complexity [4,6–10,14,13,15–17], spearheading development of new techniques. In this paper we study the 
parameterized complexity of restrictions of DFVS.

In Parameterized Complexity each problem instance is accompanied by a parameter k. A central notion in this field is 
the one of fixed-parameter tractability (FPT). This means, for a given instance (I, k), solvability in time f (k)|I|O(1) where f is 
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some function of k. Another central notion is the one of kernelization. A parameterized problem is said to admit a kernel of 
size f (k) for some function f of k if there is a polynomial-time algorithm, called a kernelization algorithm, that translates 
any input instance to an equivalent instance of the same problem whose size is bounded by f (k). In case the function f
is polynomial in k, the problem is said to admit a polynomial kernel. For more information on these concepts we refer the 
reader to monographs such as [25,26].

In contrast to UFVS which admits a polynomial kernel, the existence of a polynomial kernel for DFVS is still an open 
problem. The lack of progress on this question led to the consideration of various restrictions on input instances. In par-
ticular, we know of polynomial kernels for DFVS in tournaments as well as various generalizations [27–29]. However, the 
existence of a polynomial kernel for DFVS is open even for planar digraphs. Recently, in a very interesting article, to make 
progress on this question Mnich and van Leeuwen [30] considered DFVS with an additional restriction on the output rather 
than the input. Essentially, the basic philosophy of their program is the following: What happens to the kernelization com-
plexity of DFVS when we consider subclasses of DAGs?

Mnich and van Leeuwen [30] inspected this question by considering the classes of out-forests, out-trees and (directed) 
pumpkins. An out-tree is a digraph where each vertex has in-degree at most 1 and the underlying (undirected) graph is a 
tree. An out-forest is a disjoint union of out-trees. On the other hand, a digraph is a pumpkin if it consists of a source vertex 
s and a sink vertex t , s �= t , together with a collection of internally vertex-disjoint induced directed paths from s to t . Here, 
all vertices except s and t have in-degree 1 and out-degree 1. The examination of the classes of out-forests and out-trees 
was also motivated by the corresponding questions of UFVS and Tree Deletion Set in the undirected settings. Formally, 
Mnich and van Leeuwen [30] studied the following problems.

Out-Forest Vertex Deletion Set (OFVDS) Parameter: k
Input: A digraph D and a positive integer k.
Question: Is there a set S ⊆ V (D) of size at most k such that F = D \ S is an out-forest?

Out-Tree Vertex Deletion Set (OTVDS) and Pumpkin Vertex Deletion Set (PVDS) are defined in a similar manner, where 
instead of an out-forest, F should be an out-tree or a pumpkin, respectively. Mnich and van Leeuwen [30] showed that
OFVDS and OTVDS admit kernels of size O(k3) and PVDS admits a kernel of size O(k18).

Our results and methods. The objective of this article is to give improved kernels for OFVDS and PVDS. In this context, we 
obtain the following results.

• OFVDS admits an O(k2) kernel and PVDS admits an O(k3) kernel. These results improve upon the best known upper 
bounds O(k3) and O(k18), respectively.

• For any ε > 0, OFVDS does not admit a kernel of size O(k2−ε ) unless coNP ⊆ NP/poly.

To get the improved kernel for OFVDS we incorporate the Expansion Lemma as well as a factor 3-approximation algo-
rithm for OFVDS in the kernelization routine given in [30]. The significance of this improvement also lies in the fact that it 
is essentially tight.

The kernelization algorithm for PVDS given in [30] works roughly as follows. It has two phases: (a) first it gives an O(k5)

kernel for a variant of the problem where we know the source and the sink of the pumpkin obtained after deleting the 
solution vertices; and (b) in the second phase, it reduces PVDS to polynomially many instances of a variant of the problem 
mentioned in item (a) and then composes these instances to get a kernel of size O(k18). In fact given an instance (D, k) of
PVDS, the kernelization algorithm of [30] outputs an equivalent instance (D ′, k′) such that k′ =O(k18). We take a completely 
different route and use “sun-flower style” reduction rules together with a marking strategy to obtain an equivalent instance 
(D ′, k′) such that |V (D ′)| + |E(D ′)| = O(k3) and k′ ≤ k. We believe the method applied in this algorithm could be useful 
also in other kernelization algorithms.

2. Preliminaries

We denote the set of natural numbers from 1 to n by [n], and we use standard terminology from the book of Diestel [31]
for graph-related terms which are not explicitly defined here. A digraph D is a pair (V (D), E(D)) such that V (D) is a set of 
vertices and E(D) is a set of ordered pairs of vertices. The underlying undirected graph G of D is a pair (V (G), E(G)) such 
that V (G) = V (D) and E(G) is a set of unordered pairs of vertices such that {u, v} ∈ E(G) if and only if either (u, v) ∈ E(D)

or (v, u) ∈ E(D). Let D be a digraph. For any v ∈ V (D), we denote by N−(v) the set of in-neighbors of v , that is, N−(v) =
{u | (u, v) ∈ E(D)}. Similarly, we denote by N+(v) the set of out-neighbors of v , that is, N+(v) = {v | (v, u) ∈ E(D)}. We 
denote the in-degree of a vertex v by d−(v) = |N−(v)| and its out-degree by d+(v) = N+(v). We say that P = (u1, . . . , ul)

is a directed path in the digraph D if u1, . . . , ul ∈ V (D) and for all i ∈ [l − 1], (ui, ui+1) ∈ E(D). A collision is a triplet 
(u, w, v) of distinct vertices such that (u, w), (v, w) ∈ E(D).
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3. Improved kernel for OUT-FOREST VERTEX DELETION SET

The aim of this section is to present an O(k2) kernel for OFVDS. In Section 3.1 we state definitions and results relevant to 
our kernelization algorithm. Next, in Section 3.2, we design an algorithm for OFVDS that outputs a 3-approximate solution, 
which will also be used by our kernelization algorithm. Finally, in Section 3.3, we present our kernelization algorithm.

3.1. Prerequisites

We start by giving the definition of a q-expansion and the statement of the Expansion Lemma.

Definition 1 (q-Expansion). For a positive integer q, a set of edges M ⊆ E(G) is a q-expansion of A into B if (i) every vertex in A
is incident to exactly q edges in M, and (ii) M saturates exactly q|A| vertices in B (i.e., there is a set of q|A| vertices in B which are 
incident to edges in M).

Lemma 1 (Expansion Lemma [26,32]). Let q be a positive integer and G be an undirected bipartite graph with vertex bipartition (A, B)

such that |B| ≥ q|A|, and there are no isolated vertices in B. Then, there exist nonempty vertex sets X ⊆ A and Y ⊆ B such that there 
exists a q-expansion of X into Y , and no vertex in Y has a neighbor outside X (i.e., N(Y ) ⊆ X). Furthermore, the sets X and Y can be 
found in time polynomial in the size of G.

