Interval Vertex Deletion Admits a Polynomial Kernel*

Akanksha Agrawalf Pranabendu Misra? Saket Saurabh® Meirav Zehavi¥

Abstract

Given a graph G and an integer k, the INTERVAL VERTEX DELETION (IVD) problem
asks whether there exists a subset S C V(G) of size at most k such that G — S is an interval
graph. This problem is known to be NP-complete [Yannakakis, STOC’78]. Originally in 2012,
Cao and Marx showed that IVD is fixed parameter tractable: they exhibited an algorithm
with running time 10501 [Cao and Marx, SODA’14]. The existence of a polynomial kernel
for IVD remained a well-known open problem in Parameterized Complexity. In this paper,
we settle this problem in the affirmative.
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1 Introduction

In a graph modification problem, the input consists of an n-vertex graph G and an integer
k. The objective is to determine whether k modification operations—such as vertex deletions,
or edge deletions, insertions or contractions—are sufficient to obtain a graph with prescribed
structural properties such as being planar, bipartite, chordal, interval, acyclic or edgeless. Graph
modification problems include some of the most basic problems in graph theory and graph
algorithms. Unfortunately, most of these problems are NP-complete [43, 51]. Therefore, they have
been studied intensively within algorithmic paradigms for coping with NP-completeness [21, 25,
46], including approximation algorithms, parameterized complexity, and algorithms for restricted
input classes.

Graph modification problems have played a central role in the development of parameterized
complexity, see the related works subsection. Here, the number of allowed modifications, k, is
considered a parameter. With respect to k, we seek a fized parameter tractable (FPT) algorithm,
namely, an algorithm whose running time has the form f (k:)no(l) for some computable function
f. One way to obtain such an algorithm is to exhibit a kernelization algorithm, or kernel.
A kernel for a graph problem IT is an algorithm that given an instance (G, k) of II, runs in
polynomial time and outputs an equivalent instance (G', k") of II such that |V (G’)| and k" are
upper bounded by f(k) for some computable function f. The function f is called the size of
the kernel, and if f is a polynomial function, then we say that the kernel is a polynomial kernel.
A kernel for a problem immediately implies that it admits an FPT algorithm, but kernels are
also interesting in their own right. In particular, kernels allow us to model the performance of
polynomial time pre-processing algorithms. The field of kernelization has received a significant
amount of attention, especially after the introduction of methods for showing kernelization
lower bounds [5, 14, 15, 18, 24, 29, 30]. We refer to the surveys [23, 28, 39, 44], as well as the
books [12, 17, 19, 49], for a detailed treatment of the area of kernelization. In this paper, we
study the kernelization complexity of the following problem.

INTERVAL VERTEX DELETION (IVD) Parameter: k
Input: A graph G and an integer k.

Question: Does there exist a subset S C V(G) of size at most k such that G — S is an
interval graph?

A graph G is an interval graph if it is the intersection graph of intervals on the real line.
Due to their intriguing combinatorial properties and many applications in diverse areas, such
as industrial engineering and archeology [4, 36], the class of interval graphs is perhaps one of
the most studied graph classes [7, 27]. Whether IVD admits an FPT algorithm has been a
longstanding open problem in the area until it was resolved by Cao and Marx [10], who gave an
algorithm with running time O(10%n%). Subsequently, Cao [9] designed an FPT algorithm with
linear dependence on the input size, as well as slightly better dependence on the parameter k.
More precisely, Cao’s algorithm has running time O(8%(n + m)). A natural follow-up question
to this work, explicitly asked multiple times in the literature [13, 31, 33], is whether IVD admits
a polynomial kernel. In this paper, we resolve this question in the affirmative:

Theorem 1. INTERVAL VERTEX DELETION admits a polynomial kernel.

1.1 Methods

The first ingredient of our kernelization algorithm is the factor 8 polynomial time approximation
algorithm for IVD by Cao [9]. We use this algorithm to obtain an approximate solution of
size at most 8k, or conclude that no solution of size at most k exists. By re-running the
approximation algorithm on the graph with some of the vertices marked as “undeletable”, we
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Figure 1: The set of obstructions for an interval graph.

grow our approximate solution to a 9-redundant solution M of size O(k'?). Here, 9-redundancy
roughly means that for every subset W C M of size at most 9, either M \ W is also a solution,
or every solution S’ of size at most k + 2 has non-empty intersection with W.!

Our kernelization heavily uses the characterization of interval graphs in terms of their
forbidden induced subgraphs, also called obstructions. Specifically, a graph H is an obstruction
to the class of interval graphs if H is not an interval graph, and for every vertex v € V(H) we
have that H — {v} is an interval graph. A graph G is an interval graph if and only if it does not
contain any obstruction as an induced subgraph. The set of obstructions to interval graphs have
been completely characterized by Lekkerkerker and Boland, [42]. It consists of the long claw,
the whipping top, the net, the tent, as well as three infinite families of graphs: the single-dagger
asteroidal witness (1-AW), the double-dagger asteroidal witnesses (1-AW), and the cycle of length
at least 4 (see Figure 1).

Having a 9-redundant solution yields the following advantage. In several places, we remove a
carefully chosen vertex v ¢ M from G and claim that G — {v} has a solution of size at most k if
and only if G does. One direction of the equivalence is trivial. The interesting direction is to
show that a solution X of size k to G — {v} implies the existence of a solution of size at most k
for G. The starting point for such an analysis is to ask why X is not already a solution for G.
The only possible reason is that G — X contains an obstruction O, and @ must contain v. We
claim that O contains at least 10 vertices from M. Suppose not, then let W be the intersection
of M and @. We know that (G — (M \ W)) contains @, and therefore it is not an interval graph.
Hence, by the 9-redundancy of M, this implies that X (being a solution of size at most k + 2)
must intersect O, which contradicts the choice of Q. Thus, in this analysis we only need to care
about large obstructions that, furthermore, have a large intersection with M. This is crucial
throughout the design and analysis of the kernel.

We then proceed to classify the connected components of G — M based on whether they are
modules in G or not. (Recall that a module is a set X such that all vertices in X have the same
neighbors outside X.) For each component C' that is not a module, there is an edge (u,v) in C
and a vertex w in M such that w is adjacent to u but not to v. Thus, if there are more than
(k4 2)| M| non-module components in total, then there must exist k 4+ 3 non-module components
and a vertex w € M such that each of these components has an edge (u,v) where w is adjacent
to uw but not to v. However, this means that for every subset S C V(G) of size at most k, either

!The precise definition in Section 3 contains another condition that is not specified in the introduction for the
sake of clarity of exposition.



w € S or G — S contains a long claw (whose center ¢ is w) and hence not interval. It follows
that w must belong to every solution of size at most k + 2; thus, we can simply remove w and
decrease the budget k by 1. Hence, the number of non-module components can be bounded by
(k + 2)|M]|, which is polynomial in k.

Since none of the obstructions contains any module on more than a single vertex, and the
components of G — M are interval graphs, it follows that every obstruction can intersect every
module component in at most one vertex. Furthermore, there is no point in keeping more than
k + 1 copies of any vertex, so we can reduce the module components to cliques of size k + 1.

We are left with the following situation. We have a 9-redundant solution M of size O(k19). At
most O(|M|) components of G — M are not modules, but these components could be arbitrarily
large. The remaining components are all modules that are cliques of size at most k + 1; thus, the
module components are structured and small, but there could be arbitrarily many of them. This
means that we are left with two tasks: (i) reduce the number of module components, and (i)
reduce the size of the non-module components. These two tasks can be approached separately,
and both turn out to be non-trivial. Since both tasks are quite technically involved, we only
give a few highlights in the remainder of this overview.

Bounding the Number of Module Components. Consider first the case where there are
no non-module components at all, and every module component is a single vertex. In this case,
G — M is edgeless, so M is a vertex cover of G. The kernelization complexity of even this very
special case was asked as an open problem by Fomin et al. [20].

A key ingredient in our solution to this special case is a new bound for the setting considered
in the classic two families theorem of Bollobés [6]. Suppose there are two families of sets over a
universe U, Aq,..., A, and By,..., By, such that every set A; has size p, every set B; has size
q, for every ¢ the sets A; and B; are disjoint, while for every ¢ # j the sets A; and B; intersect.
The two families theorem gives an upper bound of (p ;q) for the size m of the family. The upper
bound on m is independent of the universe size, and this has been extensively used in the design
of parameterized algorithms [22, 47]. Further, when p or ¢ is a constant the bound is polynomial
in p + ¢, and this has been extensively used in kernelization [40].

In our setting neither the sets Ay, ..., A,, nor the sets By,..., B, have constant cardinality.
However, we know that for every i # j, |A; N B;| € {1,2}. We prove that in this case, the bound
is O(|U|?). More generally, we prove the following.

Lemma 1.1 (Bounded Intersection Two Families Lemma). Let Ay,..., A, and B1,..., By, be
families over a universe U such that (i) for every i < m, A; N B; =0, and (ii) for every j # 1,
|A;NBj|le{l,...,c}. Thenm <3y ('?').

Comparing Lemma 1.1 with the Two Families Theorem, the bound in Lemma 1.1 does
depend on the universe size |U|. On the other hand, the exponent of |U]| only depends on the
maximum cardinality c of the intersection between the sets A; and Bj.

In the setting of kernelizing IVD parameterized by the size of a vertex cover M, the size
of the kernel is intimately linked to m for the case where Ay, ..., A, is a collection of cliques
in G[M] while By, ..., By, is a collection of induced paths. Since a clique can only intersect an
induced path in at most two vertices, we can apply Lemma 1.1 with ¢ = 2, thereby obtaining an
O(|M|?) bound for m and (after a significant amount of additional efforts, which we skip in this
overview) a polynomial bound on the kernel size.

The kernel for IVD parameterized by vertex cover quite simply translates into a procedure
that bounds the number, and therefore the total size, of module components of G— M. We remark
that, because the number of non-module components is bounded by O(k|M|), by bounding the
number of module components we also bound the total number of components of G — M.



Bounding the Size of Non-Module Components. Suppose now that the number of
module components has been bounded by £©(). We can now include all of the module components
in M, and proceed under the assumption that there are no module components at all.

The size-reduction of non-module components proceeds in three phases. In the first phase,
we bound the maximum clique size in a component. Our clique-reduction procedure builds upon
the clique-reduction procedure of Marx [48], which was used in kernelizations for CHORDAL
VERTEX DELETION [1, 34]. Both the procedure of Marx and ours are based on an “irrelevant
vertex rule”. However, our procedure is necessarily much more involved—our irrelevant vertex
rule needs to preserve not only long induced cycles, but also large single and double dagger
asteroidal witnesses.

Having reduced the maximum clique size in the component we proceed to the second phase,
where we reduce the set of vertices that appear in at least two maximal cliques in the component.
In this phase, we partition the component into k(") “long” and “thin” parts, and prove that
an optimal solution will either not touch a part at all, or it will cut it into two pieces using a
minimal separator. Then, provided that a part is sufficiently large, we identify an edge whose
contraction does not decrease the size of any minimal separator inside the part. Thus, on the
one hand, contracting e does not decrease the size of an optimal solution. On the other hand,
contracting e—or any edge for that matter—cannot increase the size of an optimal solution
(since interval graphs are closed under contraction).

After the second phase, the number of vertices appearing in at least two maximal cliques
of the component is upper bounded by k(). In the third phase, we bound the number of the
remaining vertices—these are the vertices that are “private” to some maximal clique of the
component. At this point we can take the set of vertices appearing in at least two components
and add them to M. This makes M grow by k©() vertices, but now the large component breaks
up into components whose size is not larger than that of a maximal clique, that is, KM, We
can now re-apply the procedure for bounding the number of components and this bounds the
total number of vertices in G by k1), We remark that, for technical reasons, in the actual
proof phases 2 and 3 as described here are interleaved.

1.2 Related Works on Parameterized Graph Modification Problems

The F-VERTEX DELETION problems corresponding to the families of edgeless graphs, forests,
chordal graphs, interval graphs, bipartite graphs, and planar graphs are known as VERTEX COVER,
FEEDBACK VERTEX SET, CHORDAL VERTEX DELETION, INTERVAL VERTEX DELETION, ODD
CYCLE TRANSVERSAL/VERTEX BIPARTIZATION and PLANAR VERTEX DELETION, respectively.
These problems are among the most well studied problems in the field of parameterized complexity.
The study of parameterized graph deletion problems together with their various restrictions
and generalizations has been an extremely active subarea over the last few years. In fact, just
over the course of the last few years there have been results on parameterized algorithms for
CHORDAL EDITING [11], UNIT VERTEX (EDGE) DELETION [8, 35], INTERVAL VERTEX (EDGE)
DELETION [9, 10], PLANAR F DELETION [21, 38|, PLANAR VERTEX DELETION [32], BLOCK
GRAPH DELETION [37] and SIMULTANEOUS FEEDBACK VERTEX SET [3]. It is important to
note that for many of these problems, polynomial kernels gave rise to several new techniques in
the area. However, the problem which is closest to ours is the CHORDAL VERTEX DELETION
problems. In a recent breakthrough, Jansen and Pilipczuk [34] gave a polynomial kernel (of size
O(k'2)) for CHORDAL VERTEX DELETION, resolving a more than a decade old open problem.
Shortly afterwards, Agrawal et al. [1, 2] gave a kernel of size O(k!3).



2 Preliminaries

We denote the set of natural numbers by N. For n € N, we use [n] and [n]p as shorthands for
{1,2,...,n} and {0,1,...,n}, respectively. For a set X and an integer n € N, by X" we denote
the set {(a1,a2,...,a,) | a1,a9,...,a, € X}.

Basic Graph Theory. We refer to standard terminology from the book of Diestel [16] for
those graph-related terms that are not explicitly defined here. Given a graph G, we denote
its vertex set and its edge set by V(G) and E(G), respectively. Given a set C of connected
components of G, denote V(C) = (Jpee V(C). Moreover, when the graph G is clear from context,
denote n = |V(G)|. Given a subset U C V(G), G[U] denotes the subgraph of G induced by U.
Accordingly, a graph H is an induced subgraph of G if there exists U C V(G) such that G[U] = H.
For a set of vertices X C V(G), G — X denotes the induced subgraph G[V(G)\ X], i.e. the graph
obtained by deleting the vertices in X from G. For an edge (u,v) € E(G), G/(u,v) denotes the
graph obtained by contracting the edge (u,v), i.e. the graph obtained by introducing a new
vertex that is adjacent to all vertices in N (u)UN (v) and deleting the vertices {u,v}. We say that
G is a clique if for all distinct vertices u,v € V(G), we have that (u,v) € E(G), and that V(G)
is an independent set if for all distinct vertices u,v € V(G), we have that (u,v) ¢ E(G). Given
a vertex v € V(G), Ng(v) denotes the neighborhood of v in G. Moreover, a subset U C V(G) is
a module if for all u,u € U and v € V(G) \ U, either both u and v’ are adjacent to v or both u
and u' are not adjacent to v. For the sake of simplicity, we also call G[U] a module.

A path P = (x1,29,...,2¢) in G is a subgraph of G where V(P) = {x1,z2,...,2¢} C V(G)
and E(P) = {(xj,zi+1) | ¢ € [ — 1]} € E(G), where ¢ € [n]. The vertices x; and z, are
the endpoints of P, and the remaining vertices in V(P) are the internal vertices of P. A
cycle C = (x1,x2,...,2¢) in G is a subgraph of G where V(C) = {z1,z2,...,2¢} C V(G) and
EC) = {(zi,zit1) | i € [ = 1]} U{(x1,2¢)} C E(G). We say that (u,v) € E(G) is a chord
of a path P if u,v € V(P) but (u,v) ¢ E(P). Similarly, we say that (u,v) € E(G) is a chord
of a cycle C if u,v € V(C) but (u,v) ¢ E(C). A path P or cycle C is said to be induced (or,
alternatively, chordless) if it has no chords.

Interval Graphs. An interval graph is a graph that does not contain any of the following
graphs, called obstructions, as an induced subgraph (see Figure 1).

e Long Claw. A graph O such that V(Q) = {ts,t,,t,c, b1, ba, b3} and E(Q) = {(ts, b1), (t, b3),
(t7 b2)> (Cv bl)a (C7 b2)7 (07 b3)}

e Whipping Top. A graph O such that V(Q) = {t,t,,t,¢, b1, b2, b3} and E(Q) = {(t¢, b1),
(tr,b2), (¢, 1), (¢, b1), (¢, ba), (b3, te), (b3, b1), (b3, €), (b3, ba), (b3, tr)}.

e -AW. A graph O such that V(OQ) = {ty,t,,t,c} U {b1,ba,...,b.}, where t; = by and
tr = boy1, E(O) = {(t,¢), (te, br), (tr,02)} U{(c,b) | i € [2]} U {(bi, big1) | i € [z — 1]}, and
z>2. A t-AW where z = 2 will be called a net.

e [-AW. A graph O such that V(Q) = {ty, t,,t,c1,c2} U{b1,ba,...,b.}, where ty, = by and

ty, = bz—i—ly E(@) = {(ta Cl), (ta CQ)a (01762)7(t€abl)7 (tTvbz)a (tf,cl)v (trvc2)} U {(C? bl) ’ (S
(2]} U{(bi,bi+1) | i € [z — 1]}, and z > 1. A -AW where z = 1 will be called a tent.

e Hole. A chordless cycle on at least four vertices.

An obstruction O is minimal if there does not exist an obstruction @’ such that V(Q') c V(Q).
We refer to 1-AW and {-AW as AWs. In each of the first four obstructions, the vertices t, t,,
and ¢ are called terminals, the vertices ¢, c¢1, and co are called centers, and the other vertices are
called base vertices. Furthermore, the vertex t is called the shallow terminal and the vertices t,
and t, are called the non-shallow terminals. In the case where O is one of the AWSs, the induced
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path on the set of base vertices is called the base of the AW, and it is denoted by base(Q).
Moreover, we say that the induced path on the set of base vertices, t; and ¢, is the extended base
of the AW, and it is denoted by P(Q).

Path Decomposition. A path decomposition of a connected graph G is a pair (P, ) where P
is a path, and g : V(P) — 2V(G) is a function that satisfies the following properties.

(ii) For any edge (u,v) € E(G) there is a node x € V(P) such that u,v € B(x).
(iii) For any v € V(G), the collection of nodes P, = {x € V(P) | v € B(x)} is a subpath of P.

For v € V(P), we call 5(v) the bag of v. We refer to the vertices in V(P) as nodes. A clique
path of a connected graph G is a path decomposition of G where every bag is a distinct maximal
clique. If a graph G admits a clique path, then we say that G is a clique path. The following
proposition states that the class of interval graphs is exactly the class of graphs where each
connected component is a clique path.

Proposition 1 ([26, 27]). A graph is an interval graph if and only if each connected component
of it is a clique path.

Parameterized Complexity. Let II be an NP-hard problem. In the framework of Parameter-
ized Complexity, each instance of II is associated with an integer k, which is called the parameter.
Here, the goal is to confine the combinatorial explosion in the running time of an algorithm for
IT to depend only on k. The main concepts defined to achieve this goal are of fized-parameter
tractability and kernelization. First, we say that II is fized-parameter tractable (FPT) if any
instance (I,k) of II is solvable in time f(k) - [I|°"), where f(-) is an arbitrary (computable)
function of k. Second, II is said to admit a polynomial kernel if there is a polynomial-time
algorithm (the degree of polynomial is independent of the parameter k), called a kernelization
algorithm, that transforms the input instance into an equivalent instance of II whose size is
bounded by a polynomial p(k) in k. Here, two instances are equivalent if one of them is a
Yes-instance if and only if the other one is a Yes-instance. The reduced instance is called a
p(k)-kernel for II. For a detailed introduction to the field of kernelization, we refer to the
following surveys [39, 44] and the corresponding chapters in the books [12, 17, 19, 49].

Kernelization algorithms often rely on the design of reduction rules. The rules are numbered,
and each rule consists of a condition and an action. We always apply the first rule whose
condition is true. Given a problem instance (I, k), the rule computes (in polynomial time) an
instance (I’, k') of the same problem where k' < k. Typically, |I'| < |I|, where if this is not the
case, it should be argued why the rule can be applied only polynomially many times. We say
that the rule safe if the instances (I, k) and (I, k') are equivalent.

Linear Algebra. For a set A and X, by an operation of A onto X we mean a function
f:Ax X — X. For an element (a,z) € A x X by az we denote the element f(a,z) € X. For a
field F with + as the additive operation and - as the multiplicative operation, a commutative
group (V,+) with an operation of F onto V' is a vector space over F if for all a,b € F and x,y € V,
we have: 1) a(bz) = (ab)z; ii) a(z + y) = ax + ay; iii) (a + b)x = ax + bz; iv) 1 -z = x. Here, 1
is the additive identity of the field F. If V' is a vector space over [, then the elements of V are
called vectors. One of the natural candidates for vector spaces over a field F is F"*, where n € N
and the function f(-) is the component-wise multiplication. In this paper, we restrict ourselves
only to such types of vector spaces.

In the following, consider a field F and a vector space V = F", where n € N. For a vector
v = (b1,ba,...,b,) € F™ and an integer i € [n], by v[i] we denote the ith element (or entry) of
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v, i.e., the element b;. For vectors vi,va,..., v, € F” a linear combination of them is a vector
a1Vv1 + agva + ... + a; vy, where a1, a9, ...,a; € F. Furthermore, a linear relation among them is
exhibited when a;vy 4+ aovo + ... 4+ ayvy = 0, for some aq,ao,...,a; € F. In the above, the a;s
are called the coefficients. A set of vectors is said to be linearly independent if there is no linear
relation among them except the trivial one, where each of the coefficients is 0. A set of vectors
that is not linearly independent is said to be linearly dependent. An inclusion-wise maximal set
of linearly independent vectors is called a basis of the vector space. It is known that for bases
B, B’ of a vector space, we have |B| = |B’|. By F3 we denote the field with exactly two elements,
namely 0 and 1, with the usual addition and multiplication modulo 2 as the field operations. For
two vectors u,v € V', u- v denotes the dot product of these two vectors. We refer the reader
to [41] for more details on linear algebra.

Matroids. A pair M = (E,Z), where E is a set (called ground set) and Z is a family of subsets
of E (called independent sets) is called a matroid if the following conditions are satisfied.

e )T,
e lfAcZand A C Athen A €T,
e If A,B €7 and |A| < |B| then there is 2 € B\ A such that AU {z} € Z.

An inclusion-wise maximal set in Z is called a basis of M. All the basis of a matroid are of
same size. The size of a basis is called the rank of the matroid. One of the important notions of
a matroid which we use is linear representations of matroids.

A matroid is a linear matroid (or representable matroid) if, for some field F, it can be defined
as follows. Let A be a matrix over a field F and FE its set of columns. Then, the matroid
M = (E,7) is defined as follows: a subset X C E is an independent set in M if and only if the
set of columns in X is linearly independent over F. The matrix A is called a representation of M,
and M is said to be representable over F. Thus, matroid is linear (alternatively, representable)
if it is representable over some field F. We refer the reader to [50] for more details on matroids.

g-Representative Family. Let M = (E,Z) be a matroid and B be a family of subsets of size
p of E. We say that BCBisa q-representative for B if for every set Y C FE of size ¢: if there is
aset X € Bsuch that XNY =0 and X UY € Z, then there is a set X € Bsuch that XNY =0
and X UY cZ.IfB C B is a g-representative for B, then we use the notation B g?ep B. The
following result asserts that small representative families can be computed efficiently.

Proposition 2 ([22]). Let M = (E,TI) be a linear matroid of rank k = p+q, and matriz Axq be
a representation of M over a field F. Also, let B = {B1,Ba,..., B} be a family of independent

sets of size p over E. Then, there exists B Clep B of size at most (p;q). Moreover, such B can

be computed in at most (’)((p;q)tp“’ + t(p;q)w_l) operations over F. Here, w is the exponent in
the running time of matrix multiplication.

3 Computing a Redundant Solution

Let (G, k) be an instance of IVD. A subset S C V(G) such that G — S is an interval graph is
called a solution, and a solution of size at most ¢ is called a t-solution. Towards the definition of
redundancy, we need to introduce a few simple notions related to hitting and covering. Given a
family W C 2V(%) | we say that a subset S C V(G) hits W if for all W € W, we have SNW # (.
A family W C 2V(9) is t-necessary if every solution of size at most ¢ hits W. Moreover, we say
that an obstruction O is covered by W if there exists W € W, such that W C V(0). Now, we
are ready to formally define our notion of redundancy.
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Definition 3.1. Given a family W C 2V(%) and t € N, a subset M C V(G) is t-redundant with
respect to W if for every obstruction O that is not covered by W, it holds that |M NV (Q)| > t.

The purpose of this section is to prove Lemma 3.1 below. Intuitively, this lemma asserts that
an r-redundant solution M whose size is polynomial in & (for a fixed constant ) can be computed
in polynomial time. Such a set M plays a central role in all of our subsequent reduction rules
that comprise our kernelization algorithm. We remark that in this statement we use the letter ¢
rather than k to avoid confusion, as we will use this result with £ = k + 2.

Lemma 3.1. Let r € N be a fized constant, and (G,£) be an instance of IVD. In polynomial
time, it is possible to either conclude that (G,{) is a No-instance, or compute an {-necessary
family W C 2V and a set M C V(Q), such that W C 2™ and M is a (r + 1)(60)" ! -solution
that is r-redundant with respect to WW.

A central component in our proof of Lemma 3.1 is an approximation algorithm for IVD,
given by Cao [9]:

Proposition 3 ([9]). IVD admits a polynomial-time 6-approzimation algorithm, called ApprozIVD.

In particular, a main idea in our proof is to iteratively grow the redundancy of a solution
by making calls to this approximation algorithm. Besides Proposition 3, towards the proof of
Lemma 3.1, we give a simple definition of a graph on which we will apply the approximation
algorithm and hence determine whether a set of vertices should be added to W.

Definition 3.2. Let G be a graph, U C V(G), and t € N. Then, copy(G,U,t) is defined as
the graph G’ on the vertex set V(G) U {v' | v € U,i € [t]} and the edge set E(G) U {(u’,v) |
(u,v) € E(G),u € Ui € [t]} U{(u',v?) | (u,v) € B(G),u,v € U,i,j € [t]} U{(v,0) |veU,ic
E}u{@' o) velsijelti#j}

Informally, copy(G, U, t) is simply the graph G where for every vertex u € U, we add ¢ twins
that (together with u) form a clique. Intuitively, this operation allows us to make a vertex set
“undeletable”; in particular, this enables us to test later whether a vertex set is “redundant” and
hence we can grow the redundancy of our solution, or whether it is “necessary” and hence we
should update W accordingly. Before we turn to discuss computational issues, let us first assert
that the operation in Definition 3.2 does not makes an interval graph become a non-interval
graph. This is a basic requirement to verify before turning to design the above mentioned test.

Lemma 3.2. Let G be a graph, U C V(G), and t € N. If G is an interval graph, then
G’ = copy(G, U, t) is an interval graph as well.

Proof. Suppose that G is an interval graph. Then, by Proposition 1, G admits a clique path
(P, B). Now, we define (P', ') as follows: P’ = P, and for all z € V(P'), B'(z) = B(x) U {v' |
v € B(x)NU,i € [t]}. We claim that (P, ') is a clique path for G’. By using the fact that (P, 3)
is a path decomposition of GG, we directly have the following properties. First, it is clear that
Uzev(pn B'(z) = V(G'). Second, for any edge e = (u,v) € E(G’) such that u,v € V(G), there
exists z, € V(P’) such that u,v € '(x.). Then, since for all v € U and i € [t], it holds that
B'1(v) = B~(v?), we derive that for any edge (u/,v') € E(G’) there is a node x € V(P') such
that u/,v" € §'(z). Third, for any v € V(G), the collection of nodes P, = {x € V(P') | v € f'(u)}
is a subpath of P/, and since for any v € U and i € [t], it holds that 8/~1(v) = B/~ (v"), we derive
that for any v" € V(G’), the collection of nodes P/, = {z € V(P') | v' € §'(x)} is a subpath
of P'. Now, note that for all x € V(P’), 8(x) is a clique, and for all u,v € () (possibly u = v)
and i, j € [t], u! is adjacent to u, w/ (if i # j), v and v’, which implies that 8'(z) is also a clique.
Hence, (P',3) is indeed clique path for G’. By Proposition 1, we derive that G’ is an interval
graph. O



Now, let us present two simple claims that exhibit relations between the algorithm ApproxIVD
and Definition 3.2. After presenting these two claims, we will be ready to give our algorithm for
computing a redundant solution. Roughly speaking, the first claim exhibits the meaning of a
situation where ApproxIVD returns a “large” solution; intuitively, for the purpose of the design
of our algorithm, we interpret this meaning as an indicator to extend W.

Lemma 3.3. Let G be a graph, U C V(G), and ¢ € N. If the algorithm ApprozIVD returns
a set A of size larger than 6¢ when called with G' = copy(G,U,6( + 1) as input, then {U} is
£-necessary.

Proof. Suppose that ApproxIVD returns a set A of size larger than 6/ when called with G’
as input. Then, (G’,/) is a No-instance. Suppose, by way of contradiction, that {U} is not
{-necessary. Then, G has an f-solution S such that SN U = (. In particular, G=G-5is
an interval graph such that U C V(G). However, this means that copy(G,U,6( + 1) = G’ — S,
which by Lemma 3.2 implies that G’ — S is an interval graph. Thus, S is an /-solution for G’,
which is a contradiction (as (G’, /) is a No-instance). O

Complementing our first claim, the second claim exhibits the meaning of a situation where
ApproxIVD returns a “small” solution A; we interpret this meaning as an indicator to grow the
redundancy of our current solution M by adding A—indeed, this lemma implies that every
obstruction is hit one more time when adding A to a subset U C M (to grow the redundancy of
M, every subset U C M will have to be considered).

Lemma 3.4. Let G be a graph, U C V(G), and £ € N. If the algorithm ApproxIVD returns a set

A of size at most 6¢ when called with G' = copy(G, U, 60+ 1) as input, then for every obstruction
O of G, [VOO)NU|+1 < |VO)N(UUANV(G)))]-

Proof. Suppose that ApproxIVD returned a set A of size at most 6¢ when called with G’ as input.
Let O be some obstruction of G, and denote B = V(0Q) NU. Since |A| < 6/, for every vertex
v € B, we have that v € V(G’) \ A or there exists i(v) = i € [6/] such that v’ € V(G') \ A.
Moreover, we have that the graph obtained from O by replacing each vertex v € BN A by v*(*) is
an obstruction (as v and v*(*) are twins). Thus, as A is a solution for G, there exists v € V(G)\ B
such that v € ANV(Q). Hence, we have that [V(Q)NU|+1 < |[V(O)N(UUANV(G)))|. O

Now, let us describe our algorithm, RedundantIVD, to compute a redundant solution. First,
RedundantIVD initializes My to be the output obtained by calling the algorithm ApproxIVD with
G as input, Wy := 0 and Tp := {(v) | v € Mp}. If |My| > 6¢, then RedundantIVD concludes that
(G,?) is a No-instance. Otherwise, for ¢ = 1,2,...,r (in this order), the algorithm executes the
following steps:

1. Initialize M; := M;_1, W; :== W;_1 and T; := ().
2. For every tuple (vg,v1,...,vi-1) € Ti—1:
(a) Let A be the output obtained by calling the algorithm ApproxIVD with copy(G, {vo, v1,
..., Ui—1},60 4+ 1) as input.
(b) If |A| > 64, then insert {vg,v1,...,v;—1} into Wj.
(c) Otherwise, insert every vertex in (ANV(G)) \ {vo,v1,...,vi—1} into M;, and for all
u€ (ANV(@))\ {vo,v1,...,vi—1}, insert (vo,v1,...,v;—1,u) into ;.

Eventually, the algorithm outputs the pair (M,, W,.).

Let us comment that in this algorithm, we make use of the sets 7;_1 rather than going over
all subsets of size ¢ of M;_1 in order to obtain a substantially better algorithm in terms of the
size of the produced redundant solution.



The properties of the algorithm RedundantIVD that are relevant to us are summarized in
the following lemma and observation, which are proved by induction and by making use of
Lemmata 3.2, 3.3 and 3.4. Roughly speaking, we first assert that, unless (G, ¢) is concluded to
be a No-instance, we compute sets W, that are f-necessary as well as that the tuples in 7; “hit
more vertices” of the obstructions in the input as 7 grows larger.

Lemma 3.5. Consider a call to RedundantIVD with (G,{,r) as input that did not conclude that
(G,?) is a No-instance. For all i € [r]o, the following conditions hold:

1. For any set W € W;, every solution S of size at most £ satisfies W NS # .

2. For any obstruction O of G that is not covered by W;, there exists (vg,v1,...,v;) € T; such
that {vo,v1,...,v;} CV(0).

Proof. The proof is by induction on ¢. In the base case, where ¢ = 0, Condition 1 trivially holds
as Wy = (0, and Condition 2 holds as M is a solution and 7Ty simply contains a 1-vertex tuple for
every vertex in My. Now, suppose that the claim is true for ¢ — 1 > 0, and let us prove it for i.

To prove Condition 1, consider some set W € W;. If W € W;_1, then by the inductive
hypothesis, every solution of size at most ¢ satisfies W NS # (). Thus, we next suppose
that W € W; \ W;_1. Then, there exists a tuple (vg,v1,...,v;—1) € Ti—1 in whose iteration
RedundantIVD inserted W = {wg,v1,...,v;—1} into W;. In that iteration, ApproxIVD was called
with copy(G, W, 6/ + 1) as input, and returned a set A of size larger than 6. Thus, by Lemma
3.3, every solution S of size at most ¢ satisfies W N .S # ().

To prove Condition 2, consider some obstruction Q@ of G that is not covered by W;. By
the inductive hypothesis and since W;_; C W;, there exists a tuple (vg,v1,...,v;—1) € Ti—1
such that {vg,v1,...,vi—1} € V(O). Consider the iteration of RedundantIVD corresponding
to this tuple, and denote U = {wg,v1,...,v;—1}. In that iteration, ApproxIVD was called
with copy(G,U,6¢ + 1) as input, and returned a set A of size at most 6/. By Lemma 3.4,
VO)NU|+1<|V(O)N(UU(ANV(G)))|. Thus, there exists v; € (AN V(G)) \ U such that
U U{v;} € V(0Q). However, by the specification of ApproxIVD, this means that there exists
(v, v1,...,v;) € T; such that {vg,v1,...,v;} C V(0). O

Towards showing that the output set M, is “small”, let us upper bound the sizes of the sets
M; and 7;.

Observation 3.6. Consider a call to RedundantIVD with (G,¢,7) as input that did not conclude
that (G, £) is a No-instance. For alli € [rlo, |M;| < 325 _o(60)7F%, |Ti| < (60)F! and every tuple
in T; consists of distinct vertices.

Proof. The proof is by induction on 4. In the base case, where ¢ = 0, the correctness follows as
ApproxIVD returned a set of size at most 6. Now, suppose that the claim is true for i — 1 > 0,
and let us prove it for i. By the specification of the algorithm and inductive hypothesis, we
have that |M;| < |M;—1|+ 60|T;i—1| < 2;211(65)3 and |T;| < 6¢|T;_1| < (6£)"+1. Moreover, by the
inductive hypothesis, for every tuple in 7;, the first i vertices are distinct, and by the specification
of ApproxIVD, the last vertex is not equal to any of them. O

By the specification of RedundantIVD, as a corollary to Lemma 3.5 and Observation 3.6, we
directly obtain the following result.

Corollary 3.7. Consider a call to RedundantIVD with (G, {,r) as input that did not conclude that
(G,?) is a No-instance. For all i € [r|o, Wi is an (-necessary and M; is a Z}ZO(GZ)JH—solution
that is i-redundant with respect to W.
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Clearly, RedundantIVD runs in polynomial time (as r is a fixed constant), and by the
correctness of ApproxIVD, if it concludes that (G, ¢) is a No-instance, then this decision is correct.
Thus, since Y 1_,(60)" 1 < (r 4 1)(6¢)"*1, the correctness of Lemma 3.1 now directly follows as
a special case of Corollary 3.7. Thus, our proof of Lemma 3.1 is complete.

In light of Lemma 3.1, from now on, we suppose that we have a (k + 2)-necessary family
W C 2V(@) along with a (r + 1)(6(k + 2))"+ -solution M that is r-redundant with respect to
W for r = 9. Let us note that, any obstruction in G that is not covered by W intersects M
in at least ten vertices. We have the following reduction rule that follows immediately from
Lemma 3.5.

Reduction Rule 3.1. Let v be a vertex such that {v} € W. Then, oulput the instance
(G —{v},k—-1).

Henceforward, we will assume that each set in W has size at least 2.

4 Handling Module Components

Let (G, k) be an instance of IVD. Let us explicitly recap the steps taken so far, and then state
our current objective in this context. First, we call Lemma 3.1 with r =9 and £ = k 4+ 2, and
one of the following holds. If (in polynomial time) we conclude that (G, k + 2) is a No-instance,
then we can (correctly) conclude that (G, k) is a No-instance as well. Otherwise, in polynomial
time we obtain a (k 4 2)-necessary family W C 2V() and a set M C V(G), such that W C 2M
and M is a 10(6(k + 2))'%-solution that is 9-redundant with respect to W. Furthermore, each set
in W has size at least 2. The main goal of this section is to bound the total number of vertices
across all module connected components of G — M. We remark that we will prove a slightly
more general result, as it will be used later in our algorithm. Before that, we provide a simple
reduction rule to bound the number of non-module components.

Bounding the Number of Non-Module Components. Let C denote the set of connected
components of G — M. Moreover, we let D denote the set of connected components in C that
are modules, and D = C \ D. To bound the size of D, we apply the following reduction rule.

Reduction Rule 4.1. Suppose that there exist v € M and a set A C D of size k + 3 such that
for each D € A, there exist u,w € V(D) such that u € Ng(v) and w ¢ Ng(v). Then, output the
instance (G — {v}, k —1).

Lemma 4.1. Reduction Rule 4.1 is safe.

Proof. In one direction, suppose that (G, k) is a Yes-instance, and let S be a k-solution for
G. Since |A| > k + 3, there exist three connected components D1, Do, Do € DN A such that
SN (V(D1)UV(D2) UV(D3)) = 0. However, for each i € [3], the subgraph of G induced by the
vertex set consisting of v, together with an edge e in D; with one endpoint of e being a neighbor
of v and the other endpoint of e being a non-neighbor of v, is a long claw. Here, we relied on
the fact that for each i € [3], D; is connected. Thus, as G — S is an interval graph, we derive
that v € S, and therefore S\ {v} is a (k — 1)-solution for G — {v}.

In the other direction, it is clear that if (G — {v},k — 1) is a Yes-instance, then (G, k) is a
Yes-instance. O

We now observe that our rule indeed bounds the size of D.

Observation 4.2. After the evhaustive application of Reduction Rule 4.1, |D| < (k +2)|M|.
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Proof. After the exhaustive application of Reduction Rule 4.1, every vertex in M has at most
k + 2 connected components in C where it has both a neighbor and a non-neighbor. Since for a
connected component in D that is not a module, there must exist a vertex in M that has both a
neighbor and a non-neighbor in that component, we conclude that the observation is correct. [

The Main Lemma of this Section. From now on, we focus on the main goal of this section:
bound the total number of vertices in D. As mentioned earlier, the arguments used to derive
this bound will also be necessary at a later stage of our kernelization algorithm, and hence we
present our goal in the form of a more general statement:

Lemma 4.3. Let M C V(G), and C be some set of connected components of G — (M U ]\/Z) that
are modules. In polynomial time, it is possible to either output an instance (G', k) equivalent
to (G, k) where G' is a strict subgraph of G, or to compute a subset B C V(C) of size at most
4(k +1)2|M U ]\7\6, such that for any subset S C V(G) of size at most k, the following property
holds: If there exists an obstruction Q for G that is not covered by W and such that V(Q)NS = (),
there exists an obstruction Q' for G such that V(Q') NS =0 and V(O') N (V(C) \ B) = 0.

Intuitively, the statement of this lemma expands M to M U M/,\and zooms into a subset C of
the set of connected components that are modules in G — (M U M). Then, either it enables us

to reduce the instance, or it produces a “small” subset B C V(C) and implies that we need not

~

“worry” about obstructions that intersect V' (C) but not B—if such an obstruction is not hit, then
there is an obstruction that does not intersect V(C) \ B and which is not hit as well.
Let us now show that having Lemma 4.3 at hand, we can indeed bound the total number of

vertices in all module components.

Reduction Rule 4.2. Let X be the output of the algorithm in Lemma 4.3 when called with
M =0 andC=D. If X is an instance (G', k), then output X. Otherwise, X is a set B C V (D),
and we output the instance (G — {v}, k) for a vertex v arbitrarily chosen from V(D) \ B.

By using Lemma 4.3, we derive the safeness of Reduction Rule 4.2.
Lemma 4.4. Reduction Rule 4.3 is safe.

Proof. If X is an instance (G’, k), then Lemma 4.3 directly implies that the rule is safe. Thus,
we next suppose that X = B. In one direction, it is clear that if (G, k) is a Yes-instance, then
(G —{v}, k) is a Yes-instance as well.

In the other direction, suppose that (G — {v}, k) is a Yes-instance. Let S be a k-solution for
G — {v}. We claim that S is also a k-solution for G. Suppose, by way of contradiction, that this
claim is false. Then, there exists an obstruction O for G — S. As SU {v} is a (k + 1)-solution
for G and W is (k + 2)-necessary, we have that S U {v} hits W. Since v ¢ M and W C 2™ we
derive that S hits WW. Thus, since Q is an obstruction for G — S, we deduce that O is not covered
by W. Hence, by Lemma 4.3, there exists an obstruction Q' for G such that V(0’) NS = () and
V(O')Nn(V(D)\ B) = 0. However, as v € V(D) \ B, this implies that Q' is also an obstruction
for (G — {v}) — S, which is a contradiction as S is a k-solution for G — {v}. O

Due to Reduction Rule 4.2, we have the following result.

Observation 4.5. After the exhaustive application of Reduction Rule 4.2, |V (D)| < 4(k +
DM,

We now turn to prove Lemma 4.3. In what follows, M and C are as stated in this lemma.
We denote M’ = M U M. Note that since M is 9-redundant with respect to W, we have that
M’ is also 9-redundant with respect to W. We begin our proof by showing that the common
neighborhood outside M’ of any two non-adjacent vertices, unless these two vertices form a pair
in W, is simply a clique. This simple claim will come in handy in several arguments later.
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Lemma 4.6. Let u,v € V(G) be distinct vertices such that (u,v) ¢ E(G) and {u,v} ¢ W.
Then, G[(Ng(u) N Ng(v)) \ M'] is a clique.

Proof. Suppose, by way of contradiction, that G[Ng(u) N Ng(v) \ M'] is not a clique. Then,
there exist two vertices z,y € (Ng(u) N Ng(v)) \ M’ that are not neighbors in G. Note that
O = Gl{u,v,z,y}] is a hole, and that M NV (O) C {u,v}. Moreover, O is not covered by W
(because {u,v} ¢ W and every set in W has size at least 2). Since M is 9-redundant, this means
that |M NV (O)| > 9. However, |V(0)|, hence we have reached a contradiction. O

Structure of Obstructions Intersecting Module Components. In order to reduce our instance
or to obtain a set B as required to prove Lemma 4.3, we need to understand how obstructions
can intersect module components. For this purpose, we state a simple proposition by Cao and
Marx [10]. This proposition asserts that because we are dealing with modules, these intersections
are quite restricted.

Proposition 4 ([10]). Let C be a module in G and O be a minimal obstruction. If |V (0)| > 4,
then either V(Q) C V(C) or [V(O)NV(C)| < 1.

By Proposition 4, we directly obtain the following lemma.

Lemma 4.7. Let C be a module such that V(C)NM' =0, and let @ be a minimal obstruction
that is not covered by W. Then, |V(Q)NV(C)| < 1.

Proof. Since O is an obstruction that is not covered by W, it holds that |[M' NV (0)| > 9. In
particular, as V(C) N M’ = (), we have that |V (Q)| >4 and V(0) \ V(C) # 0. Then, as C is a
module and O is minimal, by Proposition 4, we have that |V(0) NV (C)| < 1. O

Reducing the Size of Module Components. To ensure we have only small module components,
we apply the following rule.

Reduction Rule 4.3. Suppose that there exists C' € C such that \V(C)| > k+ 1. Then, output
the instance (G — {v}, k), where v is an arbitrarily chosen vertex of C.

Lemma 4.8. Reduction Rule 4.3 is safe.

Proof. In one direction, it is clear that if (G, k) is a Yes-instance, then (G—{v}, k) is a Yes-instance
as well.

In the other direction, suppose that (G — {v}, k) is a Yes-instance. Let S be a k-solution
for G — {v}. We claim that S is also a k-solution for G. Suppose, by way of contradiction,
that this claim is false. Then, there exists a minimal obstruction O for G — S. As SU {v} is a
(k+ 1)-solution for G and W is (k + 2)-necessary, we have that SU{v} hits W. Since v ¢ M and
W C 2M | we derive that S hits W. Thus, since O is an obstruction for G — S, we deduce that
O is not covered by W. Hence, by Lemma 4.7, |V(0) N V(C)| < 1. Thus, V(O)NV(C) = {v}.
Then, as C' is a module, for any vertex u € V(C), it holds that G[(V(O) \ {v}) U {u}] is an
obstruction. Since [V(C)| > k+1, we have that V(C)\ (SU{v}) # 0. However, this implies that
there exists an obstruction Q' for (G — {v}) — S, which is a contradiction as S is a k-solution for

G — {v}. O

Preliminary Marking Scheme. By Lemma 4.6, for all u,v € M’ such that (u,v) ¢ E(G) and
{u,v} ¢ W, there exists at most one C' € C, denoted by C,,, such that Ng(u)NNg(v)NV(C) # 0.
Accordingly, denote

C*={Cu €C|u,ve M, (uv)¢EG),{uv}¢W)

Moreover, denote A* = V(C*). From Reduction Rule 4.3, we have the following observation.
13



Observation 4.9. The size of A* is upper bounded by (k + 1)|M’|%.

Thus, in what follows, we do not need to “worry” about the modules in C* since we already
know that they contain only few vertices in total. In the following, we proceed to analyze the
modules in C \ C*. An important property of every vertex v in the modules in C \ C*, unlike the
modules in C*, is that every pair of vertices in its neighborhood in M’ must be adjacent unless
they form a set in W.

Observation 4.10. Consider a vertex v € V((/Z’\\ C*). For (distinct) vertices u,w € Ng(v) N M,
at least one of {u,w} € W or (u,w) € E(G) holds.

Proof. For v € V(CA\ C*), and (distinct) vertices u,w € Ng(v) N M’ if one of {u,w} € W or
(u,v) € E(G) holds, then the claim trivially holds. Therefore, we assume that {u,w} ¢ W
and (u,v) ¢ E(G). Recall that each set in W is of size at least 2 (since Reduction Rule 3.1 is
not applicable). From the above discussions, together with Lemma 4.6 we obtain that there is
at most one connected component Cy,y € C, such that Ng(u) N Ng(w) NV (Cuw) # 0. Since
u,w € Ng(v), it must be the case that v € Cyy,. But by our preliminary marking scheme,
Cuw € C*. This contradicts that v € V/(C\ C*). O

Let us also consider the relation between obstructions and the modules in C \ C*. Roughly
speaking, the following lemma already implies that we can focus on AWs of a very specific
form. However, handling these obstructions requires a substantive amount of work in the rest of
this section.

Lemma 4.11. Let C € 5\(7*, and O be a minimal obstruction that is not covered by W such that
V(O)NV(C) #0. Then, [V(O)NV(C)| =1 and O is an AW where the vertex in V(Q) NV (C)
is a terminal.

Proof. Consider C € C \ C* and a minimal obstruction O that is not covered by W, such that
V(O)NV(C) # 0. First, as C is a module, from Lemma 4.7 we deduce that |V (0) NV (C)| = 1.
Furthermore, as O is not covered by W, we have that |V (Q)| > 9. This means that O is neither a
long claw nor a whipping top. Let v be the unique vertex in V/(C)NV (Q). If O is an induced cycle
on at least 4 vertices, or one of the AWs where v is not one of the terminals, then Ng(v) NV (QO)
contains a pair of non-adjacent vertices. But from Observation 4.10 together with the facts that
O is not covered by W and Ng(v) C V(C)U M, for each u,w € Ng(v) N M' NV (Q), we have
(u,v) € E(G). Thus, we conclude that O is one of the AWs, where v is one of the terminals. [

Marking Scheme to Handle Non-Shallow Terminals. For every two subsets X,Y C M’ such
that | X| <2 and |Y| <2, denote Axy = {v e V(C\C*) | X C Ng(v),Y N Ng(v) = 0}. Now,
if |Axy| < k+ 1, then define A’X’Y = Axy, and otherwise let A’y y be an arbitrarily chosen
subset of size k+ 1 of Axy. Let us denote A" = Xy A'ny, where X ,Y range over all subsets
X,Y C M’ such that | X| <2 and |Y] < 2.

Let us first observe that |A’| is small (due to Reduction Rule 4.2).

Observation 4.12. The size of A’ is upper bounded by (k + 1)|M’|*.

Now, let us verify that we have thus marked a set of vertices that is sufficient to “handle”
non-shallow terminals. Roughly speaking, by this we mean that for any vertex v and obstruction
O that satisfy the premise in this lemma, we can find k + 1 “replacements” of v (so that we still
have an obstruction) that belong to our marked set A’.

Lemma 4.13. Let C € C\C*, v € V(C)\ A', and O be a minimal obstruction that is not covered
by W such that v € V(0). If O is not an AW where v is_a non-shallow terminal, then there
exists a subset A C A’ of size k + 1 such that for each u € A, G[(V(0)\ {v}) U{u}] contains an
obstruction.
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Proof. First, by Lemma 4.11, we have that O is an AW such that V(O) NV (C) = {v} and v is
a terminal of Q. Let us also note that Ng(v) € M’ U C and therefore Ng(v) N V(0) C M'. Let
O comprise of the base path base(Q) = (b1, bo,...,b,), non-shallow terminals ¢, and t,, shallow
terminal ¢, and centers ¢; and ¢y (as in the definition in Section 2). Here, if O is a {-AW, then
we let ¢ = ¢ = c9. Suppose that v is not the shallow terminal of @. Then, we have that v
is either t; or t,. Without loss of generality, suppose that v = t;. Let us consider two cases,

depending on whether O is a {-AW or a I-AW.

e Suppose that O is a T-AW. Notice that by € M’ as (b1,v) € E(G), V(0O) NV (C) = {v},
and Ng(v) € M’ UC. From Lemma 4.11 any vertex in V(Q) N V(C \ C*) must be one of
the terminals. Thus, we have V(C \ C*) N ({b1,ba,...,b.} U{c}) = 0. We also recall that
for each u € V(é\\ C*), we have Ng(u) C M'U V(CA\ C*). In particular, if by (or ¢) is not
in M’, no vertex in V(C \ C*) can be adjacent to by (or ¢). The above discussions together
with the construction of A’ implies the following: there exists a subset Q C A’ of k + 1
vertices such that for each u € @, u is adjacent to b1, and u is not adjacent to by and c.
Indeed, these are the vertices in the set A/{ln}, {(ba,c}M (the size of this set is k + 1 since
otherwise v should have belonged to it, but v ¢ A’). Furthermore, b; is not adjacent to
any vertex on O besides v, c and bs. Therefore, for all u € @), using Observation 4.10 for
obstructions not covered by W, we have that u is not adjacent to any vertex on V(Q) N M’
besides by. Furthermore, for all u € Q, since Ng(u) C V(C \ C*) U M, we have that u is
not adjacent to any vertex on V(Q) N V(C*). Lastly, because V(0) NV (C) = {v}, for all
u € Q, we have that u is not adjacent to any vertex on V(Q) N V(C \ C*) besides possibly
v. Hence, for any vertex u € Q, G[(V(0) \ {v}) U {u}] is also a 1-AW.

e Suppose that O is a {-AW. Notice that b1, c; € M’ as (b1, v), (c1,v) € E(G), V(0)NV(C) =
{v}, and Ng(v) € M’ UC. From Lemma 4.11 any vertex in V(Q) N V(C \ C*) must be
one of the terminals. Thus, we have V(C\ C*) N ({b1, b, ...,b.} U{c}) = 0. We also recall
that for each u € V(C\ C*), we have Ng(u) € M’ UV(C\ C*). The above discussions
together with the construction of A’ implies the following: there exists a subset Q C A’
of k + 1 vertices u € A’ such that u is adjacent to both ¢; and by, and u is adjacent to
neither co nor by. Indeed, these are the vertices in the set A{{bhcl}, {ba,co}AM (as in the
previous case, the size of this set is k 4 1 since otherwise v should have belonged to it, but
v ¢ A’). Notice that b; is not adjacent to any vertex on O besides v, ¢y, c2 and be. For
all u € Q, using Observation 4.10 for obstructions not covered by W and the facts that
Ng(u) CV(C\C*)UM and V(O)NV(C) = {v} (using the exact same rationale as in
the previous case), we have that u is not adjacent to any vertex on @ — {v} besides ¢; and
bi. Hence, for any vertex u € @, G[(V(0) \ {v}) U{u}] is also a {-AW.

In both cases, we derived the desired claim, and thus the proof is complete. ]

Marking Scheme to Handle Shallow Terminals. For this part in our proof, we require the
following notation: we say that a path P is covered by W if there is a set W € W such that
W C V(P). Intuitively, we think of P as part of the base of an obstruction, hence the notation
above is a natural extension of covering to this context.