We will also need to rely on the well-known notion of l-flowers.

Definition 2 (l-Flower). An undirected graph G contains an l-flower through v if there is a family of cycles {C1, . . . , Cl} in G such 
that for all distinct i, j ∈ [l], V (Ci) ∩ V (C j) = {v}.

Lemma 2 ([26,32]). Given an undirected graph G and a vertex v ∈ V (G), there is a polynomial-time algorithm that either outputs a 
(k + 1)-flower through v or, if no such flower exists, outputs a set Z v ⊆ V (G) \ {v} of size at most 2k that intersects every cycle that 
passes through v in G.

3.2. Approximation algorithm for Out-Forest Vertex Deletion Set

This section presents a 3-factor approximation algorithm for OFVDS. Given an instance of OFVDS, let OPT be the mini-
mum size of a solution. Formally, we solve the following.

3-Approximate Out-Forest Vertex Deletion Set (Approx-OFVDS)
Input: A directed graph D .
Output: A subset X ⊆ V (D) such that D \ X is an out-forest and |X | ≤ 3 · OPT .

Given three distinct vertices u1, u2, u3 ∈ V (D), we say (u1, u2, u3) is a collision if u1 and u2 are in-neighbors of u3. 
Observe that any solution to OFVDS (and hence, Approx-OFVDS) must intersect any collision in at least 1 vertex. Moreover, 
it must intersect any cycle in at least 1 vertex. These observations form the basis of this algorithm.

Lemma 3. Approx-OFVDS can be solved in polynomial time.

Proof. Given a digraph D , the algorithm first constructs (in polynomial time) a family F of collisions and induced cycles 
in D such that the vertex sets of the entities in this family are pairwise disjoint. To do this, it initializes F = ∅. Then, as 
long as there exists a vertex v ∈ V (D) with at least two in-neighbors, u1 and u2, it inserts (v, u1, u2) into F and removes 
v, u1 and u2 from D (only for the purpose of the construction of F ). Once there is no vertex v ∈ V (D) such that d−(v) ≥ 2, 
observe that all the directed cycles in the resulting digraph are pairwise vertex disjoint. F additionally contains all these 
pairwise vertex disjoint directed cycles..

Let us now construct a solution, Sapp , for Approx-OFVDS. For every collision in F , we let Sapp contain each of the three 
vertices of this collision. From every cycle C in F we pick an arbitrary vertex and insert it into Sapp . Clearly, |Sapp| ≤ 3|F |. 
Since F is a collection of pairwise vertex disjoint collisions and directed cycles, |F | ≤ OPT . Thus, |Sapp| ≤ 3 · OPT . It is now 
sufficient to prove that D \ Sapp is an out-forest. Observe that no vertex v in D \ Sapp has in-degree at least 2, otherwise the 
collision consisting of v and two of its in-neighbors would have been inserted into F and hence also into Sapp . Moreover, 
there is no directed cycle C in D \ Sapp . Indeed, if the cycle C intersects an collision in F , it is clear that it cannot exist in 
D \ Sapp , and otherwise it would have been inserted into F and hence one of its vertices would have been inserted into 
Sapp . We thus conclude that the theorem is correct. �
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3.3. Kernelization algorithm for Out-Forest Vertex Deletion Set

We are now ready to present our kernelization algorithm. Let (D, k) be an instance of OFVDS. We note that during the 
execution of our algorithm, D may become a multigraph.

Preprocessing. We start by applying the following reduction rules exhaustively, where a rule is applied only if its condition 
is true and the conditions of all of the preceding rules are false. Rule 3.4 is given in [30], and its correctness is proven in 
that paper. It will be clear that the first five rules can be applied in polynomial time, whereas, for applying the last rule, 
we call the algorithm given by Lemma 2. Moreover, it is straightforward to verify that each of these rules, except Rule 3.4
(whose safeness follows from [30]), is safe (i.e., the instance it returns is equivalent to the input instance).

Reduction Rule 3.1. If there exists a vertex v ∈ V (D) such that d+(v) = 0 and d−(v) ≤ 1, remove v from D.

Reduction Rule 3.2. If there exists a directed path P = (w0, w1, . . . , wl, wl+1) in D such that l ≥ 2 and for all i ∈ [l], d−(wi) =
d+(wi) = 1, remove each vertex in {w1, . . . , wl−1} from D and add the edge (w0, wl) to D.

Reduction Rule 3.3. If there exists an edge (u, v) ∈ E(D) with multiplicity at least 3, remove all but two copies of it.

Reduction Rule 3.4. If there exist k + 1 collisions (u1, w1, v), . . . , (uk+1, wk+1, v) that pairwise intersect only at v, remove v from 
D and decrease k by 1.

Reduction Rule 3.5. If there exists a vertex v ∈ V (D) such that d−(v) ≥ k + 2, remove v from D and decrease k by 1.

Reduction Rule 3.6. Let G be the underlying graph of D. If there exists a vertex v ∈ V (G) such that there is a (k + 1)-flower through 
v in G, remove v from D and decrease k by 1.

Bounding out-degrees. Next, we aim to bound the maximum out-degree of a vertex in D . To this end, suppose that there 
exists a vertex v ∈ V (D) with d+(v) ≥ 16k. Let G be the underlying graph of D . Since Reduction Rule 3.6 is not applicable, 
we let Z v be the set obtained by calling the algorithm given by Lemma 2. Moreover, we let Sapp be a 3-factor approximate 
solution obtained by calling the algorithm given by Theorem 3. We can assume that |Sapp| ≤ 3k, since otherwise the input 
instance is a NO-instance. Denote Xv = (Sapp ∪ Z v) \ {v}. Since |Z v | ≤ 2k, we have that |Xv | ≤ 5k.

We proceed by examining the set Cv = {C1, C2, . . . , C|Cv |} of the connected components in G \ (Xv ∪ {v}). Since Sapp is 
an approximate solution, each component Ci ∈ Cv is an out-tree. Moreover, for any component Ci ∈ Cv , v has at most one 
neighbor in Ci , since otherwise there would have been cycle passing through v in G \ Z v , contradicting the definition of Z v . 
For each component Ci ∈ Cv , let ui be the root of Ci . Let Dv = {Ci | Ci ∈ Cv , (v, ui) ∈ E(D)} and D̃v = {Ci | Ci ∈ C, (v, u) ∈
E(D), u ∈ V (Ci), u �= ui}. Observe that d+(v) ≤ |Dv | + |D̃v | + |Xv |. Moreover, since Reduction Rule 3.4 is not applicable, 
|D̃v | ≤ k. Since d+(v) ≥ 16k, we have that |Dv | ≥ 10k. Without loss of generality, let Dv = {C1, . . . , C p} where p = |Dv |. 
Since Reduction Rule 3.1 is not applicable, for any component Ci ∈Dv there exists an edge in E(G) with one endpoint in Ci
and the other in Xv .