Before we present our marking scheme, let us explicitly state the following observation, which
follows from Observation 4.10 in the same manner as Lemma 4.11.

Observation 4.14. Let P be an induced path in G[V(G)\ V(C)] for some C € C\ C* such that
P is not covered by W. For allv € V(C), |[Ng(v) NV (P)| <2, and if [Ng(v) NV (P)| = 2, then
the two vertices in Ng(v) NV (P) are adjacent on P.
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Proof. Consider C' € C\ C*, v € V(C), and an induced path P in G[V(G) \ V(C)] which is not
covered by W. If |[Ng(v) NV (P)| < 1, then the claim trivially follows. Otherwise, we assume that
|N(v) N V(P)| > 2. Consider (distinct) vertices u,w € Ng(v) NV (P). From Observation 4.10,
we have that (u,w) € E(G). Here, we relied on the fact that P is not covered by W. Since P
is an induced path, u and w must be adjacent vetices in P. From the above we can conclude
that v cannot have three neighbors in P as P is an induced path in G. Moreover, if v has two
neighbors in P then they must be adjacent vertices. O

Denote N = M'U A*U A’. (Recall that A* = V(C*) and that A’ is the set of vertices
marked when we dealt with non-shallow terminals.) For all (not necessarily distinct) vertices

~

c1,¢2 € M', denote Ay o,y = {v € V(C) \ (A* U A') | {e1,c2} € Ng(v)}. Intuitively, Age, oy
is the set of vertices among the unmarked vertices in C that are neighbors of both ¢; and ¢
and hence can play the role of shallow terminals in obstructions having ¢; and cs as centers.
Moreover, let us arbitrarily order N and E(G[N]) as follows: N = {v1,v2,...,vy} and
E(GIN]) = {e1,e2,...,e/gny)| - Thus, when we define vectors having |N| or | E(G[N])| entries
below, we can work with a natural correspondence between the index of an entry in the vector
and an element of N or E(G[N]), respectively.

In what follows, we begin the part in our analysis that is based on linear algebra. To this
end, we first need to encode our problem in this language, which entails the introduction of
appropriate notations. Afterwards, we will present a marking scheme based on these notations.
The analysis of this scheme is done is a sequence of several lemmata, after which we will be
ready to conclude the proof of Lemma 4.3.

First, with every vertex u € V(C) \ (4* U A’), we associate two binary vectors that capture
incidence relations between u and the elements (vertices and edges) in G[N]:

e Vertex incidence relations. vinc(u) = (b1,bz,...,by|), where for all i € [|[N]], b; = 1 if
and only if v; € Ng(u);

e Edge incidence relations. einc(u) = (b1, bz, ..., bgqn)), Where for all i € [|[E(G[N])[],
b; = 1 if and only if u is adjacent to both endpoints of e;.

Complete incidence relations. In addition, we define inc(u) as the vector that is the
concatenation of vinc(u) and einc(u), to which we add 1 at the end. Formally, inc(u) is a binary
vector with |N| + |E(G[N])| + 1 entries, where for all i € [|[N|], the i** entry of inc(u) equals
the it entry of vinc(u), for all i € [|[E(G[N])| + |N|] \ [|N]], the i" entry of inc(u) equals the
(i—|N|)*" entry of einc(u), and the last entry of inc(u) is 1. These incidence vectors are associated
with the vector space F3 for ¢ = |[N|+|E(G[N])| + 1, and all calculations related to these vectors
are performed accordingly. This completes the description of the notations required to present
our marking scheme.

For all (not necessarily distinct) vertices ¢1,co € M’, we have the following subprocedure
of our marking scheme. First, we define V., .,1 to be the multiset {inc(u) | u € Ag, o1}
More precisely, the number of occurrences of a vector in Vy., .3 equals the number of vertices
u € Age, ¢,y such that inc(u) equals that vector. Now, we proceed as follows.

L. Initialize V9, . =0.

2. Fori=1,2,...,k+1: compute some basis Bl{cwz} for the vector subspace V{C1,Cz}\\7?{;1,02}

(with respect to F4),2 and denote Vi =Vil U Bf{CLCQ}.

{01702} {61702}

2Here, note that the subtraction concerns multisets. In particular, if an element occurs z times in a multiset
X, and y times in a multiset Y C X, then it occurs  — y times in X \ Y.
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k+1
{c1,c
such that inc(u) = v and denote it by uy (the existence of sufficiently many such distinct

vertices directly follows from the definition of V., ,1).

3. For every occurrence of a vector v € \' b arbitrarily choose a unique vertex u € Ay., 1

4. Denote ;1\{01702} ={uy : v € \Af]{“zlcQ}}, and note that ﬁ{clm} is a set (rather than a

multiset).

Finally, having performed all subprocedures, we denote A= U01,02€ M E{CLCQ}. Here, union

refers to sets, that is, every vertex occurs in A once even if it belongs to more than one set of
the form ‘Z{C1,C2}~ This completes the description of our marking scheme.

We proceed to analyze our marking scheme. Let us first observe that we have not marked
“many” vertices, that is, we upper bound \E\ (Here, the bound |N| < 2|M’|* follows from
Observations 4.9 and 4.12, and since N = M’ U A* U A'.)

Lemma 4.15. The size of A is upper bounded by (k + 1)|M’'|2|N|2 < 2(k + 1)2|M’|6,

Proof. To show that |A| < (k + 1)|M'2|N|2, it is sufficient to show that for all ¢1,cy € M,
| Agereoy] < (kB + 1)|N|2. To this end, consider some c,ca € M’. Now, observe that the number
of entries of the vectors in Vi, o, is ¢ = [N| + [E(GIN])| + 1 < |N| + NUT=D 4 < v
(assuming |N| > 1, as otherwise, we can obtain a trivial kernel). Hence, every basis of V., )

or of a subset of V., ) is of size at most [N|?. As V?;lcﬂ

(
(k + 1) bases of V., .,y (or of subsets of V., ,3), we have that |{\/‘]fc+1 2}\ < (k+1)|N|?. Since
|

1,¢
V'{CZICQ}] = |A{c, co1 |, the proof is complete. O

is a multiset that is the union of

Now, let us verify that we have a set of vertices that is sufficient to “handle” shallow terminals.
This will be done in a sequence of two lemmata and a corollary. For this purpose, we need the
following notation where we alter incidence vectors by nullifying some of their entries.

e Nullifying Subsets of Vertices and Edges. Given a pair (X,Y), where X C N and
Y C E(G[N]), and a vertex u € V(C) \ (A* U 4", we define inc™Y (u) to be the vector
inc(u) where all entries associated with vertices and edges that do not belong to X UY
are changed to 0. Formally, inc®Y (u) is a binary vector with |N| 4 |E(G[N])| + 1 entries,
where for all i € [|N|], the i*" entry of inc(u) equals the i*" entry of vinc(u) if v; € X and
to 0 otherwise, for all i € [|[E(G[N])| + |N|] \ [IN]], the i entry of inc™Y (u) equals the
(i — |N|)*" entry of einc(u) if e;—n| € Y and to 0 otherwise, and the last entry of incY (u)
is 1.

~

¢ Nullifying an Induced Path. Furthermore, for an induced path P in G—(V(C)\(4*UA"))
and a vertex u € V(C) \ (A*U A’), we denote inc?(u) = inc®Y (u) where X = V(P) NN
and Y = E(P) N E(G[N)).

Moreover, recall that given a vector v and an entry index i, v[i] denotes the i*" entry of v.

Lemma 4.16. Let P be an induced path in G[V(G)\V(C)] for some C € C\C* such that P is not
covered by W. For allu € V(C), 3L inc’(w)[i] =1 mod 2 if and only if Ng(u) NV (P) = 0.

Proof. Consider some vertex u € V(C). For the reverse direction of the proof, suppose that
Ng(u) NV (P) = (. Then, all of the entries of inc”(u) equal 0, except for the last entry which
equals 1. Thus, >>7_, inc”(u)[i] =1 mod 2.

For the forward direction of the proof, suppose that Ng(u) NV (P) # (). Then, by Observa-
tion 4.14, |Ng(u) N V(P)]| is either 1 or 2, and if it is 2, then the two vertices in Ng(u) NV (P)
are adjacent on P. Furthermore, observe that as V(P) NV (C) = () and Ng(u) C V(C) U M/,
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we have that Ng(u) N V(P) C M’. Thus, in case |Ng(u) N V(P)| = 1, it follows that there
exists exactly one entry in inc” (u) that equals 1 apart from the last entry, which is the entry
corresponding to the vertex in Ng(u) N V(P). Moreover, in case |[Ng(u) NV (P)| = 2, it follows
that there exist exactly three entries in inc”’(u) that equal 1 apart from the last entry, which are
the two entries corresponding to the two vertices in Ng(u) N V(P) and the entry corresponding
to the edge between these two vertices. In both cases, we derive that >°7_, inc”(u)[i] =0 mod 2
as desired. O

The reason why we need Lemma 4.16 is that we make use of it in the proof of the following
lemma. Informally, this lemma exhibits the existence of £+ 1 “replacements” for each unmarked
shallow terminal.

Lemma 4.17. Let w € V(C) \ (A*u Ay A), and O be an AW that is not covered by W such
that V(0) N (V(C) \ (A* U A’ U A)) = {w} and w is the shallow terminal of O. Let {c1,cz} be
the set of centers of O (with ¢1 = co if O is a T-AW). Then, for all i € [k + 1], there exists
\AS B{C o} Such that G[(V(0) \ {w}) U{uy}] is an obstruction.

Proof. Consider some i € [k + 1]. Let C be the connected component in C containing w.
Notice that c1,co € M’ as (c1,w), (ca,w) € E(G), V(O) N (V(C) \ (A* U A’ U A)) = {w} and
Ng(w) € M'UC. Let us first argue that there exists an occurrence of inc(w) in Vi, o1\ V7§ {61’62}.
To this end, note that as w is the shallow terminal of Q, it is adjacent to ¢; and co, and therefore
w € Ay, cp)- Moreover, because w ¢ 2, there exists an occurrence of inc(w) that does not belong

to V’{“;lc } which implies that there exists an occurrence of inc(w) in Vi, ¢,y \V {crca}”

As we have shown that inc(w) in Vi, e, \ V{ , the fact that B! is a basis for

e c1,c2} {c1,c2}
Vicien) \Vf{;lm} implies that there exist vectors vi,va,...,v; for some ¢t € N (in particular,
t > 1) and nonzero coefficients Ai, Ag, ..., A\; such that A\;vy + Aava + -+ - + A\vy = inc(w) over

Fi. As the coefficient are from field Fo, they are all necessarily 1. Thus, we have that
vi+ve + -+ vy = inc(w) over Fi.

Denote u; = uy, for all i € [t]. Then, inc(u1) +inc(uz) + - - - + inc(ug) = inc(w) over Fi. In
particular, inc” (u1) + inc? (ug) + -+ + incP(ut) = inc(w) over 4, where P is the extended
base of @. This implies that $_ 1 Z _,incP(w)[j] = q _,incP(w)[j] mod 2. (Note that
since V(0) N (V(C) \ (A*U A’ U A)) = {w}, the extended base is completely contained in
GIV(G)\ (V(C)\ (A4* U A’ U A))], and furthermore P is not covered by W by the premise of the
lemma.) By Lemma 4.16 and since Ng(w) NV (P) = () (because w is the shallow terminal of
0), we have that 3°7_, inc”(w)[j] =1 mod 2. Thus, 3°}_, > inc”(u;)[j] =1 mod 2. This
implies that there exists i € [t] such that 377, inc”(u;)[j] = 1 mod 2. However, by Lemma
4.16, this means that Ng(u;) NV (P) = (). Moreover, we have that u; € Ay, .} because u; is
associated with the vector v; which belongs to By, .. Hence, G[(V(0) \ {w}) U {u;}] is an
AW. This completes the proof. O

Due to the definition of ﬁ, as a direct corollary to Lemma 4.17 we have the following result.

Corollary 4.18. Let w € V(é\)/\\ (A*U A’ U A), and O be an AW that is not covered by W such
that V(0) N (V(C) \ (A*U AU A)) = {w} and w is the shallow terminal of O. Then, there exists
a set A C A of size k + 1 such that for each u € A, G[(V(0)\ {w}) U{u}] is an obstruction.

We are now ready to conclude the proof of Lemma 4.3 and thereby this section.

Proof of Lemma 4.3. Towards the proof, first note that if the condition of Reduction Rule 4.3
applies, then we are clearly done—indeed, in this case we output an instance (G’, k) equivalent to
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(G, k) where G’ is a strict subgraph of G. Thus, we next suppose that this rule has been applied
exhaustively. Then, our output is the set B = A*UA'U A. By Observations 4.9 and 4.12, and by
Lemma 4.15, we have that |B| < [A*|+ |A/|+|A| < (k+1)| M2+ (k+1)|M'[* +2(k+1)2|M'|6 <
4(k 4+ 1)2|M'|5 as desired.

Let S C V(G) be some arbitrary set of size at most k. We claim that the following property
holds: If there exists an obstruction O for G that is not covered by W and such that V(Q)NS = 0,
then there exists an obstruction @’ for G such that V(Q') NS = 0 and V(Q') N (V(C) \ B) = 0.
Clearly, if there does not exist any obstruction O for G that is not covered by W and such that
V(0) NS = 0, then our proof is complete. Hence, we next suppose that such an obstruction

~

exists, and we let Q" be such a minimal obstruction that minimizes |V (Q') N (V(C) \ B)|. We
claim that for this obstruction @/, it holds that V(Q') N (V(C) \ B) = @, which would complete
the proof. Suppose, by way of contradiction, that this claim is false. Then, as V(C*) C B, there
exists C € C\ C* and v € V(C) such that v € V(Q’). By Lemma 4.11, [V(Q) N V(C)| = 1 and
O’ is an AW where v is a terminal.

Let us first suppose that v is not the shallow terminal of Q'. Then, by Lemma 4.13, there
exist (k4 1) vertices u € A" such that G[(V(Q') \ {v}) U {u}] is an obstruction. However, as
|S| < k, this means that there exists u € A"\ S such that G[(V(0)\ {v})U{u}] is an obstruction.
As A" C B and G[(V(0')\ {v}) U{u}] has fewer vertices from V(C)\ B than Q’, we have reached
a contradiction to the choice of O.

As the choice of v was arbitrary, we derive that V(Q') N (V(C) \ B) contains exactly one
vertex, which we denote by w, that is the shallow terminal of Q’. In this case, by Corollary 4.18,
there exist (k + 1) vertices u € A such that G[(V(Q)\ {w})U{u}] is an obstruction. However, as
|S| < k, this means that there exists u € A\ S such that G[(V(0')\ {w})U{u}] is an obstruction.
As A C B and G[(V(O') \ {w}) U{u}] has no vertices from V(C) \ B, we have again reached a
contradiction to the choice of @. This completes the proof. ]

4.1 Bounded Intersection Two Families Lemma

At the heart of our marking scheme to handle shallow terminals is in fact the special case of
Lemma 1.1 where ¢ = 2. Indeed, viewing this case in a more abstract manner, let us give a
rough description of the relation between it and the statement of Lemma 1.1. For all ¢y, ¢y € M,
we have sets Ay, Ag, ..., A; and By, Bo, ..., B, that are defined as follows. First, the universe
is the set of all vertices and pairs of vertices in N. Second, let W denote a set of vertices
w € V(C)\ (A*UA) such that (i) w is adjacent to ¢; and ¢z, and (ii) w has at least one induced
path in G[N], say P,, which contains no vertex adjacent to w, and so that the two following

properties hold:

e For all distinct w,w’ € W, w is adjacent to at least one vertex on P,.

~

e For every induced path P in G[N] that has no vertex adjacent to some vertex in V(C) \
(A* U A"), there also exists a vertex in W that is not adjacent to any vertex on P.

These properties mean, in a sense, that W is a minimal set that “covers” all induced paths

in G[N] that can potentially create AWs together with ¢; and ¢y as centers. Then, t = |W|,

and denote W = {wy,wsy...,w;}. For every vertex w; € W, we create the new set A;, which

contains all the neighbors of w; in N, and the new set B;, which is equal to V(P,,). Clearly, for

all i € [t], A; N B; =0, and due to Observation 4.14, for all distinct 4, j € [t], |A; N B;| € {1,2}.
Let us now turn to the proof of Lemma 1.1. For convenience, let us restate it.

Lemma 1.1 (Bounded Intersection Two Families Lemma). Let Ay,..., Ay, and Bi,..., By, be
families over a universe U such that (i) for every i < m, A; N\ B; =0, and (ii) for every j # 1,
|A; N Bj| € {1,...,c}. Thenm <>y, (llt”).
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Proof. Let |U| =n and let d = Y5 (}). Let D be the set of all subsets of U of size at most ¢
(including the empty set). Note that we have |D| = d. Fix a bijection between D and {1,2,...,d}.
We construct an incidence vector v; for each set A;, where v; is indexed by the subsets of U of
size up to c¢. More precisely, we have a vector v; € {0, 1}¢, where v;[X] = 1 if and only if X C A;.
Let us note that v;[@] =1 for all 1 < i < m. We consider these vectors as elements of the vector
space Fg Similarly, we construct vectors uj, uo,...,u,, for each set By, Ba, ..., By,. We first
claim that for every i € [m], we have v; - u; = 1. This follows from the fact that A; N B; = 0.
We next claim that, for each ¢,j € [m], where i # j, we have v; - u; = 0. This follows from the
following observation. Let C;; = A; N B;. Then, as |Cy;| € [¢], we have that 2¢% C D, where
2% denotes the collection of all subsets of C;;. Now, observe that v;[X]u;[X] = 1 if and only if
X C (. As |2C%| is an even number (greater than or equal to 2), it follows that v; - u; =0
over the field Fs.

Now suppose that m > d. Then the collection vi,va,..., vy, is not linearly independent in
Fg. Hence, there is a vector, say v,,, such that v,, = a;v] + aoves + ... + @p_1Vimm—1, Where
a; € Fy for each j € [m — 1]. We claim that there is a vector v; such that v; - u,, =1 for some
i € [m — 1]. This follows from the following equation.

m—1
Vi - U, = ( Q;Vj) - U,
j=1
m—1
= 1= a;j(vj-um)
j=1
However, this is a contradiction. Hence, m < d. This concludes the proof of this lemma. ]

5 Bounding the Maximum Size of a Clique of Non-module Com-
ponents

Let n =219 4(k + 5)('%'). Recall that C is the set of connected components of G — M, D is
the set of connected components in C that are modules, and D = C \ D. Let (P, 8) be a clique
path of G[V(D)], V(P) = {z1,x2,...,2:}, and for each i € [t] we let B; = 3(x;). Furthermore,
let B(P) = U!_,B(z;). Let B; be a bag such that |B;| > n. Towards bounding the size of B;, we
mark some of the vertices in B;, and delete all the unmarked vertices in B; from G. In fact, in a
step we only delete one unmarked vertex, and then repeat the whole kernelization algorithm on
the reduced instance. In the following, we describe the precise marking procedure.

Marking Scheme. To define our marking scheme, we first introduce some notations. We
define two functions namely, id},id’ : B; — [t]. Intuitively, these functions denote how far or
close a vertex appears in the bags that are to the left and right of B;, respectively. For a vertex
v € By, id(v) is the smallest integer x € [t] such that v € B,, and id’(v) is the largest integer
y € [t] such that v € B,. Note that for each v € B;, we have id)(v) < i < id.(v). A frame
F=(X,Y) in G is a pair of vertex subsets, such that X C M of size at most 10 and Y C X.
A vertex v € V(G) is said to fit a frame F = (X,Y) if Ng(v) N X =Y. We now move to the
construction of the set H; C B;, of marked vertices. For each frame F in G, we create four sets
L5 ki Rl pEi C B; of marked vertices each of size as most k + 5 (and add these vertices to

far?» “cls® “Hfar? ~“cls

H;) as follows.

Fi
far

o We create the set L;’ as follows. Let W be the set of unmarked vertices in B;, that fit the
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frame F. If |W| < k+ 5, then add all the vertices in W to LE{:- Else, let Wiow € W be the

set of k + 5 vertices with lowest idé values among the vertices in W. Add W, to LIfFa’f .

o We create the set LE’; as follows. Let W be the set of unmarked vertices in B;, that fit the
frame F. If |[W| < k+5, then add all the vertices in W to LICFI’SZ. Else, let Whigh € W be the
set of k 4+ b vertices with highest idz values among the vertices in W. Add Whgh to LE’:.

e We create the set Ri’f as follows. Let W be the set of unmarked vertices in B;, that fit the
frame F. If |W| < k+ 5, then add all the vertices in W to Rz’f. Else, let Whigh € W be the
set of k 4+ 5 vertices with highest idfq values among the vertices in W. Add Whg to RE

far*

o We create the set RE’; as follows. Let W be the set of unmarked vertices in B;, that fit
the frame F. If |IW| < k + 5, then add all the vertices in W to RE Else, let Wigw € W be

cls*

the set of k + 5 vertices with lowest idfn values among the vertices in W. Add Wiy, to RE’;.
Notice that |H;| < 29 4(k + 5) (%') = 1. Before proceeding further, we observe (Observa-
tion 5.1 and 5.2) certain useful properties regarding a frame F to which v € B; \ H; fits and the

.. 1Fi pFi pFi F,i
vertices in Lg , R, L., and R .

Observation 5.1. For a frame F = (X,Y) to which v fits and a vertez w € Ng(v) the following
holds.
o IfweY, then L' URY C Nea(w).

far far

e IfweV(G)\ M, then at least one of LE: \ {w} C Ng(w) or RIfFa’f \ {w} C Ng(w) holds.

Proof. In the first case, it follows from the definition that L]fa’f U lez’: C Ng(w). Now we prove

the second part of the observation. First, consider the case when both v and w belong to B;. In
this case second claim holds, because B; is a clique, Lfa’: C B; and RIfFa’: C B;. So let us assume
that w ¢ B;. However, w € Ng(v) and hence both v and w lie in the same bag, say Bj, on the
clique path P. Since the bags in which w is present occur consecutively on P, we have that all
these bags either appear left of B; or right of B;. Let us consider the case when all the bags
containing w appear left of B;. The other case when all the bags containing w appear right of
B; is symmetric. We will show that LIfFa’: \ {w} € Ng(w). Towards this we will show that for

every x ng \{w}, there exists a bag that contains both x and w. For a vertex z, let s, denote
the leftmost bag on P in which z appears and e, denote the rightmost bag on P in which z
appears. Recall that v is an unmarked vertex in B; and thus, s, < s, <17 < e,. Furthermore,
we know that s, < j <. This implies that x also belongs to B;. Hence, we have shown that

LY\ {w} € Neg(w). This concludes the proof. O

far
Observation 5.2. For a frame F = (X,Y) to which v fits and a vertex w ¢ Ng(v) the following
holds.
o Ifwe X\, then (L5 U RS N Ng(w) = 0.

cls cls

o Ifwe V(G)\ M, then at least one of L]fl’_f N Ne(w) =0 or RS N Ng(w) = 0 holds.

cls

Proof. In the first case, it follows from the definition that (LICFI’Si U RICFI’Si) N Ng(w) = 0. In the
second case, if w ¢ V(D) then the claim trivially holds. Otherwise, v and w lie in the clique
path P. Since w ¢ Ng(v), there is no bag which contains both v and w, and v € B;. Either w
appears only in the bags (strictly) to the left of B;, in which case v being an unmarked vertex

implies that LIcFl’SZ N Ng(w) = 0. On the other hand, if w appears only in the bags (strictly) to
the right of B;, we have R]CF[SZ N Ng(w) = 0. ]

Next, we give a reduction rule that deletes unmarked vertices from B; in G.
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Reduction Rule 5.1. Let v be a vertez in B; \ H;. Delete v from G i.e., the resulting instance

is (G —{v}, k).
Lemma 5.3. Reduction Rule 5.1 is safe.

Before moving to the proof of Lemma 5.3, we note that using it we immediately obtain the
following lemma.

Lemma 5.4. If Reduction Rule 5.1 is not applicable, then for each j € [t], we have |B;| <.

Proof. Follows from the safeness of Reduction Rule 5.1 (Lemma 5.3) and the fact that |H;| <,
for each j € [t]. O

In the remainder of this section we focus on the proof of Lemma 5.3. Let v be a vertex in
B;\ H; and G' = G — {v}. We will show that (G, k) is a Yes instance of IVD if and only if (G', k)
is a Yes instance of IVD. In the forward direction, let S be a solution to IVD in (G, k). As
G — S is an interval graph and so are all its induced subgraphs, therefore, we have that S\ {v}
is a solution to IVD in (G', k).

In the reverse direction, let S be a solution to IVD in (G’, k). We will show that G — S is
an interval graph. Suppose not, then there must be an obstruction in G — S. Note that all the
obstructions in G — S are guaranteed to contain v, as otherwise, the obstruction is also present
in G’ — S, which contradicts that S is a solution to IVD in (G’, k). This implies that S U {v} is
a (k + 1)-solution for G. Recall that W is (k + 1)-necessary, therefore S U {v} hits V. Since
v ¢ M and W C 2™ we derive that S hits WW. But then any obstruction in G — S is not covered
by W since v ¢ M. This together with the fact that M is a 9-redundant solution implies that
for any obstruction Q' in G — S we have [V(Q') N M| > 10. Moreover, such an obstruction can
either be a cycle, a 1-AW, or a I-AW on at least 10 vertices. Among all obstructions in G — S
(containing v), we will proof the correctness of the lemma by carefully choosing an (available)
obstruction, and in each case arriving at some contradiction. In the following, we describe the
choice of the obstruction Q in G — S.

1. If G — S has an induced cycle @) (containing v) of length at least 4, then O is set to Q.

2. Otherwise, O is an obstruction in G — S (containing v) of minimum possible size, and over
all such minimum sized obstructions, @ maximizes the number of vertices from B;.

We will consider cases depending on which type of obstruction Q is, and the role that v plays
in O@. In the case when O is an induced cycle, our goal will be to obtain an obstruction not
containing v in G — S. In all other cases, we either will obtain an obstruction not containing v,
or a smaller sized obstruction, or an obstruction which has the same number of vertices as O
but has more vertices from B; than O has from B;. In each such case this will contradict the
choice of Q.

Next, we consider the cases depending on whether Q is a cycle, a 1-AW, or a I-AW.

O is a cycle

Let us first note that |V(Q) N B;| < 2 as B; is a clique. Let z,y be the neighbors of v in @, and
note that they lie in M U S(IP). Since O is not covered by W, we have |V(Q) N M| > 10. Let
M= MnV(0), M'C ]\/Iof size 3 such that M N {z,y} C M, and F = (M, M Nn{x,y}). Next,
consider the sets Ley = L' \ (SUV(Q)) and Rey = Ry’ \ (SU V(). Since |S| < k, v ¢ H;,
and B; is a clique, therefore, Ly, Rear # 0. Let z € M\ {x, y}, which exists since |M'| = 3. Now
suppose that there is v* € L¢g, U Ry, such that (v*, z), (v*,y) € E(G) then we claim that we

can obtain a cycle on at least four vertices not containing v in G — S. Since v* fits I, therefore
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(v*,2) ¢ E(G). Consider the paths P,, and P, from z to z and y to z in O — {v}, respectively.
Furthermore, let * and y* be the last vertices in P,. and P,, which are adjacent to v*. Note
that z* and y* exists since (z,v*), (y,v*) € E(G). But then the path from z* to y* in O — {v}
along with v* forms an induced cycle on at least 4 vertices in G — S which does not contain v.