We now construct an auxiliary (undirected) bipartite graph H with bipartition (A, B), where A = Xv and B is a set 
of new vertices denoted by b1, . . . , bp . For any u ∈ A and bi ∈ B , (u, bi) ∈ E(H) if and only if there exists an edge in G
between u and some vertex in Ci . Since |B| ≥ 2|A| and there are no isolated vertices in B , we can use the algorithm given 
by Lemma 1 to obtain nonempty vertex sets X ′

v ⊆ A and Y ′
v ⊆ B such that there is a 2-expansion of X ′

v into Y ′
v and 

N(Y ′
v) ⊆ X ′

v . Let D′
v = {Ci | bi ∈ Y ′

v}.

Reduction Rule 3.7. Remove each of the edges in D between v and any vertex in a component in D′
v . For every vertex xi ∈ X ′

v , insert 
two copies of the edge (v, xi) into E(D).

Lemma 4. Reduction Rule 3.7 is safe.

Proof. Let D ′ be the graph resulting from the application of the rule. We need to prove that (D, k) is a YES-instance if and 
only if (D ′, k) is a YES-instance.

Forward direction. For the forward direction, we first claim that if (D, k) has a solution S such that v /∈ S , then it has a 
solution S ′ such that X ′

v ⊆ S ′ . To this end, suppose that (D, k) has a solution S such that v /∈ S . Let S ′ = (S \⋃
Ci∈D′

v
V (Ci)) ∪

X ′
v . It holds that |S ′| ≤ |S| since for each x ∈ X ′

v \ S , at least one vertex from at least one of the two components in its 
expansion set must belong to the solution. Suppose for the sake of contradiction that F = D \ S ′ is not an out-forest. First, 
assume that there exists a vertex in F with in-degree at least 2. Note that V (D) = ⋃

Ci∈Cv
V (Ci) ∪ Xv ∪ {v}. Recall that 

the neighborhood of each of the vertices in the connected components that belong to D′
v , outside their own component, 

is contained in {v} ∪ X ′
v . Moreover, v only has out-neighbors in the components that belong to D′

v and each Ci ∈ Cv
is an out-tree. Therefore, since D \ S has no vertex of in-degree at least 2, so does D \ S ′ . Now, assume that there is 
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a cycle C in F . Then, if V (C) ∩ (S ∩ ⋃
Ci∈D′ V (Ci)) = ∅, then C is also a cycle in D \ S , which is a contradiction. Thus, 

V (C) ∩ (S ∩ ⋃
Ci∈D′ V (C)i) �= ∅. However, any cycle that passes through a component in D′

v also passes through v and a 
vertex in X ′

v . Since X ′
v ⊆ S ′ , no such cycle exists. This finishes the proof of the claim.

Let S be a solution to (D, k). If v ∈ S , then it is clear that D ′ \ S is an out-forest. Otherwise, if v /∈ S , our claim implies 
that (D, k) has a solution S ′ such that X ′

v ⊆ S ′ . Then, D ′ \ S ′ is an out-forest.

Backward direction. For the backward direction, let us prove the following claim. If (D ′, k) has a solution S such that 
v /∈ S , then X ′

v ⊆ S . Suppose, by way of contradiction, that the claim is incorrect. Then, there exists x ∈ X ′
v such that x /∈ S . 

However, this implies that D ′ \ S is not an out-forest as it contains the double edges (v, xi).
Now, let S be a solution to (D ′, k), and denote F = D ′ \ S . Suppose v ∈ S . Then observe that, D \ S = D ′ \ S is an out 

forest and thus S is solution to (D, k). If v /∈ S , then by our previous claim, X ′
v ⊆ S . Recall that for each Ci ∈ Cv , Ci is an 

out-tree and ui is the root of the out-tree Ci . Observe that for each Ci ∈ D′
v such that ui /∈ S , ui is a root of some out-tree 

in F . This, is because the neighborhood of such a ui in D \ Ci , is contained in X ′
v ∪ {v}, X ′

v ⊆ S and each edge between 
v and any vertex in D′

v is absent in D ′ . Also observe that, each such vertex ui and v belong to different out-trees of F
because in D ′ , the edges between v and any vertex in D′

v are absent. This implies that if we add (to D ′) the edges between 
v and each vertex ui that have been removed by the application of the rule, V (F ) will still induce an out-forest. Thus, S is 
a solution to (D, k). �

After an exhaustive application of Reduction Rule 3.7, the out-degree of each vertex in D is at most 16k − 1. However, 
since this rule inserts edges into E(G), we need the following lemma.

Lemma 5. The total number of applications of the reduction rules is bounded by a polynomial in the input size.

Proof. We associate the measure μ(D, k) = |V (D)| + |E1(D)| with every instance, where E1(D) are those edges in E(D)

that have multiplicity 1. Initially, this measure is bounded by a polynomial in the input size. We maintain the invariant that 
the measure is always positive and it strictly decreases whenever any of the reduction rules is applied. We thus conclude 
that the lemma is correct. �

Correctness. By relying on counting arguments as well as Lemmas 4 and 5, we obtain the main result of this section.

Theorem 6. OFVDS admits an O(k2)-kernel.

Proof. Since our reduction rules are safe and can be applied only polynomially many times, we next assume that none 
of them is applicable, and turn to bound the number of vertices and edges in the resulting instance (D, k). To this end, 
suppose that (D, k) is a YES-instance. Let S be a solution, and denote F = D \ S . Let V≤1 be the vertices in F that have 
degree at most 1 (in F ), V=2 be the vertices in F that have degree exactly 2, and V≥3 be the vertices in F that have degree 
at least 3. Note that |V (F )| = |V≤1| + |V=2| + |V≥3|.