Next, we assume that any vertex in Lg,y U R is adjacent to at most one of z,y. From
Observation 5.1 (together with (z,y) ¢ E(G)), it follows that, either Lg, € Ng(z) and R C
Na(y), or Regay € Ng(z) and Lgsy € Ng(y), must hold. Suppose that Le, € Ng(x) and
Rsar € Ng(y) (the other case is symmetric). Consider vertices u* € Lg,, and v* € Rp,,. Note that
(u*, x), (v*,y), (u*,v*) € E(G) and (u*,y), (v*, z), (u*, 2), (v*,2) ¢ E(G). Consider the paths
P,, and P, from z to z and y to z in @ — {v}, respectively. Let z* be the last vertex in the
path P, such that Ng(z*) N {u*,v*} # (. Similarly, let y* be the last vertex in the path P,
such that Ng(y*) N {u*,v*} # 0. Let Py+, and P,y+ be the paths from z* to z and z to y* in
O — {v}, respectively. Notice that G[V (Py+.) UV (P,y+) U {u*,v*}] contains an induced cycle
(not containing v) on at least 4 vertices.

O is a -AW

Let O comprise of the base path base(Q) = (by,b2,...,b,), non-shallow terminals ¢, and ¢,,
shallow terminal ¢, and center ¢ (as in the definition in Section 2). Furthermore, let P(Q) =
(te,b1,ba, ... boyty), and let by = ¢, and b.q = t,. Let M = M NV (Q), M’ be a subset of
M of size 8 such that M N {e,t, to, tr,b1,b2,b,1,0,} C M’ and F = (M', M’ N Ng(v)). Next,
we define the following sets, whose vertices will be used to either construct an obstruction not
containing v, or an obstruction containing v but with (strictly) smaller size, or an obstruction

with same number of vertices as O but containing strictly more vertices from B; than @ contains
from B;. Let Ly = L'\ (SUV(Q)), Las = L7\ (SUV(0)), Rear = R\ (S UV(0)), and

far cls far

Rys = RE’; \ (SUV(0)). Notice that |V (O) N B;| < 4, since no obstruction contains a clique
of size 5 and G[B;] is a clique. This together with the fact that v ¢ H; and |S| < k implies
that Liar, Leis, Rfar, Ras 7 0. Next, we consider cases depending on the role that v plays in the

obstruction O.

Suppose v is the shallow terminal. In this case, (v,c) € E(G) therefore, from Observa-
tion 5.1 one of Lg, € Ng(c) or Rey € Ng(c) must hold. Consider the case when L, € Ng(c)
(the other case is symmetric), and let v* be a vertex in Lg,. Next, we consider the following
cases based on the neighborhood of v* in @. (see Figure 2).

Case -AW.S.1. |Ng(v*)NV(P(Q))| = 0. In this case, G[(V(O) \ {v}) U{v*}] is a {-AW
in G- S.

Case 1-AW.S.2 If |[Ng(v*) NV (P(0Q))| = 1. If (v* t;) € E(G) then G[{v*, c,tp,b1}] is
an induced cycle on 4 vertices not containing v in G — S. Analogous argument can be given
when (v*,t,) € E(G). Therefore, we assume that Ng(v*) NV (P(0)) = {b;}, where i € [z]. If
i € [2]\ {1, z} then G[{v*,v,bi, bi—1,bi—2,bit1,bit2}] is a long claw in G —S. This cannot happen
as any obstruction in G — S is of size at least 10. If none of the above cases are applicable then
Ne(*) NV (P(Q)) € {{b1},{b.}}. Suppose that Ng(v*) NV (P(Q)) = {b1} (the other case is
symmetric) then G[{c,v,v*, b1, ba, b3, ts}] is a whipping top in G — S.

Case {-AW.S.3 |Ng(v*) NV (P(0))| > 2. If neighbors of v* are not consecutive in the
path P(Q) then we can obtain an induced cycle on at least 4 vertices in G[{v*} UV (P(Q))],
therefore we assume that the neighbors of v* in P(Q) are consecutive. By the construction of F
and v* we know that there are at least 9 vertices in P(Q) which are non-adjacent to v*. This also
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Figure 2: Construction of an obstruction when O is -AW and v = t.

implies that |{tg, ¢} N Ng(v*)] < 1. Without loss of generality we assume that (v*,t,) ¢ E(G).
Next, we consider the following cases based on whether or not (v*,t;) € E(G).

A) (v*, ty) € E(G). In this case, there exists e € [z — 2] such that b € Ng(v*) and bet1 ¢
Ng(v*). Let V/ = {v,v* e, tg} U{b1,ba,...,be,bet1}. Observe that G[V'] is a 1-AW with
|[V'| < |V(0)], a contradiction to the choice of O.

B) (v*,t¢) ¢ E(G). Let bs and b, be the first and the last vertices in P(Q) which are
adjacent to v*, respectively. Notice that s # e (since |Ng(v*) NV (P(Q))| > 2), and
{bs, bst1,-- - be, be+1} C {bl, ba, ... bz} (strict subset). Let V! = {U, U*}U{bs_l, bsy bsy1y- -
be,bet1}. Observe that [V/| < |V(0)] and G[V'] is a {-AW.

Suppose v is the center. In this case, (t¢,v), (t,,v) ¢ E(G). Since v ¢ H; and each vertex in
LasU R fits the frame F, from Observation 5.2 one of the following holds. (1) Ng(t) N Lgs =0
and NG(tr) N Res = (D; (2) NG(tr) N Lgs = 0 and NG(tﬁ) N Rgs = Q); (3) NG(tﬁ) N Les = 0
and Ng(t,) N Lgs = 0; (4) Ng(te) N Ras = 0 and Ng(t,) N Rgs = (. Consider a vertex
v* € Lgs U Rqs, and let by and b be the first and the last vertices in the path P(Q) which are
adjacent to v*, respectively. The existence and distinctness of bg, b, follows from the fact that
|Ng(v*) NV (P(0))| > 5, which in turn is implied from the choice of M’ and v* fitting the frame
[F. The neighbors of v* in P(0) must be consecutive, otherwise we can obtain an induced cycle
of length at least 4, which does not contain v. We further consider sub-cases based on whether
or not the following two criterions are satisfied (see Figure 3).

1. t € Ng(v*);

2. Ng(v*) N {ts, t,} = 0.

Case {-AW.C.1. t ¢ Ng(v*). If {ty,t,} C Ng(v*) then G[{v* ts,b1,v,b,, ¢, t}] is a
whipping top. Here, we rely on the fact that neighbors of v* in P(Q) are consecutive. From
the above, we can assume that |{ts,¢,} N Ng(v*)] < 1. Let V' = (V(O) \ {bst1,bs+2;---,
be—1}) U{v*}. Notice that |[V'| < |V (O)]| since |Ng(v*) N V(P(0))| > 7 and neighbors of v* are
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Figure 3: Construction of an obstruction when Q is -AW and v = c.

consecutive. Moreover, G[V'] is an (induced) {-AW or a net, which is of strictly smaller size than
O, contradicting the choice of @. Here, we crucially rely on the fact that |[Ng(v*) N {ts,t,}| < 1.

Case -AW.C.2. t € Ng(v*)and Ng(v*)N{ts,t,} = 0. In this case, G[{v*,t,bs_1,bs, bst1, ...
ybe, be—1}] forms an (induced) 1-AW in G — S which does not contain v.

If Case 1-AW.C.1 and {-AW.C.2 are not applicable then for each u € Lgs U Rs we have
t € Ng(u) and Ng(u) N{te,t,} # 0. Furthermore, v ¢ H;, (ts,v), (t;,v) ¢ E(G), and each vertex
in LgsU Ry fits the frame F. Therefore, one of the following must hold. 1) Ng(t7) N Lgs = 0 and
Ne(t:) N Ras = 0; 2) Ng(t,) N Las = 0 and Ng(tg) N Res = 0. Thus for each u € Lgs U Rys we
have |Ng(u) N {ts,t.}| = 1. We assume that Ng(tg) N Lgs = 0 and Ng(t,) N Rgs = O (the other
case is symmetric). Next, we consider a vertex u* € Lgs and a vertex v* € Rqs. Notice that
(by the above discussion) t € Ng(u*) N Ng(v*), ty ¢ Ng(u*), t, € Ng(u*), t, ¢ Ng(v*), and
te € Ng(v*). Also, since u*,v* € B; we have (u*,v*) € E(G). We now consider the remaining
case.

Case 1-AW.C.3. t € Ng(u*) N Ng(v*), Ng(u*) N {te,tr} = {t-}, and Ng(v*) N {te, t,} =
{t¢}. We consider the following sub-cases.

A) If v* and v* have no common neighbor in P(0Q) then G[{u*,v*} UV (P(Q))] contains an
(induced) cycle on at least 4 vertices.

B) Otherwise, u* and v* have at least one common neighbor in P(Q). Let b, and b, be the
first and the last common neighbors of u* and v* in P(0), respectively. Notice that b,_; €
Ng(v*) and by—1 ¢ Ng(u*). This follows from the fact that ty,b, € Ng(v*), neighbors of
v* are consecutive vertices in P(Q), ty ¢ Ng(u*), and p is the first common neighbor of u*
and v* in P(Q). Similarly, we can argue that b,41 € Ng(u*) and bg1 ¢ Ng(v*). Consider
the set V' = {t,v*,u*} U {bp_1,bp,...,bq,bg+1}. Notice that G[V'] is a I-AW or a tent
which does not contain v.
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Figure 4: Construction of an obstruction when O is -AW and v = ;.

Suppose v is one of the non-shallow terminals. We consider the case when v =ty. By a
symmetric argument we can handle the case when v = ¢,.. If ¢ ¢ 5(IP) then for each u € LgsU Rgs
we have (u,c) ¢ E(G), as it fits the frame F and Ng(u) \ (M U B(P)) = Ng(v) \ (M U 5(P)).
Otherwise ¢ € B(P), and then from Observation 5.2 at least one of Lgs N Ng(c) = 0 or
Ras N Ng(c) = 0 holds. Let X¢s € {Lqs, Ras} be a set such that X¢s N Ng(c) = 0. Similarly,
if by ¢ B(P) then for each u € Lgy U Rpay we have (u,b1) € E(G) as it fits the frame F and
Ng(u) \ (M UB(P)) = Ng(v) \ (M UB(P)) = 0. Otherwise, by € 3(P), and then at least one of
Lay € Ng(b1) or Rear € Ng(by1) holds (see Observation 5.1). Let Yo, € {Lfar, Rfar} be a set such
that Yz, € Ng(b1). Next, we consider cases based on whether or not b; € B; (see Figure 4).

Case {-AW.T.1. b; € B;. Consider a vertex v* € X s. Note that (v*,b;) € E(G) since
by € B;, and (v*,¢) ¢ E(G) by the choice of v*. Also, (v*,t) ¢ E(G) otherwise, G[{t, ¢, b1, v*}]
is cycle on 4 vertices in G — S. Recall that v* fits the frame F (and (b1,v*) € E(G)), therefore
there exists b, such that b, € Ng(u*) and bey1 ¢ Ng(u*), where e € [z — 1] (possibly e = 1).
This together with the fact that neighbors of v* in P(Q) are consecutive (otherwise, we obtain
an induced cycle on at least 4 vertices not containing v) implies that (v*,¢,) ¢ E(G). But then
G[{t,c,v*} U{be,bet1,...,bs,tr}] is a -AW (or a net) which does not contain v.

Case {-AW.T.2. b; ¢ B;. Consider a vertex v* € Yg,, U {u € X¢s | (u,b1) € E(G)}, and
the following cases based on its neighborhood in Q.

A) (v*,¢) ¢ E(G). In this case, (v*,t) ¢ E(G), otherwise G[{v*,t, ¢, b1}] is an induced cycle
on 4 vertices. Recall that v* fits the frame F, therefore there are at least 5 vertices in P(Q)
which are non-adjacent to v*. This together with the fact that (b;,v*) € E(G) implies
that there exists e € [z — 2] such that b, € Ng(v*) and bet1 ¢ Ng(v*). But then G[V'] is
a t-AW (or a net) not containing v in G — S, where V' = {t, ¢, v*,t, } U {be, bet1,...,b,}.

B) (v*,¢) € E(G). We further consider the following cases.

i) There exists e € [z] \ {1} such that b, € Ng(v*) and be+1 ¢ Ng(v*). By the choice of
M’ and the fact that v* fits F, we have e < z — 2. Consider the following cases based on
whether or not (t,v*) € E(G).
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a) (t,v*) ¢ E(G). Let V' = {t,c,v*,v,t,} U {be,bes1,...,b,}. Observe that G[V’|
is a 1-AW in G — S. Furthermore, either |[V'| < |[V(Q)| or |V'| = |V(0Q)| and
V!N B;| > |V(0) N B;|. Here, we rely on the fact that b; ¢ B;. In either case we
obtain a contradiction to the choice of O.

b) (t,v*) € E(G). Let V! = {t,c,v*, v} U {b1,ba,...,be,besr1}. Observe that G[V'] is a
-AW in G — S and |V’| < |[V(0)], which contradicts the choice of Q.

ii) Otherwise, if i) does not hold then the only neighbors of v* in P(Q) are b; and v.
Consider the following cases based on whether or not (¢,v*) € E(G).

a) (t,v*) € E(G). In this case, G[{v,v*,t,¢,b1,b2}] is a tent.

b) (t,v*) ¢ E(G). We consider a vertex in u* € Xgs to obtain the desired obstruction.
We can assume that (b,u*) ¢ E(G) as Xgs N Ng(c) = ) and Case 1-AW.T.2.A
is not applicable. Furthermore, (b;,u*) ¢ E(G), for each j € [2] \ {1}, otherwise

Gl{v,u*} U {b1,bo,...b;}] will contain an induced cycle on at least 4 vertices. Let
V' = (V(0)\ {v})U{v*,u*}. Observe that G[V'] is a -AW which does not contain v.

Suppose v is either b; or b,. Suppose v = by (the other case is symmetric). If ¢, ¢ (P) then
for each u € Ly U Rpar we have (u,ty) € E(G) as it fits the frame F and Ng(u) \ (M U B(P)) =
Ng(v) \ (M U B(P)) = 0. Otherwise, t, € S(P), and then at least one of Lg, C Ng(tr)
or Rfr € Ng(t¢) holds (see Observation 5.1). Let Xfyy € {Lfar, Riar} be a set such that
Xfar C Ng(te). Similarly, if by ¢ S(P) then for each u € Ly, U Ry we have (u,bs) € E(G) as
it fits the frame F and Ng(u) \ (M U B(P)) = Ng(v) \ (M U S(P)) = 0. Otherwise, by € 5(P),
and then at least one of Lg,, € Ng(bz) or Rey € Ng(be) holds. Let Yia € {Lfar, Riar} be a set

such that Yg, € Ng(b2). Next, we consider cases depending on the neighborhood of vertices in
Xtar U Ysyr in O (see Figure 5).

Case -AW.B.1. There is a vertex v* € Xg,, U Y, such that {tg,b2} C Ng(v*). There
exists e < z — 2 such that b, € Ng(v*) and ber1 ¢ Ng(v*). This follows from the fact that
(v*,b2) € E(G) and v* fits the frame F. Next, we consider the sub-cases based on whether or
not (v*, c), (v*,t) € E(G).

A) (v*,c) € E(G), (v*t) ¢ E(G). Let V! = {t,c,v* tg, t,} U{be,bes1,...,b.}. Observe that
G[V'] is a 1-AW which does not contain v.

B) (v*,¢) € E(Q), (v*,t) € E(G). Let V! = {t,c,v*,v,tp} U{ba, b3, ..., be,bes1}. Observe that
G[V'] is a 1-AW which has strictly fewer vertices than Q.

C) (v*,¢) ¢ E(G). Notice that in this case (v*,t) ¢ E(G), otherwise G[{v*,t,c,ba}] is an
induced cycle on 4 vertices. Let V' = {t,¢,v*,t,} U {be, bes1,...,b.}. Observe that G[V’|
is an induced t-AW which does not contain v.

Case {-AW.B.2. Suppose that for every u € Xg,, U Ys, we have (u,c) € E(G). Since
Case t-AW.B.1 is not applicable, we can assume that for each u € X¢,, U Ys, we have {tp,bo} &
Ng(u). By the construction of Xg,, and Yi,, we know that for each v € Xg,, U Yi, we have
{te, b2} N Ng(u) # 0, and X¢ay, Yar # 0. Consider a vertex v* € Xp,, and a vertex u* € Yg,,. We
have that (v*,c), (u*, c), (v*, tp), (u*, b2) € E(G) and (v*,ba), (u*,ty) ¢ E(G). Next, we consider
cases based on whether or not ¢ adjacent to v* and u*.

A) (t,v*) € E(G). Recall that by ¢ Ng(v*) and ty,t,c € Ng(v*). But then G[{c, v, v*, ba, ty, t}]
is a tent in G — S.
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Figure 5: Construction of an obstruction when O is -AW and v = b;.

B) (t,u*) € E(G). There exists e € [z — 2| such that b, € Ng(u*) and bey1 ¢ Ng(u®).
This follows from the fact that (u*,b2) € E(G) and u* fits the frame F. Let V' =
{b2,bs, ..., be,bey1} U{t,u*, ty,v}. Then G[V'] is a {-AW in G — S which has strictly fewer
vertices than O.

C) (t,v*),(t,u*) ¢ E(G). We start by arguing that v* cannot be adjacent to bj, where
j € ]z]\ {1}. For j = 2 it follows from the choice of v*. Next consider the smallest j > 2
such that (v*,b;) € E(G). Then G[{v,v*} U {ba,bs,...,b;}] is an induced cycle on at least
4 vertices, which has strictly less number of vertices than @. Therefore, we assume that the
only neighbor of v* in P(Q) are v and t;. Next, we argue about neighbors of u* in P(Q).
There exists e € [z—2] such that b, € Ng(u*) and bey1 ¢ Ng(u*). This follows from the fact
that (u*,b) € E(G) and u* fits the frame F. Let V' = {t, ¢, tg, t,;, v*, u* }U{be, b1, ..., b:}.
Observe that G[V'] is a -AW in G — S which does not contain v.

Case -AW.B.3. Suppose that there is u € Xgr U Yo such that (u,c) ¢ E(G), and for
all u € Xy U Ysor we have {ty, b2} Z Ng(u). Consider vertices v* € X¢,, and u* € Yg,,, and the
following sub-cases.

A) Consider the case when (v*,c¢) ¢ E(G). This implies that (v*,t) ¢ E(G), otherwise
G[v*, ¢, t,v] is a cycle on 4 vertices. As Case 1-AW.B.1 is not applicable, for each u € Yf,,
we have (u,b) € E(G) and (u,ty) ¢ E(G). Note that since v is unmarked, therefore,
Yiar # 0. From the above discussions we obtain that ¢, ¢ B;. Observe that v* cannot be
adjacent to any b;, where j > 2, since the neighbors of v* in P(0) must be consecutive,
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Figure 6: Construction of an obstruction when @ is 1-AW and v = b;, where j € [z — 1]\ {1}.

(v*,ty) € E(G), and (v*,b2) ¢ E(G). But then G[(V(0) \ {t¢}) U {v*}] is a -AW with

same number of vertices as O but with more vertices from B;.

B) Consider the case when (u*,¢) ¢ E(G). Since Case t-AW.B.3.A is not applicable we can
assume that (v*,c) € E(G). Observe that G[{c,v*,u*,bs}] is a cycle on 4 vertices. Here,
we rely on the fact that (v*, b)) ¢ E(G).

Suppose that v is a base vertex b;, where j € [2]\ {1,2}. Let X, € {Lfar, Rear} be a set
such that Xer € Ng(bj—1) and Ysar € {Lfar, Rfar} be a set such that Y, € Ng(bj1). We note
that existence of Xg, and Yz, is guaranteed from Observation 5.1. Next, we consider cases based
on the neighborhood of vertices in X¢,, and Yf,, in O (see Figure 6).

Case {-AW.J.1. If there is v* € X U Yo such that (v*,¢) ¢ E(G). Note that, as
(v*,c) ¢ E(G), we have (v*,t) ¢ E(G), otherwise G[{v,v*, ¢,t}] would be an induced cycle on 4
vertices. All the neighbors of v* on P(Q) must be consecutive. This together with the choice
of F and v* implies that, one of (a) {tg,b1} N Ng(v*) = 0 or (b) {t,,b.} N Ng(v*) = 0 must
hold. Suppose that {t,,b,} N Ng(v*) = 0 (the other case is symmetric). Let e € [z — 1] such
that b. is the last vertex in P(Q) which is adjacent to v*, which exists since t,,b, ¢ Ng(v*)
and Ng(v*) N {v,bj—1,bj41} # 0. We note that e could possibly be equal to j. Let V' =
{t,c,v*,t,} U {be,bet1,...,b.}. Observe that |V'| < |V(0)] since j € [2] \ {1,z}. Moreover,
G[V''is a {-AW in G — S, which contradicts the choice of Q.
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Note that if Case {-AW.J.1 is not applicable then for each u € X, UYssr we have (u, ¢) € E(G).
Next, we consider cases based on whether or not the following conditions are satisfied for a
vertex v € X U Yiar.

1. (u,t) € B(G);

2. {bj—1,bj41} € Ne(u).

Case 1-AW.J.2 Ifthereis v* € Xg, UY,, such that (v*,t) € E(G). We start by recalling the
following. Since M is a 9-redundant solution and O is not covered by W, we have |[M NV (0)| > 10,
which implies that |[V(Q)| > 10. By the choice of F and the fact that 2 < j < z — 1 (where
v = bj), we have at least 4 vertices in V(P(Q)) which are non-adjacent to v*. Moreover, by our
assumption that there is no obstruction which is an induced cycle on at least 4 vertices, we
have that all the neighbors of v* in P(Q) must be consecutive. From the above discussions, we
can conclude that at least one of {b1,ba,t/} N Ng(v*) = 0 or {b,—1,b,,t-} N Ng(v*) = () must
hold. Suppose that {b,_1,b.,t.} N Ng(v*) = 0 holds (the other case is symmetric). We further
consider the following sub-cases based on whether or not t; € Ng(v*).

A) ty ¢ Ng(v*). Let s € [j] such that b is the first vertex in P(Q) which is adjacent to v*, which
exists since (tp,v*) ¢ E(G) and (v*,v) € E(G). Also, let e € [z — 2] such that b, is the last
vertex in P(Q) which is adjacent to v*, which exists since (¢, v*), (b, v*), (b,—1,v*) ¢ E(G)
and (v*,v) € E(G). Notice that s # e since by the construction of the sets X¢,, and
Yiar we have that v* is incident to v and at least one of the vertices in {bj_1,b;41}. Let
V' = {t,v*} U{bs—1,bs,...,be,bet1}. Observe that G[V'] is a 1-AW in G — S. Moreover,
|[V'| < |V(Q)] since t,,c,b, ¢ V' and V' C V(0) U {v*}.

B) ty € Ng(v*). Let e € [z — 2] such that b, is the last vertex in P(Q) which is adjacent
to v*, which exists since (t,v*), (b, v*), (b,—1,v*) ¢ E(G) and (v*,v) € E(G). Let
V' ={t,v*,c,tg} U{b1,ba,...,be,bes1}. Observe that G[V'] is a :-AW in G — S. Moreover,
|[V'| < |V(Q)] since t,,b, ¢ V' and V' C V(0) U {v*}.

Case 1-AW.J.3. If there is v* € Xg U Y, such that (v*,t) ¢ E(G) and {bj_1,bj41} C
Ng(v*). Notice that all the neighbors of v* on P(Q) must be consecutive, and there are at
least 4 vertices on P(Q) that are non-adjacent to v*. This follows from the facts that M is a
9-redundant solution, @ is not covered by W, G — S has no obstructions which are induced
cycles, and the choices of F and v*. From the above discussions, we can conclude that one of
{te,b1} N Ng(v*) = 0 or {t,,b.} N Ng(v*) = 0 must hold. Suppose that {t,,b.} N Ng(v*) =0
(other case is symmetric). Let e € [z — 1] such that b, is the last vertex in P(Q) which is adjacent
to v*, which exists since t,,b, ¢ Ng(v*) and {bj_1,bj41} € Ng(v*). Also, let s € [z — 1] U {0}
be the lowest integer such that (v*,bs) € E(G) (bs could possibly be same as bj_1 or by = t).
Let V! = {t,c,v* tg, t,} U{b1,ba,...,bs} U{be,bet1,...,b:}. Observe that G[V'] is an induced
T-AW in G — S, which does not contain v. Here, we rely on the fact that Case {-AW.J.1 is not
applicable, due to which we have (v*,c) € E(G).

Case {-AW.J.4 For all u € Xg,r U Yy we have (v*,t) ¢ E(G), and {bj_1,bj41} € Ng(v*).
The non-applicability of Case t-AW.J.1, -AW.J.2, and 1-AW.J.3 (together with the constructions
of Xtar and Yi,,) imply that, for each u € X¢,, U Ys, we have (u,c) € E(G), (u,t) ¢ E(G), and
|INc(u) N {bj_1,bj4+1}| = 1. Next, consider a vertex u* € X, and v* € Yg,. Let s € [j — 1] U {0}
such that by is the first vertex in P(Q) adjacent to v*, which exists since (u*,b;_1) € E(G).
Also, let e € [z 4 1] such that b is the last vertex in P(Q) adjacent to v*, which exists since
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Figure 7: Construction of an obstruction when O is -AW and v = t.

(v*,bj41) € E(G). Recall that (u*,bj—1), (v*,bj41) € E(G) and (u*,bj41), (v*,b—1) ¢ E(G).
Moreover, the neighbors of u* and the neighbors of v* in P(0Q) must be consecutive vertices
in P(0), respectively. From above discussions, we can conclude that s # e. Now we let
V' =A{t,c,v*,u*} U{ty,b1,bo,bs—1,bs} U{be,bet1,-..,b.}. Observe that G[V'] is a 1-AW (or a
net) in G — S which does not contain v.