Since Reduction Rules 3.5 and 3.7 are not applicable, the total degree of any vertex is bounded by O(k). In particular, 
the number of neighbors in F of each vertex in S is bounded by O(k). Therefore, the total number of vertices in F that 
have a neighbor in S is bounded by O(k2). Observe that each vertex in V≤1 is either a leaf in F or a root in F . Also all 
leaf vertices of F are in V≤1. If a vertex in V≤1 is a leaf in F , then such a vertex must have at least one neighbor in S , 
as otherwise Reduction Rule 3.1 would have been applicable. Thus, the total number of leaf vertices in |V≤1| is bounded 
by O(k2). Since the total number of vertices that are a root of some out-tree in F are at most the number of leaves in F , 
V≤1 is bounded by O(k2). Since the underlying graph of F is a forest, |V≥3| < |V≤1|. Thus, V≥3 is also bounded by O(k2). 
Let us mark each of the vertices in F which has a neighbor in S as well as the vertices in V≥3. Note that all other vertices 
are degree-2 vertices in D . Let P be the set maximal degree-2 paths in F whose endpoints are not marked. Observe that 
|P| is bounded by O(k2). Moreover, the length of a maximal degree-2 path in P is at most 1, else Reduction Rule 3.2 is 
applicable.

We deduce that the number of vertices in D should be bounded by O(k2), otherwise we can conclude that (D, k) be a
NO-instance. Since F is a forest, |E(F )| < |V (F )|. Moreover, the number of edges incident to vertices in S is bounded by 
O(k2). Therefore, the number of edges in D should be bounded by O(k2). �

In the next section, we prove that the size of the kernel given in Theorem 6 is tight, that is OFVDS does not admit an 
O(k2−ε) size kernel unless coNP ⊆ NP/poly.
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4. Kernel lower bound for OUT-FOREST VERTEX DELETION SET

In this section we show that the size of our kernel for OFVDS is optimal, i.e. there is no kernel for OFVDS which can be 
encoded into O(k2−ε) bits for any ε > 0 unless co-NP ⊆ NP/poly. To this end, we will rely on the fact that Vertex Cover

(VC) does not admit a kernel which can be encoded into O(k2−ε ) bits for any ε > 0 unless co-NP ⊆ NP/poly [33].1

We give a polynomial-time reduction from VC to OFVDS. Let (G, k) be an instance of VC. We construct an instance of 
(D, k′) of OFVDS as follows. Initially, V (D) = V (G) and E(D) = ∅. For each edge {u, v} ∈ E(G), we add a vertex euv to V (D), 
and we add the edges (u, euv ) and (v, euv) to E(D). Finally, we set k′ = k.

Lemma 7. (G, k) is a YES-instance of VC if and only if (D, k′) is a YES-instance of OFVDS.

Proof. In the forward direction, consider a vertex cover S of G of size at most k. We claim that D \ S is an out-forest. By 
construction, each vertex v ∈ V (D) that also belongs to G has in-degree 0 in D . For each vertex euv ∈ V (D), {u, v} ∈ E(G), 
and therefore at least one vertex among u and v must belong to S . Moreover, u and v are the only in-neighbors of euv . 
Therefore, for all euv ∈ V (D), the in-degree of euv is at most 1 in D \ S . Note that V (G) ⊆ V (D) is an independent set in D . 
Similarly, V (D) \ V (G) is an independent set in D . Moreover, each vertex in V (D) \ V (G) has out-degree 0. Therefore, D \ X
is acyclic.

In the reverse direction, consider an out-forest deletion set X of D of size at most k. Observe that if euv ∈ X , then 
(X \ {euv}) ∪ {u} is also an out-forest deletion set in D . Hence, without loss of generality assume that X ⊆ V (G). Suppose, 
by way of contradiction, that X is not a vertex cover of G . Then, there is an edge (u, v) ∈ E(G) such that X ∩ {u, v} = ∅. 
By assumption X does not contain euv . Therefore, euv is a vertex with in-degree 2 in D \ X , which contradicts the choice 
of X . �

We will use the Theorem 8 along with Lemma 7 to rule out an O(k2−ε) kernel for OFVDS. For this purpose, we first 
state the definition of Oracle Communication Protocol [33].

Definition 3. An oracle communication protocol for a language L is a communication protocol between two players. The first player is 
given the input x and has to run in time polynomial in the length of the input; the second player is computationally unbounded but is 
not given any part of x. At the end of the protocol the first player should be able to decide whether x ∈ L. The cost of the protocol is the 
number of bits of communication from the first player to the second player.

Theorem 8 (Theorem 2 [33]). Let d ≥ 2 be an integer and ε a positive real number. If coNP � NP/poly, there is no protocol of cost 
O(nd−ε) to decide whether a d-uniform hypergraph on n vertices has a vertex cover of at most k vertices, even when the first player is 
co-nondeterministic.

Theorem 9. Let ε > 0. OFVDS does not admit an oracle communication protocol of cost O(k2−ε) for deciding (D, k) unless coNP ⊆
NP/poly.

Proof. Suppose OFVDS admits an oracle communication protocol of cost O(k2−ε ) for deciding (D, k). Combining this sup-
position with Lemma 7, we get a protocol of cost O(k2−ε) for VC. By Theorem 8, this implies that coNP ⊆ NP/poly. �

We are now ready to prove the main result of this section.

Theorem 10. OFVDS does not admit a kernel of size O(k2−ε) for any ε > 0 unless coNP ⊆ NP/poly.

Proof. If OFVDS admits a kernel of size O(k2−ε), then the computationally bounded player computes the kernel and sends 
it to the computationally unbounded player who can correctly compute and return one bit answer. The cost of this protocol 
is O(k2−ε). Therefore, by Theorem 9 it implies that coNP ⊆ NP/poly. �
5. Improved kernel for PUMPKIN VERTEX DELETION SET

In this section we prove the following theorem.

Theorem 11. PVDS admits an O(k3)-vertex kernel.

1 Given a graph G and a parameter k, VC asks whether one can remove at most k vertices from G so that the resulting graph will be edge-less.
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Fig. 1. (A) An instance of PVDS. (B) The graph H−
v . The bold edges correspond to a maximum matching. (C) An application of Rule 5.2.

Let (D, k) be an instance of PVDS. We assume that |V (D)| ≥ k3, else we are done. Let HO = {v ∈ V | d+(v) ≥ k + 2} and 
HI = {v ∈ V | d−(v) ≥ k + 2}. That is, HO and HI are vertices of high out-degrees and high in-degrees, respectively. Mnich 
and Leeuwen [30] proved that the following reduction rule is safe.

Reduction Rule 5.1. If |HO| > k + 1 or |HI| > k + 1, return that (D, k) is a NO-instance.

For the sake of clarity, we divide the presentation of the kernelization algorithm into two subsections. At the end of 
Section 5.1, we will simplify the instance in a way that will allow us to assume that if there is a solution S , then both the 
source and sink of the pumpkin D \ S belong to HO ∪ HI (Assumption 1). This assumption will be at the heart of the “marking 
approach” of Section 5.2, which will handle instances which have been reduced with respect to the reduction rules in 
Section 5.1. An intuitive explanation of the necessity of our marking process is given at the beginning of Section 5.2. 
Throughout this section, if k becomes negative, we return that (D, k) is a NO-instance, and if D becomes a pumpkin and k
is positive or zero, we return that (D, k) is a YES-instance.

5.1. Simplification phase

For any v ∈ V (D), denote by Xv the set of in-neighbors of v , that is, Xv = N−(v) and by Y v the set of every vertex 
y ∈ V (D) \ {v} for which there exists a vertex x ∈ Xv such that (x, y) ∈ E(D). Note that Xv and Y v may or may not be 
disjoint sets. We now give a construction of an auxiliary graph that will be used to prove the safeness of the upcoming 
reduction rule. For this, consider a set Y ′

v of new vertices such that there is exactly one vertex y′ ∈ Y ′
v for any y ∈ Y v . 

That is, Y ′
v is a set containing a copy for each of the vertex in Y v . By construction, Xv and Y ′

v are disjoint sets. Let H−
v be 

the (undirected) bipartite graph on the vertex set Xv ∪ Y ′
v where for all x ∈ Xv and y′ ∈ Y ′

v , {x, y′} ∈ E(H−
v ) if and only if 

(x, y) ∈ E(D) (see Fig. 1). Let match−(v) be the size of a maximum matching in H−
v .

An application of the next rule is illustrated in Fig. 1.

Reduction Rule 5.2. If there exists a vertex v ∈ V (D) such that match−(v) ≥ 2(k + 1), remove v from D and decrease k by 1.

Lemma 12. Reduction Rule 5.2 is safe.

Proof. For the backward direction, trivially if S is a pumpkin deletion set in D \ {v} of size at most k − 1, then S ∪ {v} is a 
pumpkin deletion set in D of size at most k. For the forward direction, it is sufficient to show that if (D, k) is a YES-instance 
then every solution S contains v . For a contradiction, assume that there exists a solution S that does not contain v . Let M
be a maximum matching in the graph H−

v . Observe that for every edge {x, y′} ∈ M where x ∈ Xv , if x is not the source of 
the pumpkin D \ S , it holds that |S ∩ {x, y}| ≥ 1 (otherwise the pumpkin D \ S contains a vertex, which is not its source, 
and has at least two out-neighbors). Moreover, for every edge {x, y′} ∈ M where x ∈ Xv , if y is the source of the pumpkin 
D \ S , it holds that x ∈ S . We thus deduce that for all but one of the edges {x, y′} ∈ M, we have that |S ∩ {x, y}| ≥ 1. Since M
is a matching, for every vertex u ∈ S , the vertex u can belong to at most one edge in M , and the vertex u′ (if it belongs 
to Y ′

v ) can also belong to at most one edge in M . However, |S| ≤ k, and therefore S ∪ {y′ ∈ Y ′
v : y ∈ S} can intersect at 



16 A. Agrawal et al. / Journal of Computer and System Sciences 92 (2018) 9–21
most 2k edges in M . Since S ∪ {y′ ∈ Y ′
v : y ∈ S} must intersect all but one edge of M and |M| ≥ 2(k + 1), we obtain a 

contradiction. �
Now, to present the symmetric rule, for any vertex v ∈ V (D), denote by Xv the set of out-neighbors of v , that is, 

Xv = N+(v). Let Y v be the set of vertices y ∈ V (D) for which there exists a vertex x ∈ Xv such that (y, x) ∈ E(D). Let Y ′
v

be a set containing a copy y′ of each vertex y ∈ Y . Let H+
v be the bipartite graph on the vertex-set Xv ∪ Y ′

v which for all 
x ∈ Xv and y′ ∈ Y ′

v contains the edge {x, y′} if and only if (y, x) ∈ E(D). Let match+(v) be the size of a maximum matching 
in H+

v . Then, the following reduction rule is safe.

Reduction Rule 5.3. If there exists a vertex v ∈ V (D) such that match+(v) ≥ 2(k + 1), remove v from D and decrement k by 1.

We also need the following rule, proved by Mnich and Leeuwen [30].

Reduction Rule 5.4. Let P = (w0, · · · , w�) be an induced directed path, that is for all i ∈ [� − 1], d−(wi) = d+(wi) = 1, with 
� > k + 2 in D. Then, delete w1 from D and add the edge (w0, w2).

Consider some hypothetical solution S (if such a solution exists). Let s and t denote the source and sink, respectively, of 
the pumpkin D \ S . Let A (or B) denote the set of out-neighbors (resp. in-neighbors) of s (resp. t) in the pumpkin. Clearly, 
|A| = |B|. Let C = V (D) \ (S ∪ A ∪ B ∪ {s, t}). Next, we prove a series of useful claims relating to S .

Lemma 13. (i) Every vertex in {s} ∪ A ∪ B ∪ C has in-degree (in D) at most k +1, and (ii) every vertex in {t} ∪ A ∪ B ∪ C has out-degree 
(in D) at most k + 1.

Proof. The correctness of the claim follows from the observation that every vertex in {s} ∪ A ∪ B ∪ C has at most one 
in-neighbor in the pumpkin D \ S and at most |S| ≤ k in-neighbors outside this pumpkin, and every vertex in {t} ∪ A ∪ B ∪ C
has at most one out-neighbor in this pumpkin and at most |S| ≤ k in-neighbors outside this pumpkin. �
Lemma 14. For any vertex v ∈ V (D), |N−(v) ∩ C |, |N+(v) ∩ C | ≤ 2k + 1.

Proof. We only show that |N−(v) ∩ C | ≤ 2k + 1, since the proof of the other inequality is symmetric. Clearly, any vertex 
v ∈ {s, t} ∪ A has no in-neighbor among the vertices in C and any vertex v ∈ C ∪ B has at most one in-neighbor among the 
vertices in C . Thus, we are left with showing the claim only for vertices belonging to S . Let v ∈ S and for a contradiction 
assume that |N−(v) ∩C | ≥ 2k +2. We will show that in this case Rule 5.2 is applicable. Let XC

v denote the set of in-neighbors 
of v in C . That is, XC

v = N−(v) ∩ C . Consider the graph H−
v . Now observe that XC

v ⊆ Xv and all the out-neighbors of vertices 
in XC

v that belong to D \ S are in C ∪ B (recall that S is the hypothetical solution we are working with). Observe that each 
vertex in C has a unique out-neighbor in D \ S and in particular they belong to C ∪ B . Thus, all the out-neighbors of vertices 
in XC

v belonging to C ∪ B , say Y C
v , belong to Y v . Recall that H−

v is a bipartite graph with the vertex bipartition Xv and 
Y ′

v (where in Y ′
v we make a copy for each of the vertices in Y v ), and thus we have that | match−(v)| ≥ |XC

v | ≥ 2(k + 1). 
Therefore, it is not possible that |XC

v | = |N−(v) ∩ C | ≥ 2k + 2, since in this case Rule 5.2 is applicable. This completes the 
proof. �

The set of in-neighbors (or out-neighbors) of any vertex v ∈ V (D) is contained in A ∪ B ∪ C ∪ S ∪ {s, t}. Since |A| ≤ d+(s), 
|B| ≤ d−(t) and |S| ≤ k, Lemma 14 gives us the following corollary.