O is a -AW

Let O comprise of the base path base(Q) = (b, be, .. ., b,), non-shallow terminals ¢, and ¢,., shallow
terminal ¢, and centers ¢; and ¢ (as in the definition in Section 2). Furthermore, let P(Q) =
(te,b1,b2,...,b,,t), bo = tg, and b, = t,. Let M=Mn V(0), M’ be a subset of M of size 9
such that M N {c1, 2, tp, b, b1, b, baq, b} € M!, and F = (M’, M’ N Ng(v)). Next, we define
the sets, the vertices from which will be used to either construct an obstruction not containing
v, an obstruction containing v but with (strictly) smaller size, or and an obstruction with same

number of vertices as @ but containing more vertices from B;. Let Lg, = LIfFa’f \ (SUV(0)),

Las = L5\ (SUV(0)), Rer = RP\ (SUV(0)), and Res = RS\ (S UV(0)). Notice that

cls cls
|V(0) N B;| < 4, since no obstruction contains a clique of size 5 and G[B;] is a clique. This

together with the fact that v ¢ H; and |S| < k implies that Lgay, Leis, Rfar, Ras # 0. Next, we
consider cases depending on the role that v plays in Q.

Suppose that v is the shallow terminal. For a vertex u € Lg,, U R,y we have {c1,c2} N
Ng(u) # 0. This follows from Observation 5.1 and the fact that (v,¢1), (v,c2) € E(G). Next,
consider the following cases depending on the neighborhood of vertices in Ly U Rgy in Q.

Case {-AW.S.1. There is v* € Ly, U Ry such that ¢q,c2 € Ng(v*). We further consider
sub-cases based on other neighbors (if any) of v* in O (see Figure 7).

A) |Ng(v*)NV(P(0))| = 0. In this case, G[(V(0) \ {v}) U{v*}]is a -AW in G — S.

B) If [Ng(v*) NV (P(0))| = 1. If (v*,ty) € E(G) then G[{v*,ca,tp,b1}] is an induced cy-
cle on 4 vertices. Analogous argument can be given when (v*,t,) € E(G). There-
fore, we assume that Ng(v*) NV (P(0)) = {b;}, where ¢ € [z]. If i € [2]\ {1, 2} then
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G[{v*,v,bi,bi—1,b;—2,bi+1,bi+2}] is along claw in G—S. If none of the above cases are appli-
cable, then Ng(v*)NV(P(0)) is either {b1 } or {b,}. Suppose that Ng(v*)NV(P(0)) = {b;}
(the other case is symmetric) then G[{c2,v,v*, b1, ba, b3, ty}] is a whipping top in G — S.

C) |Ng(v*)NnV(P(Q))| > 2. If neighbors of v* are not consecutive in the path P(Q) then
we can obtain an induced cycle on at least 4 vertices in G[{v*} U V(P(Q))], therefore
we assume that the neighbors of v* in P(Q) are consecutive. By the construction of F
and v* we know that there are at least 7 vertices in P(Q) which are non-adjacent to v*.
From the above discussions, we can conclude that |[{ty, ¢} N Ng(v*)| < 1. Assume that
(v*,t,) ¢ E(G) (the other case is symmetric). Next, we consider the following cases based
on whether or not (v*,ty) € E(G).

i) (v*,ty) € E(G). In this case, there exists e € [z — 2] such that b, € Ng(v*) and
bex1 ¢ Ng(v*). Let V! = {v,v*,ca,te} U{b1,ba,... ,be,bey1}. Observe that G[V'] is a
-AW with |V'| < |[V(0)].

ii) (v*,ty) ¢ E(G). Let bs and be be the first and the last vertex in P(Q) which are
adjacent to v*, respectively. Notice that s # e (since |[Ng(v*) NV (P(0))| > 2), and
{bs, bs+1, s be, be+1} C {bl, bg, e bz}. Let V/ = {’U, ’U*} U {bs—l, bs, bs+1, ey be, be+1}. Ob-
serve that |[V'| < [V(O)|, and G[V'] is a {-AW.

Case {~-AW.S.2. For all u € Lgyy U Rpyy we have |{c1,c2} N Ng(v*)| = 1. From Observa-
tion 5.1, we know that for each ¢ € {c1, c2}, we have that one of L, C Ng(c') or Rear C Ng(¢)
holds. Moreover, from our assumption that for each u € Ly, U Ry we have |{c1, co}NNg(v*)| = 1,
it cannot be the case that Ly € Ng(c1) and Lfa, € Ng(c2). Similarly, it cannot be the case
that Rgyy € Ng(c1) and Rer € Ng(c2). From the above discussions, we can conclude that
one of Lg, € Ng(c1) and Ry € Ng(cg), or Ry € Ng(c1) and Le, € Ng(c2) holds. Sup-
pose Lgyy € Ng(c1) and Reay € Ng(c2) (the other case is symmetric). Next, consider a vertex
uw* € Lgy, and a vertex v* € Rg,,. By our assumption and non-applicability of Case -AW.S.1,
we have (u*,c1), (v*,c2) € E(G) and (u*, c2), (v*,c1) ¢ E(G). Moreover, u*,v* € B; therefore,
(u*,v*) € E(G). But then G[{u*,v*, c1,c2}] is an induced cycle on 4 vertices.

Suppose v is one of the centers. Suppose v = ¢; (the other case is symmetric). From
Observation 5.2, we know that at least one of Ng(t,) N Lgs = 0 or Ng(t,) N Res = () holds. Let
Xas € {Lqs, Ras} be a set such that Ng(t,) N Xgs = 0. Consider a vertex v* € X, and let
bs and b, be the first and last vertex in the path P(Q) which are adjacent to v*, respectively.
Since, M is a 9-redundant solution and O is not covered by W, we have that |[M NV (0)| > 10.
This together with the choice of F and v*, and the fact that V(P(Q)) \ {t¢,t.} C Ng(v), implies
that b; and b, exist and are distinct. Moreover, from the above we can also conclude that
|Ng(v*) NV (base(Q))| > 4. We also note that e < z since (v*,t,) ¢ E(G). The neighbors of
v* in P(Q) must be consecutive, otherwise we can obtain an induced cycle of length at least 4
which does not contain v. We further consider sub-cases based on whether or not ¢, co € Ng(v*)
(see Figure 8).

Case -AW.C.1. t,c2 ¢ Ng(v*). Let V' = {v*,v,co,t,t,.} U{be,bes1,-..,b.}. Notice that
|[V'| < |V(0)] since |[Ng(v*) NV (base(0))| > 4 and neighbors of v* are consecutive. Moreover,
G[V'] is a -AW or a tent, which is of strictly smaller size than O, contradicting the choice of O.
Here, we crucially rely on the fact that ¢, ¢ Ng(v*).

Case -AW.C.2. t ¢ Ng(v*) and c2 € Ng(v*). Let V! = (V(O) \ {bs+1,bs+2, -, be—2,
be—1}) U{v*}. Notice that |[V'| < |[V(Q)] (since |[Ng(v*) NV (base(Q))| > 4) and G[V'] is a 1-AW.
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Figure 8: Construction of an obstruction when O is -AW and v = ¢;.

Case {-AW.C.3. ¢ € Ng(v*) and ¢2 ¢ Ng(v*). Recall that Ng(v*) N {b1,be,...,b.} # 0.
Consider a vertex b; € Ng(v*) N {b1,ba,...,b,}. The graph G[{v*,t,c2,b;}] is an induced cycle
on 4 vertices.

Case -AW.C.4. t € Ng(v*)and ca € Ng(v*). We further consider the following sub-cases
based on whether or not (ty,v*) € E(G).

A) (tg,v*) ¢ E(G). Let V' = {t,v*, ty} U{bs—1,bs, ..., be,bet1}. Observe that G[V'] is a 1-AW
in G — S which does not contain v.

B) (tg,v*) € E(G). Let V' = {t,v* co,ty} U{b1,b2,...,be,bes1}. Observe that G[V'] is a
I-AW in G — S which does not contain v.

Suppose v is one of the non-shallow terminals. We consider the case when v = t,.
By a symmetric argument we can handle the case when v = ¢,. If co ¢ S(P) then for each
u € Lgs U Rys we have (u,c2) ¢ E(G) as it fits the frame F and Ng(u) \ (M U B(P)) =
Ng(v) \ (M UB(P)) = 0. Otherwise, ¢y € 5(P), and then using Observation 5.2 we obtain that
at least one of Les N Ng(cg) =0 or Rgs N N (cg) = 0 holds. Let X¢s € {Lgs, Reis} be a set such
that XgsN Ng(c2) = 0. Similarly, if b1 ¢ S(PP) then for each u € Ly, U Reay we have (u, b1) € E(G)
as it fits the frame F and Ng(u) \ (M U B(P)) = Ng(v) \ (M U S(P)) = 0. Otherwise, by € 5(P),
and then using Observation 5.1 we obtain that at least one of Lg, € Ng(by) or Rear € Ng(b1)
holds. Let Yfar € {Lfar, Rfar} be a set such that Yz, € Ng(b1). Next, we consider cases based on
whether or not by € B; (see Figure 9).

Case -AW.T.1. b; € B;. Consider a vertex v* € Xs. Note that (b1,v*) € E(G) since
by € B;, and (v*,c2) ¢ E(G), by the choice of v*. Also, (v*,t) ¢ E(G) otherwise, G[{t, c2, b1, v*}]
is an induced cycle on 4 vertices in G — S. Recall that v* fits the frame F (and (b1,v*) € E(G)),
therefore there exists e € [z — 2] such that b, € Ng(v*) and bey1 ¢ Ng(v*). This together with
the fact that neighbors of v* in P(Q) are consecutive (otherwise, we obtain an induced cycle on
at least 4 vertices not containing v) implies that (v*,t,) ¢ E(G). Next, we consider cases based
on whether or not (v*,c;) € E(Q).
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Figure 9: Construction of an obstruction when O is {-AW and v = t,.

A) (v*,c1) € E(G). Let V! = {t,c1,c2,v*, t,} U {be,bey1,...,b.}. Observe that G[V'] is a
I-AW in G — S not containing v.

B) (v*,c1) ¢ E(GQ). Let V' = {¢t,c1,v*,tr} U {be, bet1, . ..,b.}. Observe that G[V'] is a {-AW
in G — S not containing v.

Case -AW.T.2. b; ¢ B;. Consider a vertex v* € Yg, U {u € X¢s | (u,b1) € E(G)}, and
the following cases based on its neighborhood in Q.

A) (v*,c2) ¢ E(G). Notice that this case is the same as Case -AW.T.1, therefore we can
obtain an obstruction in a similar way.

B) (v*,c1) ¢ E(G). Observe that (v*,t) ¢ E(G), otherwise G[{v*,b1,c1,t}] is an induced
cycle on 4 vertices in G — S. Now, we can obtain an obstruction as in Case -AW.T.1.B.

C) (v*,e1), (v*,c2) € E(G). We further consider the following cases based on the neighborhood
of v* in P(Q).

i) There exists e € [z] \ {1} such that (v*,b.) € Ng(v*) and (v*,bey1) ¢ Ng(v*). Observe
that by the choices of F and v*, we have e < z — 1. Consider the following cases based on
whether or not (¢,v*) € E(G).

a) (t,v*) ¢ E(G). Let V! = {t,c1,c0,v*,0,t,} U {be,bes1,...,b}. Observe that G[V’|
is a }-AW in G — S. Furthermore, either [V'| < |[V(O)| or |V'| = |V(0)| and
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VN B;| > |V(0) N B;|. Here, we rely on the fact that b; ¢ B;. In either case we
obtain a contradiction to the choice of O.

b) (t,v*) € E(GQ). Let V' = {t,v*, co,v} U{b1,ba,...,be,besr1}. Observe that G[V'] is a
AW in G — S and |V'| < [V(O)].

ii) If i) does not hold then the only neighbors of v* in P(Q) are b; and v. Consider the
following cases based on whether or not (¢,v*) € E(G).

a) (t,v*) € E(G). In this case, G[{v,v*,t, c2,b1,b2}] is a tent.

b) (t,v*) ¢ E(G). We consider a vertex u* € X5 to obtain the desired obstruction.
Recall that from the construction of X5 we have (u*,c2) ¢ E(G). Moreover, by the
premise of Case -AW.T.2.C we have (v*,c2) € E(G). From the above discussions, we
can conclude that (u*,t) ¢ E(G), as otherwise G[{u*,v*, c2, t}] is an induced cycle on
4 vertices. We assume that (u*,b1) ¢ E(G), otherwise u* would satisfy the premise of
Case -AW.T.2.A and we can obtain an obstruction using it. Also, (u*,b;) ¢ E(G), for
each j € [z] \ {1}, otherwise G[{v,u*} U {b1,ba,--b;}] will contain an induced cycle
on at least 4 vertices, which is an obstruction containing v with strictly less number
of vertices than 0. Next, we consider the following cases depending on whether or
not (u*,¢1) € E(G).

a) (u*,c1) ¢ E(G). Let V! = {t,c1,u*,v* t,} U{b1,ba,...,b.}. Observe that G[V’]
is a 1-AW in G — S, which does not contain v.
B) (u*,c1) € E(G). Let V! = {t, ¢1, co, u*,v*, t, }U{b1,ba,...,b.}. Observe that G[V']
is a I-AW in G — S, which does not contain v.

Suppose v is by or b,. Suppose v = b; (the other case is symmetric). If ¢, ¢ 3(P) then for
each u € Ly, U Rgye we have (u,ty) € E(G) as it fits the frame F and Ng(u) \ (M U S(P)) =
Ng(v) \ (M UB(P)) = 0. Otherwise, t, € S(P), and then at least one of L, C Ng(te) or
Rear € N (tr) holds (see Observation 5.1). Let X¢a € { Liar, Rfar} be a set such that X¢,, € Ng(te).
Similarly, if bs ¢ S(P) then for each u € Ly U Rpar we have (u, by) € E(G) as it fits the frame F
and Ng(u)\ (M UB(P)) = Ng(v) \ (M UB(P)) = (). Otherwise, bs € 3(IP), and then at least one
of Lgyy € Ng(b2) or Rear € Ng(bz) holds (see Observation 5.1). Let Yga, € {Lsar, Rfar} be a set
such that Yz, € Ng(b2). Next, we consider cases depending on the neighborhood of vertices in

Xfar U Yo in O (see Figure 10).

Case {~-AW.B.1. There is v* € Xg U Yo such that {ty,b2} C Ng(v*). There exists
e € [z — 2] such that b, € Ng(v*) and bey1 ¢ Ng(v*). This follows from the choices of F and v*,
and the facts that (v*,b2) € E(G) and v* fits F. We assume that the neighbors of v* in P(Q) are
consecutive, as otherwise, we can obtain an obstruction which is an induced cycle on at least 4
vertices. Next, we consider the sub-cases based on whether or not (v*, c1), (v*, c2), (v*,t) € E(G).

A) (v, e2) € E(G), (v*,t) € E(G). Let V! = {t, co,v*, g} U{b1,ba, -+ ,be,bet1}. Observe that
G[V'] is a $+-AW such that |V'| < [V(0)|.
If Case {-AW.B.1.A is not-applicable then (v*, c2) ¢ E(G) or (v*,t) ¢ E(G) must hold.

B) (v*,t) ¢ E(G). We consider the following cases.
i) (v*,c1) € E(G). Let V! = {t,c,v*, t,} U{be,bes1,...b.}. Observe that G[V'] is a {-AW
in G — S not containing v.

ii) (v*,c1) € E(GQ). Let V' = {t,c1,c2,v* tr e} U {be,bey1...b,}. Observe that G[V’]
contains a $-AW not containing v, that is present in G—S. We note that such an obstruction
can be found both when (v*,c2) € E(G) and when (v*,c2) ¢ E(G).
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Figure 10: Construction of an obstruction when O is I-AW and v = b;.

C) (v*,e2) ¢ E(G). Since Case {-AW.B.1.B is not applicable we can assume that (v*,t) € E(G).

But then G[{v*,ba,co,t}] is a cycle on 4 vertices.

Case -AW.B.2. For all u € X¢, U Ys, we have {ty, b2} € Ng(u). Furthermore, by the
construction of X, and Yg, we know that Xp, € Ng(te), Yaar € Ng(b2), and Xgar, Year # 0.
Hence, for any pair of vertices u* € Xg,, and v* € Yi,,, we have that (u*,ty), (v*,b2) € E(G) and
(u*,b2), (v*,ty) ¢ E(G) (since Case {-AW.B.1 is not applicable). Next, we consider cases based
on whether or not ¢ and cy are adjacent to vertices in X, U Ys,,.

A)

Consider the case when there is v* € X, U Yg, such that (v*,¢1) ¢ E(G). In this
case, (v*,t) ¢ E(G), otherwise we obtain an induced cycle G[{v*,v,c1,t}] on 4 vertices.
Let e € [z — 2] such that b, is the last vertex in base(Q) that is adjacent to v*. Let
V' ={t,c1,v*,t, } U {be,bes1,...,b.}. Notice that G[V'] is a {-AW that has fewer vertices
than O, as we (at least) exclude ¢y and t; and include v*.

Hereafter, we assume that for each u € X¢,, U Ys,, we have (u,c1) € E(G).

Consider the case when there is v* € Xy U Yg, such that (v, c2) ¢ E(G). In this case,
(v*,t) ¢ E(G), otherwise G[v*,t, ¢, v] is a cycle on 4 vertices. Let e € [z — 2] such that b, is
the last vertex in base(Q) that is adjacent to v*. Let V' = {t, c1, c2, v*, t; }U{be, b1, . - -, b2}
Notice that G[V'] is a -~AW that has either fewer vertices than @ or has same number of
vertices as O but has more vertices from B; (than O has from B;). Here, we rely on the
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fact that ¢, ¢ B;, which is ensured by the fact that Yg,, # 0 and Yg, N Ng(te) = 0.

Hereafter, we will assume that for each u € Xy, U Y5, we have c¢1,c0 € Ng(u).

C) If there is u* € Xy, such that (u*,t) € E(G). Recall that, (u*,t;) € E(G) and (u*,be) &
E(QG). In this case, G[{t,u*, ca,ts,v,ba}] is a tent.

D) If there is v* € Y, such that (v*,t) € E(G). Recall that, (v*,by) € E(G) and (v*,ty) &
E(G). Let e € [z — 2] such that b, is the last vertex in base(Q) that is adjacent to v*. Note
that e > 2 as v* € Ygr € Ng(ba). Let V! = {t,v*, ts,ber1} U {v, b3, ..., b.}. Observe that
G[V'] is a {-AW in G — S with strictly fewer vertices than O, as we (at least) exclude
c1, co and include v*.

E) Consider a vertex u* € Xg,, and a vertex v* € Y. Since all the previous cases are not
applicable, therefore (u*,c1), (u*, c2), (v, c1), (v*,c2) € E(G), and (u*,t), (v*,t) ¢ E(G).
Recall that neighbors of u*,v* in P(Q) are consecutive. Furthermore, (v*,t;) € E(G) and
there is no b; adjacent to u*, where j > 2. Let e € [z — 2] such that b, is the last neighbor
of v* in P(Q). Now, let V' = {ty, u*,v*, ¢1,co,t} U{be,bet1, - ,b.}. Observe that G[V']
is a 1-AW in G — S which does not contain v.

Suppose v = b;, where j € [z]\ {1,z}. Let Xg, € {Lfar, Rear} be a set such that Xg, C
Ng(bj—1) and Yfar € {Lfar, Rear} be a set such that Yg,, € Ng(bj41). The existence of X¢,, and
Yiar is guaranteed from Observation 5.1. Recall that |[M'| = 9. Thus, |V (P(Q)) N M'| > 6, and
therefore, v must have at least 4 non-neighbors in V(P(0))NM’. From the above we can conclude
that one of |({tg} U{b1,b2,...,bj—2})N(M'\ Ng(v))| > 2 or |({t;} U{bjt2,bj43,...,b:}) N (M"\
N¢(v))| > 2 holds. Assume that |({t, }U{bj12,bj43,...,b.})N(M'\ Ng(v))| > 2 holds (the other
case is symmetric). For each u € X, U Yy, the neighbors of w in P(Q) must be consecutive,
otherwise, we can obtain an induced cycle on at least 4 vertices. From the above discussions,
together with the facts that (v*,v) € E(G) and v* fits IF, we can conclude that {t,, b, }NNg(u) = 0.
Here, we rely on our assumption that |({¢,} U {bj12,b43,...,b:}) N (M"\ Ng(v))| > 2. We
consider cases based on the neighborhood of vertices in X, U Yo in O (see Figure 11).

Case [~AW.J.1. If there is v* € Xg U Y, such that (v*,¢1) ¢ E(G). Note that if
(v*,c1) ¢ E(Q) then (v*,t) ¢ E(G), otherwise G[{v,v*,c1,t}] is a cycle on 4 vertices. Also, the
neighbors of v* in P(Q) must be consecutive, otherwise, we can obtain an induced cycle on at
least 4 vertices. Since {t,,b.} N Ng(v*) = 0 and (v,v*) € F(G), there exists e € [z — 1], such
that b is the last vertex in P(Q) which adjacent to v*. Let V' = {¢, ¢1,v*,t, } U {be, bes1, ..., b:}.
Observe that G[V'] is a 1-AW with strictly fewer vertices than O, as we (at least) exclude co, ty, by
and include v*.

Case {-AW.J.2. If there is v* € Xf, U Yg, such that (v*,c2) ¢ E(G). Since Case I-
AW.J.1 is not applicable we can assume that (v*,c;) € E(G). Note that if (v*,c2) ¢ E(G)
then (v*,t) ¢ E(G), otherwise G[{v,v*,ca,t}] is a cycle on 4 vertices. Also, the neighbors
of v* in P(Q) must be consecutive. Let e € [z — 1] such that b, is the last vertex in P(Q)
which is adjacent to v*, which exists since {t,,b.} N Ng(v*) = 0 and (v,v*) € E(G). Let
V' ={t,c1,co,v*, tr} U{be,bes1,...,b.}. Observe that G[V'] is a 1-AW (or a net) with strictly
fewer vertices than O, as we (at least) exclude ¢, b1 and include v*.

Note that if Cases -AW.J.1 and 1-AW.J.2 are not applicable then for each u € X, U Yia, we
have (u,c1), (u,c2) € E(G). Moreover, by our assumption we have Ng(u) N {t,,b.} = 0. The
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Figure 11: Construction of an obstruction when O is {-AW and v = bj, where j € [z — 1]\ {1}.

cases we consider next are based on whether or not the following conditions are satisfied for a
vertex u € Xfar U Ysar.

1.

2.

(u,t) € E(G);

{bj-1,bj+1} € Na(u).

Case [-AW.J.3. If there is v* € X U Yiar such that (v*,t) € E(G). We further consider
the following sub-cases based on whether or not t, € Ng(v*).

A)

te € Ng(v*). Let s € [j] such that by is the first vertex in P(Q) which is adjacent to v*,
which exists since (t7,v*) ¢ E(G) and (v*,v) € E(G). Also, let e € [z — 1] such that b, is
the last vertex in P(Q) which is adjacent to v*, which exists since {¢,,b,} N Ng(v*) =0
and (v*,v) € E(G). Notice that s # e since by the construction of the sets X¢,, and
Yiar we have that v* is incident to v and at least one of the vertices in {bj_1,bj41}.
Let V! = {t,v*} U {bs—1,bs,...,be,bet1}. Observe that G[V'] is a {-AW in G — S with
|[V'| < |V(Q)|. Here, we rely on the fact that e < z — 1.

te € Ng(v*). Let e € [z — 1] such that b, is the last vertex in P(Q) which is adjacent to
v*, which exists since {t,,b,} N Ng(v*) = 0 and (v*,v) € E(G). Let V' = {t,v*, co,ty} U
{b1,b2,...,be,ber1} is a 1-AW in G — S. Moreover, |V'| < |[V(Q)| since t,,c; ¢ V' and
V' CV(0) U {v*}.
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Case {-AW.J.4. If there is v* € Xg U Yg such that (v*,t) ¢ E(G) and {bj_1,bj4+1} C
N¢(v*). Notice that all the neighbors of v* on P(Q) must be consecutive. Let e € [z—1] such that
be is the last vertex in P(Q) which is adjacent to v*, which exists since {¢,,b,} N Ng(v*) = 0 and
(v*,v) € E(G). Also, let s € [z—1]U{0} be the lowest integer such that (v*,bs) € E(G) (bs could
possibly be same as bj_1 or by = ty). Let V' = {t, c1, c2, v*, t, }U{b1, b2, ..., bs }U{be, bet1,...,b:}.
Observe that G[V'] is a I-AW in G — S which does not contain v.

Case 1-AW.J.5. For all u € X U Yia, we have ¢1,c2 € Ng(u), (u,t) ¢ E(G), and
{bj—1,bj41} € Ng(u). Also, we have Xg, € Ng(bj—1) and Yy € Ng(bjy1). Next, con-
sider a vertex u* € Xp,, and a vertex v* € Yg,. Let s € [j — 1] U {0} such that bs is the
first vertex in P(0) which is adjacent to w*, which exists since (u*,bj—1) € E(G). Also,
let e € [z — 1] such that b. is the last vertex in P(Q) which is adjacent to v*, which ex-
ists since (t,,v*),(b;,v*) ¢ E(G) and (v*,bj11) € E(G). Notice that s # e. Let V' =
{t,c1,co,v*,u* U {ty, by1,b2,bs-1,bs} U{be, bes1,...,b.}. Observe that G[V'] is a -AW in G — §
which does not contain v.

We have exhaustively considered all the cases, and obtained a desired type of obstruction for
each of the cases. This concludes the proof of Lemma 5.3.

6 Bounding the Length of a Clique Path

Let us first recall the various sets we are dealing with. Let (G, k) be an instance of IVD.

e A (k + 2)-necessary family W C 2M along with a solution M that is 9-redundant with
respect to W. In fact, W C 2M.

e Every set in VW has size at least 2.

e C is the set of connected components of G — M, D is the set of connected components in C
that are modules, and D = C \ D. We know that |V(D)| < k1) and |D| < kOO,

e Every maximal clique (and hence every clique) in G — M has size bounded by 7.

Let us now turn to the problem of bounding the sizes of non-module components. Observe
that to bound this it is sufficient to “bound the length of the clique path’ of a non-module
component. This together with the fact that each maximal clique is bounded will lead to
the desired result. Our approach mirrors that of [1, 34], but requires additional structural
observations corresponding to interval graphs and its obstructions [27, 7]. Each non-module
component is a clique path in G — M, where M is a 9-redundant modulator.

Let K = (K, ) be a clique path of a non-module component C, where V(K) = {x1,x2,...,2¢},
and for each i € [t] we let B; = f(x;). We will refer to the sets B;, 1 < i < t, as the bags in
K. Any bag B; in the clique path K has at most n = 2'0 . 4(k + 5)('%') vertices (because every
maximal clique in G — M has size bounded by 7). We let 3(K) = U!_, 3(x;). Furthermore, for a
subpath K’ of K, by K' = (K’, ') we denote the sub-clique path induced by K’. That is, for
r e V(K'), B'(x) = B(z). Moreover, by 3(K') we denote the set U,cy (k) B(x). Note that there
is a vertex in M that has a neighbor as well as a non-neighbor in C.