Corollary 15. For any vertex v ∈ V (D), d−(v), d+(v) ≤ 3k + d+(s) + d−(t) + 3.

We further strengthen this corollary to obtain the following result.

Lemma 16. For any vertex v ∈ V (D), d−(v), d+(v) ≤ min{4k + 2d+(s) + 3, 4k + 2d−(t) + 3}.

Proof. Let v ∈ V (D). By Corollary 15, d−(v), d+(v) ≤ 3k +d+(s) +d−(t) +3. Thus, to prove the claim, it is sufficient to show 
that (i) d−(t) ≤ d+(s) + k, and (ii) d+(s) ≤ d−(t) + k. We only consider the first item, since the proof of the second one is 
symmetric. Observe that the pumpkin D \ S contains at most d+(s) internally vertex disjoint paths from s and t . Therefore, 
since at most k in-neighbors of t can belong to S , t has (in D) at most d+(s) + k in-neighbors. �

Let M = maxv∈V (D){d+(v), d−(v)}. The next corollary (Corollary 17), derived from Lemma 16, and rule (Reduction 
Rule 5.5) will bring us to the main goal of this subsection, summarized in Assumption 1 below.

Corollary 17. If M > 6k + 5, then s ∈ HO and t ∈ HI.
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Fig. 2. (A) An instance of PVDS. The gray vertex belongs to HI, and the black vertices belong to HO. (B) An application of Rule 5.7.

Proof. Suppose that M > 6k + 5. Let v ∈ V (D) be a vertex such that 6k + 5 < M = max{d+(v), d−(v)}. By Lemma 16, 
d−(v), d+(v) ≤ min{4k + 2d+(s) + 3, 4k + 2d−(t) + 3}, and therefore 6k + 5 < min{4k + 2d+(s) + 3, 4k + 2d−(t) + 3}. We thus 
get that d+(s), d−(t) > k + 1, which implies that s ∈ HO and t ∈ HI. �
Reduction Rule 5.5. If |V (D)| > 2k2 M + 4kM + k + 2, return (D, k) is a NO-instance.

Lemma 18. Reduction Rule 5.5 is safe.

Proof. Suppose that the instance is a YES-instance. Let S be a solution. Then, the pumpkin D \ S contains at most 2M|S| ≤
2Mk vertices with at least one neighbor in S . Let Z be the set of these vertices. Then, V (D) \ (S ∪ Z ∪ {s, t}) is a collection 
of at most (2k + 1)M paths whose vertices (including the endpoints) are vertices of in-degree 1 and out-degree 1 in D . 
By Rule 5.4, each such path contains at most k vertices. Therefore, |V (D)| ≤ (2k + 1)kM + |Z | + |S ∪ {s, t}| ≤ (2k + 1)kM +
2kM + k + 2 = 2k2M + 4kM + k + 2. �

By Rule 5.5, if M ≤ 6k + 4, we obtain the desired kernel. Thus, by Corollary 17, we have the following observation.

Assumption 1. From now on, we can assume that if a solution exists, in the resulting pumpkin the source belongs to HO and the target 
belongs to HI.

Next, it will be convenient to assume that HI and HO are disjoint sets. To this end, we apply the following rule exhaus-
tively, where safeness follows directly from Lemma 13.

Reduction Rule 5.6. Remove all vertices in HI ∩ HO and decrease k by |HI ∩ HO|.

We will also assume that the following rule, illustrated in Fig. 2, has been applied exhaustively. This assumption will be 
used at the end of the following subsection (in the proof of Lemma 26).

Reduction Rule 5.7. If there exists a vertex v /∈ HI ∪ HO such that N−(v) ∩ (V (D) \ HI) = ∅ or N+(v) ∩ (V (D) \ HO) = ∅, delete v
from D and decrease k by 1.

Lemma 19. Reduction Rule 5.7 is safe.

Proof. We only consider the case where there exists a vertex v /∈ HI ∪ HO without any in-neighbor from V (D) \ HI since 
the proof of the second one is symmetric. In this case, by Assumption 1, if there exists a solution S , it does not contain 
exactly one vertex from HO, which will be a source, and exactly one vertex from HI, which will be the target. Indeed, if S
does not contain at least two vertices from HO (HI), then since |S| ≤ k, the pumpkin D \ S will contain at least two vertices 
with out-degree (in-degree) at least two. Suppose v /∈ S . Since v /∈ HI ∪ HO, from Assumption 1, v is neither the source nor 
the target of the pumpkin D \ S . Thus, there exists a vertex u ∈ N−(v), such that u /∈ S . Since N−(v) ⊆ HI, u ∈ HI. Since 
u ∈ HI and u /∈ S , from Assumption 1, u is the target vertex of the pumpkin D \ S , which is a contradiction because u has 
an out-neighbor v in D \ S . �
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5.2. Marking approach

We are now ready to present our marking approach, handling instances to which Assumption 1 applies and none of the 
rules in Section 5.1 is applicable. Let P∗ be the set of connected components in D \ (HO ∪ HI) that are directed paths whose 
internal vertices have in-degree 1 and out-degree 1 in D , and let V ∗ be the union of the vertex-sets of the paths in P∗ . 
It turns out that by relying on Lemma 14 and Rule 5.4, one can directly bound the number of vertices in V (D) \ V ∗ by 
O(k3), assuming that the input instance is a YES-instance (see the proof of Lemma 24). However, bounding the size of V ∗
is more tricky, and our marking process is devoted to this cause. In this process, we will mark O(k3) vertices from V ∗ , and 
prove that because we are handling instances to which Assumption 1 applies, all of the vertices that are not marked are 
essentially irrelevant. We will perform two “rounds” of marking. Roughly speaking, for each pair of vertices in HO (or HI) 
the first round aims to capture enough vertices of paths that describe the relation between the vertices in this pair, or, more 
precisely, why one of the vertices of the pair is a “better choice” than the other when one should decide which vertex (from 
HO) is the source of the pumpkin. However, this round is not sufficient, since some vertices in HO (or HI) have conflicts 
(independent of the other vertices in HO ∪ HI) relating to the endpoints of the paths in P∗ . In the second round of marking, 
for each vertex in HO ∪ HI, we mark enough vertices from these problematic paths.