In this section, we consider the problem of reducing the number of bags in K. Towards
our goal, we will devise a collection of “marking schemes” that mark some polynomially (in k)
many bags in K, such that the obstructions are “well behaved” in the region between any two
consecutive marked bags. In particular, our marking schemes ensure that if any obstruction
intersects an unmarked region of the clique path, then the intersection is an induced path. Then,
we design reduction rules that “preserve” a minimum separator of the unmarked region. More
precisely, we identify an irrelevant vertex or an irrelevant edge, and then delete it or contract
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it in the graph. The correctness of these reduction rules follows from the structural properties
ensured by the marking schemes.

Let us now define few notations that will be required in this section. Note that these notations
apply to K = (K, ) as well as any sub-clique path of it. We fix an ordering (from left to right)
of the bags of K, which is given by the path K of the clique path K. We will maintain a set of
bags B in K, which we will call marked bags. Initially, B = (), and we will add some carefully
chosen bags in K to it, as we proceed.

1. For two bags B, and B, in K, by K[By, B;]| = (K', ') we denote the sub-clique path of K
between B, and B, (including B, and B,).

2. We say that a vertex v € B(K) is a marked vertex if there is a marked bag that contains it,
otherwise it is an unmarked vertex.

3. We say that two marked bags B, B’ are consecutive if K[B, B'| contains no marked bags
other than B and B'.

4. We say that two (distinct) bags B, B in K are adjacent if there is no other bag that lies
between them, i.e. K[B, B’] has only two bags, namely, B and B’.

5. For a bag B in K, B~ and B*! denote the bags adjacent to B on its left and right,
respectively.

6.1 Partition into Manageable Clique Paths

In this section, we partition the clique path K into a collection of so called “manageable clique
paths”, which are well structured with respect to the set M. We will construct a set of marked
bags, denoted by K(M), based on the edges between the vertices in 5(K) and M. Let us initialize
K(M) as the set containing the first and last bags of K. We begin by stating a property of
interval graphs, which will be useful later.

Observation 6.1. Let H be an interval graph and let H' be the graph obtained by one of the
following operations.

(a) Forve V(H), H = H — {v}.
(b) For (u,v) € E(H), H = H/(u,v).

Then H' is an interval graph. Furthermore, the size of any clique in H' is upper-bounded by the
size of a maximum clique in H.

The above observation follows from the definition of interval graphs and their interval
representation [27]. In particular, statement (b) follows from the observation that an interval
representation of H/(u,v) can be obtained by taking an interval representation of H and “merging”
the intervals of u and v.

In the following, we will define (auxiliary) graphs that will be helpful in obtaining some useful
bags in K. To this end, consider a vertex m € M. Let Hy, be the bipartite graph with vertex
bipartition Ng(m) N B(K) and S(K) \ Ng(m), where u € Ng(m) N B(K) and v € B(K) \ Ng(m)
are adjacent in H,, if and only if (u,v) € E(G). Next, we prove the following lemma about the
graph H,,. (Recall that 7 is an upper bound on the size of any clique in G — M)

Lemma 6.2. For m € M, let Yy, be a mazimum matching in H,,. Then |Y,,| < 2n.

Proof. Suppose, towards a contradiction, that |Y,,| > 2n. Let T be the graph obtained from
G[B(K)] by contracting all the edges in Y,,. Additionally, for each edge (u,v) in Y;,, let w,, be
the vertex resulting from its contraction. Recall that G — M is an interval graph of maximum
clique size at most 7, which together with Observation 6.1 implies that both G[3(K)] and T are
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also interval graphs, and that the maximum size of a clique in these graphs is upper bounded
by n. Next, let T be the graph T[{wy, | (u,v) € Y;,}]. We note that the definition of T relies
on the fact that Y}, is a matching in H,,, and thus it has |Y},| > 2n many vertices. From the
construction of 7" and Observation 6.1, it follows that 7" is also an interval graph and that the size
of any clique in 7T is bounded by 7. Interval graphs are perfect graphs, and on a perfect graph G
we know that w(G)a(G) > |V (G)|, where w(G) and a(G) denote the size of a maximum clique
and a maximum independent set in G, respectively [45] (or Theorem 3.3 [27]). This implies that
there is an independent set in 7" of size at least |Yy,|/n > 2. Consider an independent set of size 3
in T, and the corresponding edges of the matching Y;,. It follows that these three edges and the
vertex m form a long claw, O in G, which is an obstruction of size 7. Since Reduction Rule 3.1
is not applicable, each set in W is of size at least 2. Moreover, |V (Q) N M| = 1. Therefore, O is
not covered by W. But then, since M is a 9-redundant solution each obstruction in G which is
not covered by VW must contain at least 10 vertices from M. Thus, we deduce that |Y,,| > 27
cannot hold. O

For each m € M, we compute a maximum matching Y, in the graph H,,. Then for each
edge in Y;, we pick a bag in K that contains this edge and add it to K(M). Let us observe that
we have added at most 2n|M| bags to K(M). Before proceeding further, we add some more
bags to K(M) that give us some additional structural properties. Next, we state the following
observation, which will be useful in designing one of our marking schemes for bags in K.

Observation 6.3. Let mi,ma € M be (distinct) vertices such that {mi,mas} ¢ W and
(m1,m2) ¢ E(G). Then, (Ng(mi) N Ng(mz)) \ M induces a clique in G.

Proof. This observation is the special case of Lemma 4.6 with M’ = M,u = my,v = ms and
u,v € M. ]

Next, consider (distinct) mq,mg € M, such that {my,ma} ¢ W and (m1,m2) ¢ E(G). Let
B(my, mg2) be a bag in K, such that (Ng(m1) N Ng(ms2)) N B(K) C B(mq,msz). We note that
the existence of B(mi, msg) is guaranteed from Observation 6.3. We add B(m1, ma) to the set
K(M). We are now ready to state our first bag-marking scheme.

Marking Scheme I. Add all the bags in K(M) to B.

Note that |K(M)| is at most 2n|M| + |M|? + 2. This bound is obtained because (i) K(M)
contains the first and last bag of K, (i) at most 2n bags in K were added corresponding to
the matching Y,, for each m € M (and H,,), and (i) for (distinct) my,mo € M, such that
{m1,ma} ¢ W and (mi,m2) ¢ E(G), we added a bag to K(M). Thus, using Marking Scheme
I, we have marked at most | 2n|M| + |M|? + 2 < 4n|M|| bags in K. Here, we used the fact that
n = | M.

Next, we state an observation regarding vertices which are not present in any bag in K(M),
which will be useful later. We note that this observation is very similar to Observation 4.10 of
Section 4.

Observation 6.4. Consider a vertex v € B(K) such that there is no bag in K(M) that contains
v. For (distinct) vertices u,w € Ng(v) N M, at least one of {u,w} € W or (u,w) € E(G) holds.

Proof. Consider v € $(K) such that there is no bag in K(M) that contains v, and (distinct)

vertices u, w € Ng(v)NM. Suppose, by way of contradiction, that {u,w} ¢ W and (u,v) ¢ E(G).

This together with Observation 6.3, implies that (Ng(u) N Ng(w)) \ M induces a clique in G.

From the above and Marking Scheme I, it follows that there is a bag B(u,w) in K(M) such that

(Ng(u) N Ng(w)) \ M C B(u,w). However, v € (Ng(u) N Ng(w)) \ M and hence v € B(u,w).

This contradicts that v is not contained in any bag in K(M). O
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Let By, B, € K(M) be two consecutive marked bags in K. We define the graph G[By, B;] to be
the graph induced on the vertices appearing in the sub-clique path K[By, B,| excluding the vertices
in By and B,. That is, G[By, B;| = G|V[By, B;|| where V[By, B;| = B8(K[By, By]) \ (B¢ U By).
Note that although G[B(K[By, B;])] is a connected subgraph of G, G|[By, B;] need not be
connected graph. We refer to a connected component of G[By, B,] as an obstruded component
of K[By, By]. We extend this definition to say that an induced subgraph H of G[3(K)] is an
obstruded component of K, if there are consecutive marked bags By, B, € K(M), such that H
is an obstruded component of K[By, B;|. In the following, we prove a property regarding the
obstruded components of K.

Lemma 6.5. Let H be an obstruded component of K. For each m € M, either we have
V(H) C Ng(m) or we have V(H) N Ng(m) = 0.

Proof. Suppose, towards a contradiction, that there exists m € M that has both a neighbor and
a non-neighbor from the set V(H) in G. Because H is connected, this implies that there is an
edge e € F(H) such that one endpoint of e lies in Ng(m) N B(K) and the other endpoint of
e lies in B(K) \ Ng(m), i.e. e € E(H,,). Furthermore, by construction, both these endpoints
are different from all the vertices belonging to the edges of the matching Y,,, in H,,. Therefore
Y, U {e} is also a matching in H,,. However, this is a contradiction as Y, is a maximum
matching in H,,. This concludes the proof. O

Let us fix a pair of consecutive marked bags By, B, € K(M) and consider the obstruded
components of K[By, B;|. Note that Lemma 6.5 can be interpreted as follows. Any obstruded
component of K[By, B;] is a “module with respect to M”. The following lemma shows that all
but at most 47 of these obstruded components are actually modules in the graph G.

Lemma 6.6. All but at most 4n of the obstruded components of K[By, By| are modules in G.

Proof. Let H be an obstruded component of K[By, B,]. For any vertex v € By U B, there are
at most two obstruded components in K[By, B;| with the property that v has both a neighbor
and a non-neighbor in the component. Indeed, if this were not the case, then we would have
obtained a long claw in G[3(K)] — M, which is a contradiction. Notice that there are at most 27
vertices in By U B,.. Hence, it follows that all but at most 47 obstruded components of K[By, B,]
have the following property: Each vertex v € By, U B, is adjacent either to all vertices of this
obstruded component or to none of them. Finally, observe that the neighborhood of a vertex
in an obstruded component H, excluding the neighbors that belong to H itself, is a subset of
M U By U B,.. Hence, it follows from the above arguments and Lemma 6.5, that all but at most
47 obstruded components of K[By, B,] are modules in G. O

Let us note another useful property of the obstruded components.

Lemma 6.7. Let H be an obstruded component of K[By, B,|. Then there is a sub-clique path
Ky of K[By, By| such that V(H) C f(Kg) CV(H)U By U B,.

Proof. Since H is a connected graph and K is a path-decomposition, it follows from the definition
of a path-decomposition that the set of bags of K that have nonempty intersection with V(H)
forms a sub-clique path Ky of K. Furthermore, as H is a connected component of G[By, B,| =
G[V'[By, B;]] where V[By, B,] = 5(K[By, B,])\(B¢UB,), it follows that V(H) = (Kg)\(B/UB,).
Therefore, Ky is a sub-clique path of K[By, B,] and V(H) C 8(Kyg) C V(H)U By U B,. O

The obstruded components of K[By, B,] can be divided into two groups, those that are
modules in G and the rest. We will first consider the problem of reducing the module obstruded
components.
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6.1.1 Handling Obstruded Modules of K

In this subsection, our goal will be to upper bound the total vertices across all bags B that have
that following property: B has nonempty intersection with at least one obstruded component
of K that is a module in G. First, we will only reduce the total number of vertices in the
obstruded components of K that are modules in GG. To achieve this, we will employ Lemma 4.3
(see Section 4). To this end, consider a pair of consecutive marked bags By, B, in K(M).
Let C be the set of obstruded components of K[By, B,| that are modules in G. Note that by
the construction, C is the set of connected components in G[By, B,] = G[V[By, B,]] (where
V[By, By]| = B(K[By, By]) \ (B¢ U By)) that are modules. Thus, from the definition of a path
decomposition, it follows that C is a set of connected components in G — (M U By U B,.) that are
modules. Moreover, note that |M U U BeU B, | < |M|+ 2n.

Now we apply Lemma 4.3 for M= By U B,., and obtain a subset Z of V(C) of size at most
4(k + 2)%(|M| + 27)° such that the following holds:

If S C V(G) of size at most k and O is an obstruction in G — S that is not covered
by W, then there is another obstruction O’ in G — S such that Q' N (V(C) \ Z) = 0.

This gives the following reduction rule.

Reduction Rule 6.1. Suppose there is v € V((?) \ Z. Then, delete v from the graph G. That
is, the resulting instance is (G — {v}, k).

Lemma 6.8. Reduction rule 6.1 is safe.

Proof. Let ve V(C)\ Z, and G’ = G — {v}. We will show that (G, k) is a Yes-instance of IVD
if and only if (G’, k) is. In the forward direction, let S be a solution to (G, k). As G’ — S is an
induced subgraph of G — S, Observation 6.1 implies that S is a solution to (G', k).

In the reverse direction, let S’ be a solution to (G’, k). We claim that S’ is a solution to
(G, k). Towards a contradiction, suppose that this claim is false. Then, there is an obstruction
0 in G — S’. Notice that O is not covered by W—indeed, if O were covered by W, then because
SNM =5nNMand W C 2M is a (k + 2)-necessary family, it would have followed that
V(0)NS’" # . Thus, Lemma 4.3 implies that there is an obstruction @ in G — S’ that is disjoint
from V(C) \ Z. The obstruction @’ does not contain the vertex v, hence it is also an obstruction
in (G—{v})—S" =G —S. Since we have reached a contradiction, the proof i complete. O

If Reduction Rule 6.1 is not applicable, then we can assume that the (total) number of
vertices in V(C) is bounded by 4(k + 1)2(|]M| + 2n)®. In the following lemma, we bound the
number of bags in K that have nonempty intersection with V(C).

Lemma 6.9. The number of bags in K having nonempty intersection with V(CA) is bounded by
12|V (C)|.

Proof. Let us first note that any bag in K that contains at least one vertex of V((?) is a subset
of V(C) U B, U B, and is also a bag in K[By, B,]. To prove the desired claim, we create a
special set of bags S, as follows. Firstly, add By, B, to §. Without loss of generality we assume
that By appears before B, in the ordering of the bags given by K. For each = € By, let B,
be the first bag in K[By, B,] which does not contain z, where if such a bag does not exist,
then we set B, = B,. Similarly, for each y € B,, let Ey be the first bag in K[By, B,] which
contains y, which exists since y € B,. We add all the bags in {B, | z € B/} U {LA?y |y € B}
to S. Next, for each v € V(C) let F, and L, be the first bag and last bag in K[By, B,]
containing v, respectively. We further add each bag in {F, | v € V(C CYY U{Ly | v e V(C)} to
S. Notice that |S| < |By| + |By| + 2|V(C)| + 2 < 6|]V(C)|. Consider any two bags By, By in
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S (where B; appears before By in the ordering given by K) such that there is no bag from
S in K[By, By other than By and By. We call the sub-clique path K[B;™, B;!] (which might
be empty) a restricted region of the sub-clique path K[By, B,]. In the following, we will argue
that all the bags belonging to the same restricted region contain the same set of vertices from
By U B, U V(CA) We make this argument with respect to B; and By. To this end, consider
the set 8’ = {X € K[By,Bs] | X ¢ {B1,B2}}. We will argue that for any X,Y € &', we have
XN (B,UB,UV(C)) =Y N (By,UB,UV(C)). Towards this, consider some X,Y € & such that
X appears before Y in the ordering given by K. We consider two cases as follows, and in each of
the cases we rely on the property that in a clique path, the set of bags containing a fixed vertex

forms a sub-clique path.

~

e Thereisv € (X\Y)N(B/UB,UV(C)). Note that v ¢ B, as otherwise it belongs to X N B,
but not to Y, which violates the sub-clique path property of a clique path. Consider the
subcase where v € By. This implies that v belongs to each bag in K[B,, X|. But as v ¢ Y,
the bag B, € S must belong to K[X,Y]. This contradicts the fact that K[X, Y] does not
contain any bag from S. Next, consider the subcase where v € V(é\) Again, as v € X and
v ¢ Y, we have that the bag L, must belong to K[X, Y], which is a contradiction.

~

e Thereisv € (Y\X)N(B,UB,UV(C)). Note that v ¢ B, as otherwise it belongs to ByNY
but not to X, which violates the sub-clique path property of a clique path. Consider the
subcase where v € B,.. This implies that v belongs to each bag in K[Y, B,]. But as v ¢ X,
the bag B, € & must belong to K[X,Y]. This contradicts the fact that K[X, Y] does not

contain any bag from S. Next, consider the subcase where v € V(C). Again, as v ¢ X and
v € Y, we have that the bag F,, must belong to K[X, Y], which is a contradiction.

From the above we conclude that bags in the same restricted region contain the same set of

~

vertices from By U B, U V(C). In what follows, we will show why this statement implies that in
any restricted region, there can be at most one bag that has nonempty intersection with V((?)
Before showing that this claim is true, let us argue that having this claim concludes the proof.
Indeed, since |S| < 6|V (C)| and By, B, € S, there are at most 6|V (C)| restricted regions that
can have nonempty intersection with V(CA) Each one of these regions has only one bag that has
nonempty intersection with V(@) Adding up the bags in S itself, we conclude that there are at
most 12|V (C)| bags in K that contain a vertex from V(C).

We now turn to show that in any restricted region, there can be at most one bag that has
nonempty intersection with V((?) For this purpose, consider some restricted region K[B; L By 1.

~

Then, all bags in this region contain the same set of vertices from B, U B, UV (C). Suppose that
this region contains some vertex v € V(CA) By the definition of C. , there exists an obstruded
component H of K[By, B,] that contains v. Because v belongs to every bag in K[B;™!, By!] and
by Lemma 6.7, it follows that H contains all vertices across all bags in K[B; !, B;'] apart from
those in By U B,.. Thus, all vertices across all bags in K[Bfl, B2_1] belong to B, U B, U V(CA)
Because distinct bags on a clique path correspond to distinct sets of vertices, this means that

K[Bf L By 1] can only contain a single bag. This concludes the proof. O

Recall that there are at most 4n|M| pairs of consecutive marked bags in K(M). Applying
Reduction Rule 6.1 for every such pair, we obtain the following. There are at most 4(k-+1)2(| M|+
2n)¢ - 4n| M| vertices in K that lie in the union of all module components. Let C(K) denote this
collection of vertices.

Marking Scheme II. Add all the bags in K that contain a vertex from C(K) to B.

From Lemma 6.9, we obtain that we have marked at most |48(k + 1)2(| M| + 27)% - 4n|M|
bags of K, using Marking Scheme II.
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6.1.2 Obtaining Manageable Clique Paths

In this subsection, we will focus on the obstruded components of K that are not modules in G.
To this end, we mark some more bags in K so that the regions between unmarked bags have
additional structural properties. We will refer to the sub-clique paths obtained by this process
as manageable clique paths. In the following, we start by defining some notation which will be
helpful in describing this marking scheme.

Let By, B, be two consecutive marked bags in K(M), where By appears before B, in the
ordering given by K. Next, consider a non-module obstruded component X of K[By, B, (of
course it contains an unmarked vertex), and let Kx be the sub-clique path of K[By, B,| provided
by Lemma 6.7. Let Bg( and B;X be the first and last bags of Ky, respectively. Before moving on
to our next marking scheme, we construct two sets of bags, £1(X) and L2(X). Initially, we have
L£1(X) = {B{X, BX}. We note that the construction of £1(X) is very similar to the construction
of § used in the proof of Lemma 6.9. For each u € By, let B, (X) be the first bag in K x which does
not contain u, where if such a bag does not exist, then we set B, (X) = B:X. Additionally, for each
v € B, \ By, let B,(X) to be the first bag in Ky which contains v, where if such a bag does not
exists, then we set B, = B:X. We add all the bags in {B,(X) |u € B,} U{B,(X)|v € B, \ By}
to £1(X). We initialize Lo(X) = £1(X). Furthermore, for each bag B € £1(X) in Kx, we add
to L2(X) the bags adjacent to B, namely B~! and B! (if they exist) in Ky. Note that the
number of bags in L2(X) is bounded by 107.

For consecutive unmarked bags By, B, in K (considering only marked bags in K(M)) let
X(By, By) be the set of non-module obstruded components of K[By, B;]. Furthermore, let
L(By, By) be the union of the sets L£2(X) taken over all X € X(By, B,). From Lemma 6.6, we
know that there are at most 41 obstruded components of K[By, B,| that are not modules. Thus,

the number of bags in £(By, B,.) is bounded by 40n?. Finally, let K/(ﬁ) be the union of the sets
of bags L(By, B,) taken over all By and B, that are consecutive unmarked bags in K (considering
only marked bags in K(M)). Recall that |K(M)| is bounded by 4n|M|. Thus, the number of

bags in K(M) is bounded by 160n3|M|. We are now ready to state our third marking scheme.

o —

Marking Scheme III. Add all the bags in K(M) to B.

Note that we marked at most | 160n3|M|| bags using the above marking scheme. We now

further partition K using the bags marked in the above scheme.

In the following we will give some useful properties regarding the region between marked
consecutive bags. To this end, let By, B, be consecutive marked bags in K, where we consider
marked bags only in K(M). We assume that B, appears before B, in the ordering given by K.
Consider an obstruded non-module component of K[By, B,], and let Kx be the sub-clique path
provided by Lemma 6.7. Furthermore, consider two consecutive marked bags B),, B, € K/(ﬁ) in
Kx. The sub-clique path Kx[B,, By] is called a (By, B,)-manageable clique path (or simply, a
manageable clique path) if Kx[B,, By contains at least one bag apart from B, and B,. Next, we
derive the following property using the notations we introduced above.

Lemma 6.10. For any two bags B, B" in a (By, By)-manageable clique path Kx[Bp, By, we
have BN (ByU B,) = B'N (ByU B,.).

Proof. Note that since B, appears before By, and Kx[B,, B,] contains at least three bags, we

o —

have that B, ', Bf' € £1(X) C K(M). From this we derive that Kx[B,, B,] contains no bag
from £1(X). Consider two bags S,T in Kx By, By| such that S appears before T" in the ordering
given by K. We consider the following cases, and in each of the cases we rely on the property
that in a clique path, the set of bags containing a fixed vertex forms a sub-clique path.

45



e Thereisv e (S\T)N(BrUB,). Note that v ¢ B, as otherwise it belongs to S N B, but
not to T', which violates the sub-clique path property of a clique path. Consider the case
when v € By. This implies that v belongs to each bag in K[By, S]. But as v ¢ T, the bag
B,(X) € £1(X) must belong to K[S,T]. This contradicts the fact that Kx[B,, B,| does
not contain any bag from £ (X).

e Thereis v e (T'\ S)N (ByU B,). Note that v ¢ By as otherwise it belongs to 7'N By but
not to .S, which violates the sub-clique path property of a clique path. Consider the case
when v € B,. This implies that v belongs to each bag in K[T, B,]. But as v ¢ S, the bag
B, (X) € £1(X) must belong to K[S,T]. This contradicts the fact that Kx[Bj, B,] does
not contain any bag from £;(X).

This concludes the proof. O

We will conclude this subsection by deriving few more properties of manageable clique paths,
which will be useful later. Consider a (By, B, )-manageable clique path Kx, and let Cx = B;N B,.
(Here, 'C” stands for “common”.) Note that here, Kx is not the clique path provided by
Lemma 6.7 but a subclique path of the clique path provided by that lemma as per
the definition of a (B, B,)-manageable clique path.?> We have the following observation,
that follows from the construction of Ky (together with the Marking Scheme I), Observation 6.4,
and Lemma 6.5.

Observation 6.11. For m € M, either 3(Kx) \ Cx C Ng(m) or (B(Kx) \ Cx) N Ng(m) = 0.
Furthermore, for v € B(Kx) \ Cx and u,w € Ng(v) N M, at least one of {u,w} € W or
(u,w) € E(G) holds.

Proof. The first part of the observation follows from Lemma 6.5, and the second part of the
observation follows from Observation 6.4. O

Let us define My = M N N(S(Kx) \ Cx), and Mp = M \ My. (Here, A’ stands for “all”
and 'P’ stands for “private”.) Let us observe that, by construction, N(Mp) N B(Kx) C Cx. We
note that there may be a vertex v € Cx and a vertex m € M4 such that (v,m) ¢ E(G).

Observation 6.12. Consider v € Cx and m € M4 such that (v,m) ¢ E(G). Then, G[3(Kx)]
is a clique in G.

Proof. Notice that Cx C By and By is a clique in G, and thus G[Cx] is a clique. Also, every
vertex in C'x U My is adjacent to every vertex in S(Kx)\ Cx in the graph G. Therefore, if there
is a pair of non-adjacent vertices u,w € f(Kx) \ Cx, then O = G[{u,v,w, m}] is an induced
cycle on four vertices. Since Reduction Rule 3.1 is not applicable, each set in W has size at least
2, and hence O is not covered by W. But then any obstruction which is not covered by W must
intersect M in at least ten vertices. Hence, we arrive at a contradiction. ]

Next, we summarize some properties regarding those manageable clique paths Kx for which
G[A(Kx)] is not a clique.

Observation 6.13. Suppose G[B(Kx)] is not a clique. Then each of the following holds.
1. For any v € B(Kx) and m € Ma, we have (v,m) € E(G).

2. For each u € Cx and v € B(Kyx), we have (u,v) € E(G).

3. For each my,ma € M4, at least one of {m1,ma} € W or (m1,mz) € E(G) holds.

Proof. The first item follows from Observation 6.12 because G[3(Kx)] is not a clique. Since Cx
is a clique that is contained in every bag of Kx in G, the second item of the observation follows.
Lastly, the third item follow from Observation 6.11 and the definition of M 4. O

3We use this abbreviation rather than the notation Kx [B,, B,] in Lemma 6.10 in order to lighten notation.
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Figure 12: A component K[Bj, B)] with a (B}, B;)-manageable clique path Kx = K[By, B,].

6.2 Handling Manageable Clique Paths

We start by recalling that the number of manageable clique paths is bounded by 16073 M.
Notice that a manageable /cl\igle path Kx that induces a clique in G — M must consist of only a
single bag in K. We let K(M) be the set of bags in K comprising of every manageable clique
path that induces a clique in G — M. We state our next marking scheme.

—_—

Marking Scheme IV. Add all the bags in K(M) to B.

We note that by the above marking scheme we have marked at most | 160n3| M| | many bags.

Hereafter, we deal with only those manageable clique paths that do not induce a clique in G.

In the following, consider a manageable clique path Kx = K[By, B,| that does not induce
a clique, whose first and last bags are By, and B,, respectively. Note that here, B, and
B, are the first and last bags of the manageable clique path, respectively, and not
necessarily the consecutive bags of K(M) as before that define the larger region in
which the manageable clique path lies. We make this change to ensure that B, and
B, always denote the end bags of the sub-clique path that is our current focus. With
the exception of the next paragraph (where we provide appropriate clarifying explanations), this
will not cause confusion later.

Let Cx = ByN B, and Ix = B(Kx) \ (B¢ U B,.). (Here, 'C’ stands for “common” and I’
stands for “internal”.) Observe that no vertex in Ix belongs to any marked bag (among all
bags marked so far). Let Mg = M N N(B(Kx)\ Cx), and Mp = M \ My. Let us argue that
no confusion shall arise when dealing with this M4 and the one in Observation 6.11, since they
are actually equal. To this end, let B; and B} be the consecutive marked bags in K(M) with
respect to whom Ky is a (B}, By)-manageable path. Accordingly, denote C'y = B; N B} and
M} =MNN(B(Kx)\C%) (see Fig. 12). Then, we have the following observation.

Observation 6.14. With respect to the notation above, we have that C5, C Cx and My = M.

Proof. By the definition of a path decomposition, any vertex that belongs to both B and B}
must also belong to every bag in between these two bags, and in particular to both By and B,..
Thus, it follows that C'y C Cx. This containment directly implies that M4 C M. However,
we need to show that M4 and M are in fact equal. To this end, consider a vertex m € M.
By Observation 6.11, we have that 3(Kx) \ C% C Ng(m), and therefore 5(Kx) \ Cx € Ng(m).
Thus, unless B(Kx) \ Cx is empty, the last containment implies that m € My. However,
B(Kx) \ Cx cannot be empty, since then Ky would have induced a clique. O
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In light of this observation, from Observation 6.11 and 6.13 it follows that M, is adjacent to
every vertex in (Ky) and N(Mp) N B(Kx) C Cx. Furthermore, from Observation 6.11, for
each my, mg € M4, one of {mi,ma} € W or (mi,mg) € E(G) holds.

We will devise a sequence of marking schemes that mark a polynomial in & number of bags
in Ky, such that the obstructions are “well-behaved” with respect to the marked bags. Towards
that, we have the following definition for an AW.

Definition 6.1. For a manageable clique path Kx, an obstruction O is called Kx-manageable
if all terminals in O N B(Kx) appear in the marked bags. Furthermore, it is called a manageable
obstruction if it is K x-manageable for every manageable clique path Kx.

More precisely, our goal is to mark a polynomial in £ number of bags in Kx so that, for any
set S of k 4+ 2 or fewer vertices, if there is an AW O in G — S, then there must be another AW
O in G — S that is Kx-manageable. Let Bx be the set of marked bags in Kx, and note that
initially Bx contains only the first bag B, of Kx and last bag B, of Kx.

We present the following Lemma 6.15 to characterize the intersection between a manageable
clique path Kx and an induced path P in G. Let us note the this lemma holds for any sub-clique
path Kxs of Kx where we define the associated vertex sets Bé, B!, Ix: and Cx accordingly;
since the arguments remain the same, we only consider Kx in the proof. Note that the sets
My and Mp remain unchanged for Ky (this follows from the arguments given in the proof
of Observation 6.14). We remark that here, we slightly abuse notation—K -/ refers to
a sub-clique path of Kx rather than a sub-clique path of K associated with a new
obstruded component X’ # X. This is done so that we can conveniently use the
notations Iy and Cx/ in the same way as before. Since we no longer refer explicitly
to obstruded components, but have zoomed into a manageable clique-path in the
context of one such component, confusion is avoided. Here, we deal with induced paths
that have at least one internal vertex that is also an interval vertex in Kx but which do not
consist only of internal vertices in Kx; moreover, we forbid the paths from traversing My4.

Lemma 6.15. Let P = (v1,va,...,v) be an induced path in G, such that all the following
conditions are satisfied:

1. (V(P)\{vr,u}) N Ix # 0,
2. V(P)N My =0, and
3. V(P)N (V(G)\ Ix) # 0.

Then, V(P) N Cx = 0. Furthermore, if vi,vs ¢ Ix, then the following properties hold.

e Px=P[V(P)NB(Kx)] is an induced path in G between a vertex in B;\Cx and a vertex
in B,\Cx.

e Px — (ByU B,) is an induced path in G[Ix].

Proof. Consider a vertex v € (V(P)NIx)\ {v1,v:}, and let v_1 and vy be its two neighbors in
P. Recall that N(Mp) N B(Kx) C Cx, and hence Ng(v) N Mp = (). We thus observe, because
Nea(v) C B(Kx)UM4 and V(P)NM4 = 0, it follows that the vertices v_; and vy must belong to
B(Kx). Furthermore, C'x is a clique, and for any w € C'x we have Ng(v) C Ng(w) because Kx
is not a clique in G. Here, we relied on Observation 6.13. Therefore, V(P)NCx = 0. Indeed, it it
were not the case, then we obtain a chord in the induced path P between a vertex w € V(P)NCx
and (at least) one of v_; or v4; due to the containment {v_1,v4;} C Ng(v) € Ng(w). This
concludes the proof of the first part of the lemma.

Now, we turn to prove the second part of the lemma. Towards this, consider the set
V(P)N B(Kyx), and let vs € Ix be the vertex with the smallest index (i.e., subscript) in P
that belongs to the set Ix. The existence of such a vertex v, follows from the assumption that
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(V(P) \ {v1,v}) N Ix # 0. Moreover, note that s € {2,...,t — 1} due to the assumption that
vy, v ¢ Ix. Let ve (possibly same as vg) be the vertex with the largest index in P that belongs
to Ix such that for every i € {s,s+1,...,e}, v; € Ix. As before, we have that e € {2,...,t—1}.

Next, we consider the vertices vs_1 and ve11 along with the induced subpath P’ = P[{vs_1, vs,
...y Vet1}]. From the construction of vs_; and veyq, the assumption that V(P) N My =
(), and the first part of the lemma, it follows that vs_1,ve41 ¢ Ix U M4 U Cx. Moreover,
(Vs—1,0s), (Ve, Ver1) € E(G), and for v* € {vs, v}, we have Ng(v*) C S(Kx) U M4. Therefore,
Us—1,Vet1 € (BeU By) \ Cx. Without loss of generality, we assume that vs_1 € B, \ Cqp.
Then, ver1 ¢ By \ Cg, since otherwise we have the chord (vs—1,ve4+1) in P. This implies that
Vet1 € B, \ Cx. Therefore, P’ = P[{vs_1,0s,...,0c41}] is an induced path from a vertex in
B¢\ Cx to a vertex in B, \ Cx.

Notice that vs_1—;, for any ¢ > 2, cannot belong to By, since otherwise there will be a
chord in P (between vs_1_; and vs_1). We note that vs_o could possibly belong to B, \ Cx but
not to Cx. Symmetrically, we derive that vey144, for any ¢ > 2, cannot belong to B,, while
Ve42 could possible belong to B, \ Cx but not to Cx. Let s* € {s —1,s — 2} be the smallest
index such that v« € V(P) N (B, \ Cx), and e* € {e + 1, e + 2} be the largest index such that
vex € V(P)N (B, \ Cx). From this, we conclude that P* = P[{vg«, Us+41, ..., Vex }] is an induced
path from a vertex in By \ Cx to a vertex in B, \ Cx.

Thus, to complete the proof of the lemma, it remains to show that v; ¢ Ix for all i €
[s—2]U{e+2,e+3,...,t}. Suppose not, then there is an integer i* € [s—2]U{e+2,e+3,...,t}
such that v;+ € Ix. Since v+ € Ix, it must hold that v;+ belong to a bag, say B* in Kx
which is different from B, and B,. Recall that P’ is a sub-path of P from vs_1 € By \ Cx
t0 vet1 € By \ Cx. Therefore, P’ intersects every bag in the manageable clique path Kx. In
particular, it contains a vertex different from v+, say v/, from B*. But then (v',v;+) € E(G)
is a chord in the induced path P, which is a contradiction. This concludes the proof of the
lemma. ]

Observation 6.16. Let v € B(Kx) \ Cx. Then, v is not a center vertex of any AW in G that
18 not covered by WW.

Proof. Let @ be an AW in G that is not covered by W, and suppose that v € 3(Kx) \ Cx is a
center vertex of Q. Then, v must be adjacent (in G) to all the vertices of base(Q). As M is a
9-redundant solution, there are at least five vertices of M in base(Q), and therefore there are
vertices my, mg € M such that (m1,mz2) ¢ E(G) and (m1,v), (me,v) € E(G). Moreover, from
Observation 6.11, for (distinct) u,w € Ng(v) N M one of {u,w} € W or (u,w) € E(G) holds.
But (mq,mg) ¢ E(G), therefore, {m1,m2} € YW must hold. This contradicts the fact that O is
not covered by W. O

Let ©@ be an AW (not covered by W) in G. Recall that P(Q) denotes the extended base of O
(including base vertices, t, and ¢,). We have the following notion of distance of a vertex in Ky
from the end bags By and B,. We use this notion in marking bags that satisfy certain properties
and are closest to the endpoints of Kx. In this context, recall that we have an ordering of the
bags from left to right, where By is the leftmost bag and B, is the rightmost bag in Kx.

Definition 6.2. Let v € Ix. The distance between v and By is defined as the number of bags
between By and the right-most bag in Ky that contains v. Symmetrically, the distance between
v and B, is defined as the number of bags between between B, and the left-most bag in Kx
that contains v.

Towards Our Case Distinction. In what follows, we consider two cases based on the
intersection between the vertex set of O and Ix U M 4. Before this, for the sake of clarity, let us
recall a few facts. First, O is an AW in G that is not covered by W. Second, Kx is a manageable
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clique path which does not induce a clique in G. The sets By and B, are cliques in G, and
By U B, U M4 separate Ix from the rest of the graph. Furthermore, every vertex of My is
adjacent to all vertices in S(Kx) in G (by Observation 6.13). The vertices of 5(Kx) \ Cx, and
in particular Iy, cannot be the center vertices of any AW in G that is not covered by W (by
Observation 6.16). Therefore, every vertex of Iy is either a base vertex or a terminal of Q.

6.2.1 V(base(Q)) NIy =0 or V(P(Q))N M0

Irrespective of whether V(base(Q)) NIx = 0 or V(P(Q)) N My # 0, let us first observe that
since O is an AW, for any clique A in G, we have |V(A) N V(0)| < 4. This implies that
|[V(0)N (ByUB,)| < 8. Moreover, since Q is not covered by W, for distinct m, m’ € Mo NV (0),
we have (m,m') € E(G). Thus, |V(O)N My4| < 4. From this, we obtain the following inequality:

IV(©) N (M UB,UB,)| < 12.

Let ¢1, ca be the center vertices of O (in the case of a 1-AW, we have ¢ = ¢; = ¢3). Then,
depending on whether V(base(Q)) N Ix =0 or V(P(Q)) N M4 # (), we note the following.

e First, suppose that V(base(Q)) N Ix = (). In this subcase, V(0Q) N Ix C {ts,t,,t} (due to
Observation 6.16).

e Second, suppose that there is a vertex m € V(base(Q)) N M 4. Recall that every vertex in
My is adjacent to all the vertices in I'x. Thus, in this subcase, |V (0Q) N Ix| < 2, otherwise
m € V(base(0)) will be adjacent to three vertices of V(Q0) \ {c1, c2}.

In summary, V(0) N (8(Kx) U M,4) contains at most 15 vertices: up to 12 of these vertices are
in M4 UByU B,, and up to 3 of these vertices are in Ix. We will use these bounds to derive our
next marking scheme. In particular, since we deal with an obstruction whose intersection with
B(Kx)U My, is upper bounded by a fixed constant, the relevance of the tool of representative
families (defined in Section 2) is presented as a possibility—intuitively, we would like to capture
enough vertices to represent every possibility of how the (up to) 3 vertices from Iy can “behave’
within the small intersection. Towards that end, we proceed as follows.

)

Computation of representative families. Consider a tuple R = (R, Rp, R;) where R is
a graph on the vertex set Rp U Ry (these are new dummy vertices), |Rp| < 12 and |R;| < 3.
Furthermore, consider a set Z C M4 U B, U B, of |Rp| vertices, a bijective function f : Z — Rp,
and an integer d € [3]. For every such tuple (R, Z, f,d), we will perform a computation of a
representative family as follows. Here, the family to be represented is Ag z r 4, the family of all
d-sized subsets Y C Iy such that the following condition is satisfied.

There exists an isomorphism ¢ between G[Z U Y| and R whose restriction to Z is
equal to f, that is, for all z € Z we have p(z) = f(2).

Intuitively, we consider every “frame” that consists of the following: (i) the identity and topology
of the (up to) 12 vertices in M 4UB,UB, that lie in the intersection—this includes the specification
of what are the identities of these vertices (given by Z) and what are the edges among them in
G (given by R[Rp]); (i) the topology of the (up to) 3 vertices in X7 that lie in the intersection
(given by R[R;]) and the edges between them and the previously mentioned 12 vertices (given by
R). However, this information is not sufficient, and we require to also have explicit restriction of
which vertex in Z is mapped to which vertex in R, and this is provided to us by the function f.

Next, consider the matroid M = (U,Z) where U = V(G) and Z = {U’ C U | |[U'| < d+k+2}.
Notice that M is a uniform matroid, and therefore is representable over a field of size at least
d+ k42 [50]. Thus, using Theorem 2 we obtain a (k + 2)-representative family Ag z 54 CFH2
ARz, f.d-
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Marking based on the representative families. We now construct a set K(Rep,Kx) of
bags in Ky as follows. For every tuple (R, Z, f,d) defined above for the manageable clique path
Ky, and for every vertex v that belongs to at least one set in A;;f,d, we choose (arbitrarily) a
bag in Kx that contains v, and add this bag to the set K(Rep, Kx). Finally, we let K(Rep) be
the union of the bags in K(Rep, Ky ) across every Ky that is a manageable clique path which
does not induce a clique in G.

Marking Scheme V. Add all the bags in K(Rep) to B.

Towards bounding the number of bags we marked using the above marking scheme, consider
a manageable clique path Kx with end bags By, B,, which does not induce a clique in G. We
observe that there are at most O(1) choices for the graph R and its partition into Rp and Rj.

Furthermore, there are at most ('MAL;%UB "|)

the choice of Z. Thus, by Theorem 2 there are at most O((k + 2)3) sets in A@d and each set
contains at most d < 3 vertices. Hence, overall we marked at most O((2n + |M|)'?(k + 2)3) bags
in the manageable clique path Kx. As there are at most O(n3|M|) manageable clique paths in
K, Marking Scheme V marks at most | O(n'%|M|k?) | bags.

In the following, we prove a property regarding bags marked by Marking Scheme V.

choices for Z, and at most O(1) choices for f given

Lemma 6.17. Let S be a set of size at most k + 2 that intersects every set in W, and Q be an
AW in G — S such that V (base(Q))NIx =0 or V(P(Q)) N Ma # 0. Then, there is also an AW
Q" in G — S such that Q' is Kx-manageable, and Q' — Ix = O — Ix.

Proof. Consider the graph R = O[V(0) N (B(Kx) U My)] (where we forget the “labelling”
of the vertices, i.e., the graph R is supposed to be on |V(R)| dummy vertices). Let Z =
V(R)N (M4 UB;UB,)and Y = V(R) \ Z. From the earlier discussion in this subsection, it
follows that |V(R)| < 15, |Z] < 12, and |Y| < 3. Let d = |Y|. Moreover, f is the function that
maps every vertex in Z to the vertex in R that was originally labeled by Z.

Notice that Y € Ag z f4. Thus, from Theorem 2 there is a set Y/ € Ag z 4 such that the
following condition holds.

There is an isomorphism ¢ between G[Z UY’] and R whose restriction to Z is equal

to f.

Since both Y and Y’ are subsets of Ix, their neighbors in G belong to M4 U B, U B, U Ix.
Thus, both N(Y)NV(0) C Z and N(Y')NV(Q') C Z. Together with the condition above, we
thus obtain that O’ = G[V (0 — Y) UY”] is isomorphic to Q. Hence Q' is an AW in G — S with
the property that all of the vertices of @' from Ky appear in the marked bags of Kx. This
means that Q' is Ky-manageable. Finally observe that, by construction, Q' — Ix = QO — Ix.
This concludes the proof of the lemma. O

In the following subsection, we consider the problem of obtaining K x-manageable obstructions
when V' (base(Q)) N Ix # () and V(P(0Q)) N M4 = (). We note that in that subsection, we treat
the bags marked by Marking Scheme V as unmarked and only consider the bags marked by
Marking Schemes LII, ITI, and IV as marked bags.

6.2.2 V(base(Q))NIx # 0 and V(P(Q))N My =0

The goal of this subsection will be to show that any AW O in G that is not covered by W is, in
fact, already a Kx-manageable obstruction. To this end, we let Q@ be an AW in G. Furthermore,
we remind that ¢; and cg are the centers of O (in case O is a -AW, we have ¢ = ¢; = ¢2), g, tr
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are the non-shallow terminals, ¢ is the shallow terminal, base(Q) is the base, and P(Q) is the
extended base.

In the following, we obtain some useful properties of @ that satisfy the premise of this
subsection, i.e. V(base(Q))NIx # 0 and V(P(Q)) N M4 = (). This will be done in a sequence of
four statements, after which we will be able to obtain the desired result. We first observe that
the center(s) must belong to Cx U M 4.

Observation 6.18. If O is an AW not covered by W and V (base(Q)) N Ix # 0, then c1,co €
Cx UMy.

Proof. Consider v € V(base(Q)) N Ix. Because v € Ix, we have Ng(v) C 5(Kx)U M4, hence no
vertex outside 5(Kx)U My can be a center (as c¢j, co must belong to Ng(v)). Moreover, recall
that by Observation 6.16, no vertex in 8(Kyx) \ Cx can be a center vertex of an AW in G (that
is uncovered by W). Therefore, we have that ¢, c2 € M4 U Cyp. O

Secondly, we observe that the non-shallow terminals do not belong to 5(Kx) U M4 (which
already brings us close to the goal of this section), the base does not traverse Cx, and the
shallow terminal does not belong to Cx U M 4.

Observation 6.19. If O is an AW not covered by W, V (base(0))NIx # 0 and V(P(Q))NMy =
0, then ty,t, ¢ B(Kx)U Ma. Furthermore, V (base(Q)) N (Cx UMy) =0 andt ¢ Cx U M.

Proof. From Observation 6.18, V(base(Q)) N Ix # () implies that c¢i,¢o € Cx U My. From
Observation 6.13 we have that any vertex of C'x U M4 is adjacent to every vertex in 8(Kx) in
G. As ¢1 € Cx UMy, is not adjacent to ty, we obtain that t, ¢ 5(Kx). Towards a contradiction,
consider the case where t; € My. Since O is not covered by W, we have {c1,t,} ¢ W. But then
from Observation 6.13 we obtain that (c1,t,) € E(G). This contradicts that O is an AW in G.
From the above we obtain that ¢, ¢ S(KKx) U M4. An analogous argument can be given to show
that ¢, ¢ B(Kx)U M4. This proves the first part of the observation.

Next, towards a contradiction, suppose that there exists w € V(base(Q)) N (Cx U My). By
the assumption that V(P(Q)) N M4 = (), we have w ¢ M4. Hence w € Cx, which means (by
Observation 6.13) that w is adjacent to every vertex in B(Kx)U M4. Let v € V(base(Q)) N Ix
(which exists by the assumption that V(base(Q)) N Ix # 0) and u be the neighbor of v in
P(0) that is different than w. Recall that Ng(v) C 5(Kx) U M4, therefore u € S(Kx) U M4.
However, this implies that P(O)[{v,u,w}] is a cycle on three vertices, contradicting that P(QO)
is an induced path.

Finally, if t € Cx UMy, then (t,v) € E(G) (O is not covered by W), which is a contradiction.
This completes the proof. O

Third, we consider the subpath Px = P(0)[5(Kx) — Cx] of P(0). Due to Lemma 6.15, the
following lemma is almost immediate.

Lemma 6.20. If V(base(O))NIx # 0 and V(P(OQ))N My =0, then Px = P(0)[8(Kx) \ Cx]
is an induced path between a vertex in By \ Cx and B, \ Cx, and Px is a subpath of base(Q).

Proof. We note that P(Q) is an induced path in G and O is not covered by WW. We further note
that the following conditions are satisfied.

1. (V(P(0))\{v1,v})NIx # 0. This follows from our assumption that V' (base(Q)) N Ix # 0.
2. V(P(O)) N M4 =0, as this is one of our assumptions.

3. V(P(O)N(V(G) \ Ix) # 0 and ty,t, ¢ Ix. This follows from the fact that ty, ¢, ¢
B(Kx)U M4, which is obtained from Observation 6.19
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Thus, using Lemma 6.15, we obtain that Py = P(0)[8(Kx) — Cx] is an induced path
between a vertex in By \ Cx and B, \ Cx and Px is a subpath of base(Q). O

Using Lemma 6.20, we obtain the following observation.
Observation 6.21. If V(base(Q)) NIx # 0 and V(P(Q)) N Ma =0, thent ¢ B(Kx)U My.

Proof. First, towards a contradiction, consider the case where t € M4. Let v € V(base(Q)) N Ix,
which exists by our assumption. But from Observation 6.13 we have that (t,v) € E(G), which
contradicts that @ is an AW in (G. Second, towards a contradiction, consider the case where
t € f(Kyx). Using Lemma 6.20, we obtain that Px = P(0)[f(Kx) — Cx] is an induced path
between a vertex in By \ Cx and a vertex in B, \ Cx, and Py is a subpath of base(Q). But then
Px intersects every bag in Kx and ¢ must lie in one of the bags in Kx. From this we conclude
that there is v € V(P(Q)) such that (t,v) € E(G), which again contradicts that O is an AW in
G. O

The next lemma, whose proof was the goal of this subsection, follows directly from the above
results and the definition of Kx-manageable obstructions. Indeed, Observation 6.19 states that
the non-shallow terminals cannot belong to 8(Kx ), and Observation 6.21 states that the shallow
terminal cannot belong to 5(Kx).

Lemma 6.22. Let O be an AW in G such that O is not covered by W, V (base(Q)) N Ix # 0,
and V(P(OQ))N Mg =0. Then O is a Kx-manageable obstruction.

6.3 Nice-clique Paths and Nice-obstructions

We now consider a pair of consecutive marked bags in K that were marked by Marking Schemes
I to V. In particular, for each manageable clique path Ky, we marked a collection of bags in
Ky via Marking Scheme V, which (further) partitions Ky into sub-clique paths that will be
called nice-clique paths. Formally, a nice-clique path is a sub-clique path K[By, B,] such that By
and B, are consecutive marked bags. We note that a nice-clique path does not induce a clique
in G, since it contains at least two distinct bags of K. Furthermore, any nice-clique path is
contained in a manageable clique path, and therefore it also has the properties of a manageable
clique path. Now, for any nice-clique path Kx that is contained in a manageable clique path
Ky, we define the sets By, B, Ix, Cx, M4 and Mp in the same way as before. We note that
the sets M4 and Mp partition M in exactly the same way as M and Mp: (the partition
defined with respect to Kx/) partitions M (see Observation 6.13 and the definitions of these
sets). Furthermore, Cxs C Cy, since Kx is a sub-clique path of Kx/. In the following we define
the notion of nice-obstructions.

Definition 6.3. Let Kx be a nice-clique path with By, and B, as the first and last bags,
respectively, and let J = V(0) N (8(Kx) \ Cx). A manageable obstruction O is called a
Kx -nice-obstruction, if one of the following holds.

1. JC B,UB,, or

2. O[J] is an induced path between a vertex in By \ Cx and a vertex in B, \ Cx, such that
(V(O) N B(Kx))\ (BeU By) C Ix.

A manageable obstruction O is called a nice-obstruction if for every nice-clique path Ky, it is
K x-nice.

The following lemma shows that an induced cycle on at least 4 vertices, which is not covered
by W, is always a nice-obstruction. We note that by definition, a chordless cycle on 4 vertices is
a manageable obstruction.
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Lemma 6.23. Let O be a chordless cycle on at least 4 vertices that is not covered by W. Then
O s a nice-obstruction.

Proof. Let us consider a nice-clique path Ky and suppose that J = V(O)N(B(Kx)\Cx) € B/UB,.
Consider a vertex v € J \ (ByU B,.). Since X7 = (Kx) \ (B¢ U B;), we have that v € J N X7.
Therefore, there is a pair of (distinct) vertices mj,ms € M such that the path segment P
between my and mo in O contains the vertex v and V(0) \ V(P) # (). Here, we rely on the fact
that O is not covered by W, therefore, |M NV (0Q)| > 10, which implies that |V (Q)| > 10. Let
P* be the sub-path of P that contains v, such that |V (P*) N M| = 2. Note that P* exists, and
could possibly be same as P. Let P* be the path from m] € M to m5 € M. Next, we argue
that mj, m3 ¢ M. Consider the case when both mj, m§ € M4. Since O is not covered by W,
from Observation 6.13, we have (mj, m3) € E(G). But this contradicts that P* is an induced
path in G. Next, suppose that m} € M4, m € Mp (the other case is symmetric). But then,
we have that (v,m}) ¢ E(G). Observe that v has no neighbor outside 5(Kx)U M4 and m; is
adjacent to all vertices in B(Kx) U (M4 NV (0)) (Observation 6.13). Now let u be the neighbor
of v in the sub-path of P* from v to my. Observe that u € §(Kx), and therefore we obtain a
chord (my,u) in P*, which is a contradiction. Therefore, mj, m4 ¢ M4, and thus we have that
V(P*)N M4 = . Observe that P* satisfies the premise of Lemma 6.15, as the endpoints of
P* lie outside 3(Kx), it contains an internal vertex from Ix, and V(P) N M4 = (. Therefore,
P*[V(P*)N B(Kx)] is an induced path from a vertex in B, \ Cx to a vertex in B, \ Cx such
that P* — (By U B,) is an induced path contained in Ix. Therefore O is Kx-nice-obstruction.
Finally, as this argument holds for every nice-clique path Kx, the lemma follows. ]

Next, for each obstruction (not covered by W) we argue about existence of a nice-obstruction.

Lemma 6.24. Let S C V(G) be a set of size at most k + 2 which intersects each set in W. If
O is an obstruction in G — S that is not covered by W, then there is a nice-obstruction Q' in
G — S (that is not covered by W ).

Proof. Since S intersects each set in W, O contains at least 10 vertices from M. If O is a chordless
cycle, then by Lemma 6.23, it is a nice-obstruction. Otherwise O is an AW, and suppose that it
is not a nice-obstruction. Let Q' be an obstruction in G — S that is K x-manageable for every
manageable path Kx. It is obtained by iteratively applying Lemma 6.17 or Lemma 6.22 for every
manageable clique path Kx, depending on the sets V(base(Q)) N Ix and V(P(Q)) N My. Note
that, each application of these lemmas modifies the obstruction only within the corresponding
manageable clique path. Thus we have that Q' is not covered by W and Q' is a manageable
obstruction.

We claim that Q' is a nice-obstruction in G—S. Consider a manageable clique path Ky, and a
nice-clique path Kx = Ky [By, B;| (i.e. it is nice-clique path that is contained in the manageable
clique path Ky, and it the sub-clique path between a pair of consecutive marked bags By, B, in
Ky). We must show that V(Q') N (8(Kx) \ Cx) is either a subset of B;U B, or an induced path
between a vertex in By \ Cx and a vertex in B, \ C'x such that (V(0Q)NB(Kx))\ (B,UB,) C Ix,
where Cx = By N B,.. That is, we show that O is Kx-nice. We note that the partition of M into
M4 and Mp that be obtain with respect to Ky is same as the partition that we obtain with
respect to Kx. Thus we deal with the partition of M into M4 and Mp which is defined by Ky-.
Next, we consider the following cases.