First round of marking. Towards the performance of the first round, we need the following notations. For each vertex 
v ∈ V (D) \ (HI ∪ HO), let P̂ (v) denote the connected component in D \ (HI ∪ HO) containing v . For each s ∈ HO, let N̂(s)
denote the set of each out-neighbor v ∈ V (D) \ (HI ∪HO) of s such that P̂ (v) ∈P∗ and the first vertex of (the directed path) 
P̂ (v) is v . Symmetrically, for each t ∈ HI, let N̂(t) denote the set of each in-neighbor v ∈ V (D) \ (HI ∪ HO) of t such that 
P̂ (v) ∈P∗ and the last vertex of P̂ (v) is v . By Rule 5.6, HI ∩ HO = ∅, and therefore these notations are well defined (i.e., we 
have not defined N̂ twice for the same vertex). Given u ∈ (HI ∪ HO), we also denote P̂(u) = { P̂ (v) | v ∈ N̂(u)}. Observe that 
the paths in P̂(u) are pairwise vertex-disjoint.

Next, we identify enough vertices from paths that capture the relation between each pair of vertices in HO (or HI). For 
each pair (s, s′) ∈ HO × HO, let M̂K P (s, s′) be an arbitrarily chosen minimal set of paths from P̂(s) \ P̂(s′) that together 
contain at least k + 1 vertices not having s′ as an in-neighbor. In this context, observe that only the last vertex on a path 
in P̂(s) \ P̂(s′) can have s′ as an in-neighbor. In this case, the path must contain at least two vertices (since its first vertex 
cannot have s′ as an in-neighbor), and while we insert the entire path into M̂K P (s, s′), its last vertex is not “counted” when 
we aim to obtain at least k + 1 vertices not having s′ as an in-neighbor. If there are not enough paths to obtain at least 
k + 1 such vertices, let M̂K P (s, s′) = P̂(s) \ P̂(s′). Symmetrically, for each pair (t, t′) ∈ HI × HI, let M̂K P (t, t′) be an arbitrarily 
chosen minimal set paths from P̂(t) \ P̂(t′) that together contain at least k + 1 vertices not having t′ as an out-neighbor. If 
there are not enough paths, let M̂K P (t, t′) = P̂(t) \ P̂(t′).

Finally, given a pair (v, v ′) ∈ (HO × HO) ∪ (HI × HI), let M̂K(v, v ′) denote the union of the vertex-sets of the paths in 
M̂K P (v, v ′). We have the following claim.

Lemma 20. For each pair (v, v ′) ∈ (HO × HO) ∪ (HI × HI), |M̂K(v, v ′)| ≤ 3(k + 1).

Proof. For each path inserted into M̂K P (v, v ′), at most one vertex is not counted in order to reach the desired threshold 
size of k + 1, because all internal vertices in this path have in-degree exactly one and out-degree exactly one in D and one 
of the endpoints is definitely not an in-neighbor/ out-neighbor of s′ (because the paths are from P̂(s) \ P̂(s′)). Also, at least 
one vertex is counted in order to reach this size, because at least the first vertex in this path (from P̂(s) \ P̂(s′)) is not an 
in-neighbor of s′ . Once we reach the threshold of k + 1 during the marking procedure, first note that at most k + 1 paths 
are marked. Suppose i(≤ k + 1) number of paths are marked in order to reach the threshold of k + 1. In each of these first 
i − 1 paths that are marked, at most one vertex could be an in-neighbor of s′ . Thus, in totality, at most i − 1 ≤ k vertices 
from these i − 1 paths do not contribute to the threshold of k + 1. From the ith path, there might be just a few vertices that 
are needed to meet the threshold of k + 1, but others get marked because we pick the entire path and mark its vertices. 
Since, any such path contains at most k + 3 vertices (from Rule 5.4), the total number of vertices in this path that so not 
contribute to the threshold of k + 1 vertices is at most k + 2. Thus, the total number of vertices in M̂K P (v, v ′) is at most 
k + 1 + k + k + 2 = 3(k + 1). �
Second round of marking. We proceed to the second round of marking. For this purpose, we need the following notation. 
For each u ∈ HI∪HO, let M̃K P (u) denote the set of each directed path in P∗ whose first and last vertices are both neighbors 
of u.

Reduction Rule 5.8. If there exists u ∈ HI ∪ HO such that |M̃K P (u)| ≥ k + 1, delete u from D and decrease k by 1.

Lemma 21. Reduction Rule 5.8 is safe.

Proof. To prove that the rule is correct, it is sufficient to show that if there exists a solution S , it contains u. Indeed, if S
does not contain u, then it must contain at least one vertex from each path in P̃(u), except perhaps one path, since together 
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with u each such path forms a cycle and these cycles intersect only at the vertex u. Since |P̃(u)| ≥ k + 1 and the paths in 
P̃(u) are vertex-disjoint, the claim follows. �

For each u ∈ HI ∪ HO, let M̃K(u) be the union of the vertex-sets of the paths in M̃K P (u). Since at this point, Rules 5.4
and 5.8 are not applicable, we have the following lemma.

Lemma 22. For each u ∈ HI ∪ HO, |M̃K(u)| ≤ k(k + 3).

The size of the kernel. For the sake of abbreviation, we define the following sets.

• MKP = (
⋃

(u,u′)∈(HO×HO)∪(HI∪HI) M̂K P (u, u′)) ∪ (
⋃

u∈HO∪HI M̃K P (u)), and

• MK = (
⋃

(u,u′)∈(HO×HO)∪(HI∪HI) M̂K(u, u′)) ∪ (
⋃

u∈HO∪HI M̃K(u)).

By Lemmas 20 and 22, and since Rule 5.1 is not applicable, we bound |MK| as follows.

Lemma 23. |MK| ≤ 2 · (3(k + 1)3 + k(k + 1)(k + 3)) ≤ 8(k + 3)3 .

Let V R denote the set of unmarked vertices in V ∗ , i.e., V ∗ \ MK . We construct the graph D ′ by removing from D all of 
the vertices in V R , adding a set Nk+2 of k + 2 new vertices, and for each of the new vertices, adding an edge from each 
vertex in HO as well as an edge to each vertex in HI. If V (D ′) contains at most 2k + 4 vertices, add to it one-by-one a 
vertex-set of a path in P∗ until its size becomes at least 2k + 5 (by Rule 5.4, the size will not exceed 3k + 7, and because 
|V (D)| ≥ k3, we will reach the desired size).

Lemma 24. If |V (D ′)| > 30(k + 2)3 , (D ′, k) is a NO-instance of PVDS.

Proof. If there exists a solution S , the pumpkin D ′ \ S contains at most 2(k + 1)|S| ≤ 2(k + 1)k vertices with at least one 
neighbor in S \ (HI ∪ HO). Moreover, by Lemma 14, the set C associated with D ′ \ S contains at most 4(k + 1)|S| ≤ 4(k + 1)k
vertices with at least one neighbor in S . Let Z be the set of vertices of these two types. Then, D ′ \ (S ∪ Z ∪ {s, t}) is 
a collection of paths. Among these paths, there are at most k + 2 paths that are isolated vertices corresponding to the 
set Nk+2 of vertices added to D ′ at its construction. There are paths of P∗ . In addition to these, there are paths that 
are not in P∗ . We claim that these additional paths are at most 2|Z | ≤ 12(k + 1). To see this, observe that, if a path 
in D ′ \ (S ∪ Z ∪ {s, t}) is not in ∩P ∗ then it is a subpath of one of the directed s (source) to t (target) paths in the 
pumpkin D ′ \ S , that intersects with Z . Suppose there are i ≤ |Z | directed paths from the source to the target of the 
pumpkin D ′ \ S that intersect with Z . Consider this set of i paths. Since a deletion of a vertex from any of the paths in 
this set can split a path into two subpaths, the number of subpaths possible after deleting |Z | vertices is at most 2|Z |. 
By Rule 5.4, these additional paths together contain at most 12(k + 1)k(k + 3) vertices. Moreover, from the union of the 
vertex-sets of paths in P∗ , D ′ contains only vertices from MK , and by Lemma 23, |MK| ≤ 8(k + 3)3. Summing up, we get 
that |V (D)′| ≤ (k + 2) + 12(k + 1)k(k + 3) + 8(k + 3)3 + |Z | + |S| + 2 ≤ 30(k + 3)3. �
Correctness. Finally, Theorem 11 follows from Lemma 24 and the two lemmas below.

Lemma 25. If (D, k) is a YES-instance then (D ′, k) is a YES-instance.

Proof. Let S be a solution to (D, k). Let s and t be the source and sink, respectively, of the pumpkin D \ S . By Assumption 1, 
s ∈ HO and t ∈ HI. Let S ′ = S ∩ V (D ′). Note that each path in P∗ must either have its vertex-set contained in S or it must be 
a path from an out-neighbor of s to an in-neighbor of t which belongs to the pumpkin D \ S (rather than only a subpath of 
a path from an out-neighbor of s to an in-neighbor of t which belongs to this pumpkin). Moreover, the set Nk+2 of vertices 
added to D ′ at its construction are vertices of in-degree one and out-degree one, where s is an in-neighbor and t is an 
out-neighbor. Therefore, D ′ \ S ′ is a pumpkin. �
Lemma 26. If (D ′, k) is a YES-instance then (D, k) is a YES-instance.

Proof. Let S be a solution to (D ′, k). Let s and t be the source and target, respectively, of the pumpkin D ′ \ S . Because of the 
set Nk+2 of k + 2 vertices added to D ′ at its construction, and since |S| ≤ k, s ∈ HO and t ∈ HI. Moreover, by the definition 
of HO and HI, (HO ∪ HI) \ {s, t} ⊆ S . We can also assume that S does not contain any vertex added to D ′ at its construction 
since by removing such a vertex from S , we still have a pumpkin. Our goal will be to show that S is also a solution to 
(D, k), which will imply that the lemma is correct. To this end, we will show that D \ S is a pumpkin with source s and 
sink t .
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First, note that we can assume that in D \ S there exists a path from s to t . Indeed, if this is not true, then D ′ \ S consists 
only of s, t and newly added vertices. That is, V (D ′) contains at most 2k + 4 vertices, which contradicts its construction. 
By the definition of P∗ , each path in P∗ has only internal vertices that have in-degree 1 and out-degree 1 in D , and its 
endpoints can only be adjacent to vertices in HI ∪ HO and in the path itself. Thus, to prove the lemma, it is sufficient to 
show that for each path in P∗ \ MKP , its first vertex has s as an in-neighbor, its last vertex has t as an out-neighbor, and if 
it contains at least two vertices, its first vertex is not a neighbor of t and its last vertex is not a neighbor of s.

Consider some path P ∈ P∗ \ MKP . First suppose, by way of contradiction, that the first vertex v of P does not have s
as an in-neighbor. Because Rule 5.7 is not applicable, v has at least one in-neighbor s′ ∈ HO. Thus, since v /∈ MK , MK(s′, s)
contains at least k + 1 vertices that are not out-neighbors of s and such that each of them belongs to a path in P∗ whose 
first vertex is not an out-neighbor of s. The vertices in MK(s′, s) belong to D ′ . Since |S| ≤ k, at least one of these vertices, 
say some u, should belong to the pumpkin D ′ \ S . However, in D ′ \ ((HI∪HO) \{s}), which is a supergraph of D ′ \ S , u cannot 
be reached from s, which contradicts the fact that D ′ \ S is a pumpkin. Symmetrically, it is shown that the last vertex of P
has t as an out-neighbor.

Now assume that P contains at least two vertices. Suppose, by way of contradiction, that the first vertex of P has t as 
a neighbor. We have already shown that the last vertex of P is also a neighbor of t , and therefore P ∈ M̃K P (t). However, 
M̃K P (t) ⊆ MKP , which contradicts the fact that P ∈P∗ \ MKP . Symmetrically, it is shown that the last vertex of P does not 
have s as a neighbor, concluding the proof of the lemma. �
6. Conclusion

In this paper, we showed that OFVDS admits a kernel of size O(k2), and that unless coNP ⊆ NP/poly, this bound is 
essentially tight. Furthermore, we showed that PVDS admits a kernel of size O(k3). This result significantly improves upon 
the one by Mnich and van Leeuwen [30], who showed that PVDS admits a kernel of size O(k18).

As a direction for further research, we believe that it is interesting to attempt to further push forward the program 
initiated by Mnich and van Leeuwen [30]. In particular, we would like to conclude our paper by posing the following 
intriguing open questions. Here, the techniques we employed to solve PVDS might be relevant.

• For which other families of DAGs F does F -Vertex Deletion Set admit a polynomial kernel? Here, given a digraph D
and a parameter k, F -Vertex Deletion Set asks whether at most k vertices can be removed from D in order to obtain 
a DAG in F . Observe that when F is the family of all DAGs, the F -Vertex Deletion Set problem is exactly DFVS. To 
elucidate the complexity of DFVS and also for purposes of independent interest, it is reasonable to consider families F
which are not the family of all DAGs and yet result in nontrivial problems.

• In particular, it is possible to consider the family F that contains all DAGs with one source and one sink. This family 
contain the family of all (directed) pumpkins.

• Finally, we would like to ask whether PVDS admits a kernel of size O(k2).
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