1. Consider the case when V(base(Q)) N Iy = (. In this case, by Lemma 6.17, Q' is Ky-
manageable. Thus, the terminals of @' must lie in the marked bags of Ky, and hence they
cannot belong to vertices in 3(Kx) \ Cx. Next, we give argument for the center vertices.
Assume that (at least) one of the centers say ¢ is in S(Kx) \ (B¢UB,). The vertex ¢; must
be adjacent to each vertex in V' (base(Q)). Since Q' is not covered by W, it must have at
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least 5 vertices in M NV(Q’). Consider two non-adjacent vertices m, m’ € M NV (base(Q)).
Since the only neighbors of ¢ in M are vertices in M4, we have m, m’ € M. But then
from Observation 6.13 we have that (m,m’) € E(G), which is a contradiction. From the
above discussions, together with the assumption that V(base(Q)) NIy = () and the fact
that Ix C Iy, we conclude that V(O) N (5(Kx) \ Cx) € By U B,.

2. Consider the case when V(P(Q)) N M4 # ). Similar to the previous case, in this case Q' is
Ky-manageable, from Lemma 6.17. Thus, the terminals of Q' must lie in the marked bags
of Ky, and hence they cannot belong to vertices in 5(Kx) \ Cx. By using an arguments
similar to the one used for the previous case, we can deduce that the centres cannot belong
to S(Kx) \ (B¢ U B;). Finally, if there is v € 5(Kx) \ (B¢ U B,) in V(base(0)), consider
its two (non-adjacent) neighbors z,y in base(Q). Notice that since Ng(v) C S(Kx)U M4,
x,y € B(Kx)U My4. Since O is not covered by W, using Observation 6.13 we can deduce
that at most one of x,y can belong to M4. If z € My and y ¢ My, which means that
y € B(Kx), and then using Observation 6.13, we have that (z,y) € E(G). Otherwise,
z,y € B(Kx). Consider u € V(P(Q)) N M4, which exists by our assumption. But then
u,v are both x,y, contradicting that P(Q) is an induced path. Thus, we conclude that
V(0) N (B(Kx)\ Cx) € By U B;.

3. Otherwise, we have base(V(Q)) NIy # () and V(P(0)) N M4 = (. Then by Lemma 6.22,
Q' is Ky-manageable for the manageable clique path Ky. Therefore, from Lemma 6.20 we
know that P = Q'[V(0Q') \ (B(Ky) — Cy) is an induced path from a vertex in B) \ Cy to
a vertex in By, \ Cy, where B; and B, are the first and last bags of Ky respectively, and
Cy = B, N By.. Observe that P visits every bag in Kx = Ky [By, B,]. Moreover, P is a
subpath of base(Q’) and by Observation 6.18 {c1,c2} C Cy U M. And Observation 6.19
implies that ¢y, ¢, ¢ B(Ky) (the endpoints of P(Q)). Also note that Cy C Cx by definition.
Now, if V(P) N (B(Kx) \ Cx) € By U B;, then O’ is Kx-nice. Otherwise, V(P) N Ix # (.
Now observe that the path P(0) and Kx satisfy the following conditions: (i) P(Q) contains
has an internal vertex from Iy, (ii) V(P(Q)) N M4 = 0, (iii)) V(P(O)) N (V(G) \ Ix) # 0
and (iv) the endpoints of P(QO) lie outside Ix. Thus, P(Q) satisfies the premise of
Lemma 6.15. Therefore, P(O)[V(P(0)) N (8(Kx) \ Cx) is an induced path from a vertex
in By \ Cx to a vertex in B, \ Cx such that (V(P(0")) N B(Kx)) \ (B¢UB,) C Ix. Hence
V(O) N (B(Kx) \ Cx) is an induced path between a vertex in By \ Cx and a vertex in
B, \ Cx such that (V(0)NB(Kx))\ (B¢U B;) C Ix. Thus, O is Kx-nice.

This concludes the proof. ]

Let us remark that the proof of Lemma 6.24, Definition 6.3 and earlier results show the
following corollary.

Corollary 6.25. If O is a nice-obstruction in G that is not covered by W, then for any nice-
clique path Kx, O N B(Kx) is either a subset of By U By, or V(0) N (B(Kx) \ Cx) is an
induced path between a vertex in By \ Cx and a vertex in B, \ Cx that contains a vertex of
Ix. Furthermore, in the second case and when Q is an AW, V(0) N (Cx U My) = {c1,c2}, and
(V(O)N B(Kx)) \ (BeU By) is an induced path in Ix which is a sub-path of base(Q). Here, By
and B, are the first and last bags of Kx, respectively.

We will require a strengthening of the above corollary that allows us to “replace” the path
P=0[V(0)n(B(Kx) \ Cx)] in O with another path P’ between the endpoint bags of Kx and
obtain a new obstruction. To obtain this property, we need to further partition a nice-clique
path by marking the following collection of bags. We note that our next marking scheme is
similar to Marking Scheme III, therefore, we use similar notations.
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Consider a nice-clique path Ky with endpoint bags By and B,. Before moving on to our
next marking scheme, we construct two sets of bags, T1(X) and 72(X). Initially, we have
Ti(X) = {By, B, }. For each u € By, let B, (X) be the first bag in Kx which does not contain u,
where if such a bag does not exist, then we set Bu(X ) = B,. Additionally, for each v € B, \ By,
let B,(X) to be the first bag in Ky which contains v, where if such a bag does not exists, then
we set B, = B,. We add all the bags in {B,(X) |u € B;} U{B,(X) | v € B, \ By} to T1(X).
We initialize 73(X) = 71(X). Furthermore, for each bag B € T1(X) in Kx, we add to 72(X)
the bags adjacent to B, namely B~! and B! (if they exist) in Kx. Note that the number of
bags in T2(X) is bounded by O(n). Finally, we let K(7) to be the union of the sets 73(X) taken

over all nice-clique paths Kx.
Marking Scheme VI. Add all the bags in K(7") to B.

We marked at most O(n) bags for each nice-clique path. Recall that we have at most
O(n3|M|) manageable clique paths and for each manageable clique path we marked at most
O(n*|M|k3) bags in K using Marking Scheme IV and V, that partitioned the manageable clique

path into nice-clique paths. Hence, in Marking Scheme VI we marked at most | O(n'6|M|k?)

bags in K.

Next, we state an observation regarding the region between pair of consecutive marked bags
in a nice-clique path. We note that this observation is similar to Observation 6.10 presented in
Section 6.1.2.

Observation 6.26. Consider a pair By, B, of consecutive marked bags in a nice-clique path
Kx = K[By, By], such that K[By, By] contains at least 3 bags. Then for any B, B’ € K[By, By],
we have BN (B;U B,) = B'N (B U B,).

Let us review the structural results we have obtained till now. Let O be a nice AW in G
which is not covered by W. Notice that the terminal vertices and center vertices of Q either
lie in marked bags of K, or lie in M, or lie outside K (from Definition 6.3, Lemma 6.23 and
Lemma 6.24). Let Kx be a nice-clique path such that O[V(0)N(5(Kx)\Cx)] is an induced path
P between a vertex in By\ Cx and a vertex in B, \ Cx that contains a vertex in (Kx)\ (B,UBy).
Here, By and B, are endpoint bags of Kx. Note that the vertices in f(Kx) \ (B¢ U B,) are
unmarked vertices up till Marking Scheme V, and therefore the vertices in P — (B, U B;) lie in
base(Q). From our arguments in Lemma 6.24, we have the following properties. As P contains
an unmarked vertex (up till Marking Scheme V), base(Q) NIy # ) and V(P(Q))N M4 = (. The
vertices of P lie in P(Q). Furthermore, the internal vertices of P lie in base(Q) and P — (ByU B,)
is an induced path contained in Iy. The centers c1,co of O lie in Cx U My. The shallow
terminal ¢ of O lies outside S(Kx) as P intersects every bag in Kx. Consider any pair of
consecutive marked bags B;, B; in Kx under Marking Scheme VI. Let Ky denote the sub-clique
path K[B;, Bj], and let Cy denote the set B; N Bj. Consider the path Py = P[V(P) N B(Ky)]
and suppose that Py contains a vertex in S(Ky) \ Cy. Then, as Py is an induced path, it is
disjoint from Cy, which is part of every bag of Ky . Therefore, Py contains no vertex in By U B,
(since S(Ky) N (By U B,) C Cy). In other words Py C Ix. Furthermore, as every vertex of
Py is an internal vertex of P C P(Q), we have Py C base(Q). Let u € B; and v € B; be the
endpoints of Py. Now, let P{, be another induced path between u and v in G[3(Ky) \ Cy], and
observe that Pj, C Ix. Let us note that when O is a nice chordless cycle, we define the paths P,
Py and P} in a similar manner. We then have the following lemma.

Lemma 6.27. There is a nice-obstruction Q' which is not covered by W such that Q' C
(@ — Py) U P{/
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Proof. Since every vertex of Py lies in Ix, the neighborhood of these vertices is contained in
B(Kx)U M4. Recall that P =0nN (B(Kx) \ Cx) is an induced path from a vertex say, = € By
to a vertex say, y € B, that contains a vertex in 5(Kx) \ (B¢ U B,). By z, and y, we denote
the neighbors of z and y in P, respectively. Let P’ be an induced path between x and y in
GI(V(P)\ V(Py)) UV (P})]. Also, let O' = G[(V(0) \ V(P)) UV (P")], and z, and y. be the
neighbors of z and y in P’, respectively. Notice that all the internal vertices of P’ except possibly
z. and y. are contained in Ix. Moreover, if 2, ¢ Ix then x. € By and hence z. = x,, which
follows from Observation 6.26 and the fact that Py, Pj, do not contain any vertex from By U B,.
Similarly, if y. ¢ Ix then y. € B, and y. = y,. Let T = (Np/[z] N By) U (Np:[y] N By). The
above discussion implies that Py = G[(V(P(0)) \ V(P)) UV (P’)] is an induced path from t, to
t.. Here, ty and t, are the base terminals of O if it is an AW, and otherwise O is a chordless
cycle in which case t;, and ¢, are neighbors of z and y, respectively in @ which are different
from their neighbors in P. Notice that for each w € V(P’) \ T we have Ng(w) C S(Kx) U M4.
Therefore, from the above discussions, if @ is a chordless cycle then Q' is a chordless cycle on
at least 4 vertices. Here, we rely on the fact that there are at least 10 vertices from M in O
and they all lie in Mp. Next, consider the case when O is an AW. Notice that as P contains a
vertex in Ky — Cy, therefore the centers ¢1,ca of O belong to C'x U M4 (see Observation 6.16).
This implies that each vertex in P’ is adjacent to ¢; and co. Finally, recall that there are at
least 4 vertices in O — S(Kx), as M is a 9-redundant solution and O is not covered by W. Now
it follows that @' = (O — P) U P’ is also an obstruction. In each of the cases, by construction
we have that O is Ky-nice and is not covered by W. Moreover, O — B(Kx) = O’ — 5(Kx).
Therefore, it follows that O is a nice-obstruction which is not covered by W. O

In the following, by a separator in Ky, we mean a minimal separator of B;\ Cy and B;\ Cy
in the graph G[3(Ky) \ Cy]. Then we apply Lemma 6.27 to derive the fact that any minimal
solution either does not intersect 5(Ky )\ Cy or contains a separator in Ky. Furthermore, we
can replace this separator with any other separator and the resulting set is also a solution. For a
set S C V(G), by Sy we denote the set S N (B(Ky) \ Cy).

Lemma 6.28. Let S be a solution of size at most k+2 in G that contains a vertex in 5(Ky)\Cy.
Then either Sy is a separator in Ky, or else S\ Sy is also a solution. Furthermore, if Sy is a
separator then for any other separator Sy in Ky such that S* = (S'\ Sy)U Sy has size at most
k + 2, the set S* is also a solution.

Proof. First suppose that Sy is not a separator in Ky . As S is a solution of size at most k + 2
in G, it hits all the sets in W. By our assumptions, S does not separate B; \ Cy and B; \ Cy in
G[B(Ky)\ Cy]. Let S’ = S\ Sy. If " is not a solution, there is an obstruction @' in the graph
G — 5, and note that O contains a vertex of S\ S' C 3(Ky) \ Cy. Since M NS =MnJY, it
follows that S also hits all the sets in WW. Hence the obstruction Q' is not covered by W, and
|0’ N M| > 10. Therefore by Lemma 6.24, we obtain a nice-obstruction Q in G — S’. Now we
consider the obstruction Q' in the graph G. Clearly, O also contains a vertex in S\ S/, and by
Corollary 6.25, it follows that V(0) N G[B(Kx) \ Cx] is a path P between a vertex of B, \ Cx
and a vertex of B, \ Cx that is disjoint from Cx. Let Py = PN B(Ky) and note that Py
contains a vertex of S\ " C f(Ky)\ Cy. Let u € B; and v € Bj be the endpoints Py. Since Sy
is not a separator in Ky, there is an induced path Pj, between u and v in G[3(Ky) \ Cy] that is
disjoint from S. Here, we rely on the fact that By and B, are cliques. Now, by Lemma 6.27,
we have an obstruction 0" C G[(V(0) \ V(Py)) UV (P) that is not covered by W in G, and
by construction it is disjoint from S. But this is a contradiction. Therefore S’ must also be a
solution.

Now suppose that Sy is a separator. We now argue that if S5 is another separator, such
that S* = (S'\ Sy) U Sy has size at most k£ + 2, then S* is also a solution. Suppose not, then
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we can argue that there is a nice-obstruction @ in G — S*, such that it contains a vertex of
Sy C B(Ky) \ Cy. Then, as before, we obtain a path Py in G[V(0) N (8(Ky) \ Cy)] between a
vertex in B; \ Cy and a vertex in B; \ Cy in Ky — Cy. But this contradicts the fact that SZ?"]- is
a separator. Therefore S* must also be a solution. This concludes the proof of this lemma. [

Corollary 6.29. (i) If S is a minimal solution in G and |S| < k + 2, then Sy is either a
minimal separator or ().

(i1) If S is an optimum solution in G and |S| < k+2, then Sy is either a minimum separator
or ().

Let us select a minimum sized separator S§- in Ky. Then we have the following lemma which
follows from the proof of Lemma 6.28 and Corollary 6.29.

Lemma 6.30. Let S be any minimal solution to the instance G of size at most k + 2. Then
there is a solution S’ of cardinality at most |S| such that 8" N (B(Ky) \ Cy) is either the empty
set or equal to S5

Let us recall the following fact about interval graphs and their clique path decomposition. In
a clique path, any minimal separator is intersection of two adjacent bags [7]. Observe that, by
definition S§- U Cy is a separator in the clique path K. We now have the following marking rule.

Marking Scheme VII. For each pair of consecutive marked bags B;, B; in Kx, let
Ky = K[B;, Bj]. Then mark a pair of bags B, B’ € Ky such that BN B’ = 55 UCy.

We note using the above marking scheme, we mark at most | O(n'%|M|k3) | bags in K, which

follows from the number of bags marked by Marking Scheme VI. Now following Marking Scheme
VII, we consider the problem of reducing the set of unmarked vertices in Ky = K[B;, B;], where
B;, B; are two consecutive marked bags in a nice-clique path Ky.

Lemma 6.31. Let v be an unmarked vertex in Ky such that v is contained in only one bag.
Then (G, k) is a Yes instance of IVD if and only if (G —{v},k) is a Yes instance of IVD.

Proof. In the forward direction, let S be a solution in G of size at most k. Clearly, .S is a solution
in G — {v} as well. Now we consider the reverse direction. Let S be a solution of size at most k
in G — {v} and suppose that it is not a solution in G. Observe that S U {v} is a solution in G of
cardinality at most k + 1, and therefore it hits each set in W. Furthermore, as v ¢ M, S hits
every set in W. Now consider an obstruction O in G — S, and clearly it includes v. It follows
that the obstruction O is not covered by W, and V(Q) N M contains at least 10 vertices. Let
us consider O in the graph G along with the set S. Observe that N(v) C BU M4, where B
is the (unique) bag in Ky containing v. And therefore every pair of vertices in (BU M4) \ S
is either an edge in G — S or a pair in W (using Observation 6.13). Therefore v doesn’t have
a pair of non-adjacent neighbors in . Hence O is not a chordless cycle, and so it is an AW.
Now, by Lemma 6.24, there is a nice-obstruction @’ in G — S. And note that all terminals of
O’ lie in marked bags. If v € V(Q'), then as v is an unmarked vertex, by Observation 6.16 and
Corollary 6.25, v lies in base(Q) and therefore N (v) must contain a pair of non-adjacent vertices,
which is a contradiction. But then v is not part of the obstruction @'. This implies that that
O’ is an obstruction in G — (S U {v}), which is also a contradiction. Hence, S must also be a
solution in . This concludes the proof of this lemma. O

The above lemma gives the following reduction rule.

Reduction Rule 6.2. Let Ky be a nice-clique path, and let B;, Bj are a pair of consecutive
marked bags. Then pick a unmarked vertex in Ky = K[B;, B;] that is contained in only one bag,
and delete it from the graph G. The resulting instance is (G — {v}, k).
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If the above reduction rule is not applicable, then there are no unmarked vertices in any
nice-clique path Kx that are contained in only one bag. Then observe that for any bag unmarked
B in Ky we have B = (BN B~!)U (BN B™). Let us now consider the remaining of the
unmarked vertices in Ky = K[B;, B;], where B;, B; are a pair of consecutive marked bags in
Kx.

Lemma 6.32. Let Ky contain an unmarked vertex. Then there is an edge (u,v) such that at
least one of its endpoints is an unmarked vertex, and there is only one bag in Ky that contains
this edge.

Proof. Let us walk in Ky starting from B;, and let B be the first bag in Ky that contains an
unmarked vertex. Let us partition the bag B into three parts as follows, Ay = B~'n BT C B,
Ay = (BNB~ 1Y)\ Ay and A3 = BNB*T1\ Ay. Note that, BNB~! = AjUA, and BNB*! = A;nAj3.
Note that A; # (), otherwise B = Ay U A3 C B! which is a contradiction as B is a maximal
clique in the clique path Ky, and hence B ¢ B*!. Therefore A; # ), and similarly Az # (). Now
consider an unmarked vertex u € B and observe that u € A3, by choice of B. Next we choose a
vertex v € Ay and clearly it is distinct from u. Furthermore, as v ¢ B*! and v ¢ B!, we have
that the edge (u,v) is present only in B. O

In the following, we select an edge e = (u,v) given by Lemma 6.32 that lies in Ky = K[B;, Bj],
for some pair of consecutive marked bags B;, B; in the nice-clique path Kx. We call such an
edge an irrelevant edge. Note that, by construction, u,v ¢ Cy and therefore they belong to
Ix.

Lemma 6.33. Let (u,v) be an irrelevant edge in Ky . Then there is no minimal separator of
B;\ Cy and B; \ Cy in Ky — Cy that contains both v and v.

Proof. Recall that Ky —Cly is a clique path with endpoint bags B; —Cy and B; — Cy. Therefore
every minimal separator of these endpoint bags is the intersection of a pair of adjacent bags in
Ky — Cy. If both u and v were in a minimal-separator, then the edge (u,v) appears in at least
two bags, which is a contradiction. Therefore, there is no minimal separator that contains both
u and v. O

Observation 6.34. A minimal solution of size at most k 4+ 2 in G contains at most one of u
and v, where (u,v) is an irrelevant edge.

Proof. Let S be a minimal solution in G that contains both of u and v. Then, as S contains a
vertex of B(Ky) \ Cy, by Corollary 6.29 we have Sy = SN (8(Ky) \ Cy) is a minimal separator.
Now, by our assumptions, Sy contains both u and v, whereas by Lemma 6.33, no minimal
separator can contain both these vertices. This is a contradiction. O

Lemma 6.35. Let e = (u,v) be an irrelevant edge in G[(Ky)| — Cy, where u is an unmarked
vertex. Then (G, k) is a Yes instance of IVD if and only if (G/e, k) is a Yes instance of IVD.

Proof. Let z* denote the vertex obtained by contracting the irrelevant edge e = (u,v). Let S be
a solution of size k in G. Observe that, we can assume S is a minimal solution, and therefore
it does not contain both u and v. Let S" = (S\ {u,v}) U {z*} whenever S contains at least
one of u,v and S = S otherwise. In the first case, observe that G/e — S’ is isomorphic to
G — (SU{u,v}). And in the second case G/e — S’ is isomorphic to (G — S)/e. As interval graphs
are closed under edge-contractions and vertex deletions (Observation 6.1), we have that S’ is a
solution in G/e of size at most k.

Now suppose that S’ is a solution of size at most k in G/e. We have two cases depending
on whether or not z* € S’. First consider the case when z* € §’. Then S = (5" \ {z*}) U {u, v}
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is a solution of size k + 1 in G, as G — S is isomorphic to G/e — S’. Now, as S is a solution
of size at most k + 1, it must hit each set in W. Moreover, S\ {u, v} hits each set in W, as
u,v ¢ M. Observe that S contains an unmarked vertex in Ky (since u,v € 5(Ky)). Therefore,
by Lemma 6.28, it follows that either there is a strict subset S” of S that is also a solution,
or Sy = SN (B(Ky) \ Cy) is a separator of B; \ Cy and B; \ Cy in G[f(Ky) — Cy]. In the
first case, S* = S” is a solution in G of size at most k. In the second case, observe that Sy
cannot be a minimal separator, as that will contradict Lemma 6.33. Therefore, as u,v € Sy,
there is a strict subset S, that includes at most one of u an v, which is also separator. Then by
Lemma 6.28, S* = (S'\ Sy) U S} is also a solution in G, and note that it has size at most k.
Hence we have obtained a solution $* in G of size at most k.

Now consider the case when z* ¢ S’. In this case, let S = S’ U{u, v}, and observe that it has
size at most k + 2. As G — S is isomorphic to G/e — (S" U {z*}), we have that S is a solution in
G. As W is (k + 2)-necessary, S hits each set in W, which then implies that S’ hits each set in
W. We claim that S’ is a solution of size k in GG. Suppose not and let there be an obstruction
O in G — S5'. As S’ hits W, we have that Q' is not covered by W and V(Q') N M contains at
least 10 vertices. Now from Lemma 6.24, there is a nice-obstruction @ in G — S’ and note that
is not covered by W.

First suppose that V(0) N {u,v} = 0. Then clearly O is present in G/e, and furthermore it
is disjoint from S’. This is a contradiction. Next, suppose that V(Q) N {u, v} is one of u or v.
We claim that G/e[(V(0) \ {u,v}) U {z*}] contains an obstruction. Note that O is not covered
by W. As u,v € f(Ky) \ Cy, they lie in Ix. Therefore Ng(u) U Ng(v) C B(Kx) U My, and
hence u, v have no neighbors in V(0) \ (8(Kx) U M4). Now, as P =O[V(0) N (B(Kx) \ Cx)]
contains a vertex from Ix, by Corollary 6.25, P must be an induced path between a vertex in
By \ Cx and a vertex in B, \ Cx such that P — (By U B,) is an induced path contained in Ix.
Let us also note that P must contain at least 3 vertices. Now we have two following cases.

e Consider the case when @ is a chordless cycle. As O is a nice-obstruction we have |V(Q) N
M| > 10. And as P contains at least 3 vertices, V(Q) N M4 = ) (using Observation 6.13).
Hence (Ng(u)UNg(v))N(V(Q)NM) = (). Now we can conclude that G/e[(V(0)\{u,v})U
{2*}] contains a chordless cycle, by considering a vertex m € V(0Q) N M and the two
induced paths between m and z* in G/e[(V(O) \ {u,v}) U {z*}].

e Next, we consider the case when O is an AW. As O is a nice-obstruction that contains
a vertex from Ix, it follows that P C P(Q) and P N Ix C base(Q) (see the proof of
Lemma 6.24, Lemma 6.27 and Lemma 6.20). Note that {u,v} NV (P) C V(base(Q)).
Furthermore, V(P(Q)) N M4 = (), as P contains at least 3 vertices and any vertex
in My is adjacent to every vertex in Kx (using Observation 6.13). Also note that
the shallow terminal ¢ lies outside Ky, as P contains a vertex from every bag in Kx
(using Corollary 6.25). Hence, V(0) N (B(Kx) U Ma) = V(P) U {c1,c2}. Therefore
(Ng(u) U Ng(v)) NV(0) C V(P) U {c1,c2}. Furthermore {c1,ca} C Cx U My (see the
proof of Lemma 6.24). And since |base(Q) N M| > 5, we have that P is a strict subset of
P(0). Therefore, (Ng(u) U Ng(v)) N (V(0)\ {c1,c2}) is a strict subset of V(P(0)) and
u,v € Ng(c1) N Ng(c2). Hence G/e[(V(P(0)) \ {u,v}) U{z*}] contains an induced path
from ¢y to ¢, with at least 6 internal vertices, where t; and ¢, are base terminals of Q. Now
it follows that G/e[(V(O) \ {u,v}) U{z*}] contains an AW of the same type as Q. Further
observe that this obstruction lies in G/e — S’, which is a contradiction.

Now we consider the case that both u, v are present in Q. We claim that O/e is an obstruction
in G/e. Indeed, if O is a chordless cycle, then as it contains at least 10 vertices in M, it follows
that Q/e is also a chordless cycle on at least 9 vertices. Otherwise, Q is a nice AW. Now, recall
that u is an unmarked vertex in 5(Ky) C 5(Ky) and observe that the vertex u lies in I'x. Let
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P =0[V(0)N (B(Kx) \ Cx) and observe that P N Ix # (. Therefore, by Corollary 6.25, we
have that P is an induced path between a vertex in By \ Cx and a vertex in B, \ Cx, such that
P — (ByU By,) is an induced path contained in G[Ix]. Let Py = P[V(P) N B(Ky )] and observe
that it contains the edge (u,v). Furthermore, V(Py) N (By U B;) = () by the construction of Ky
(from the marking schemes). Therefore all vertices in Py, and in particular the vertices u and
v, must be internal vertices of P(Q), i.e. they are in base(Q) (see the proof of Lemma 6.24).
Finally, recall that base(Q) contains at least 5 vertices of M. Therefore, P(Q)/e is an induced
path on at least 6 vertices between ¢y and ¢,. Hence, it follows that O@/e is an AW of the same
type as O, and further it is present in G//e. Finally observe that Q/e is an obstruction in G/e
that is disjoint from S’. This is a contradiction.

Having obtained a contradiction in all cases, we must conclude that S’ is a solution in G,
and recall that it has size at most k. This concludes the proof of this lemma. O

The above lemma (Lemma 6.35) gives us the following reduction rule.

Reduction Rule 6.3. Let (u,v) be an irrelevant edge in G[f(Ky )] —Cy where u is an unmarked
vertex. Then contract the edge (u,v) in the graph G. The resulting instance is (G /e, k).

By Reduction Rule 6.3, we may assume that there are no unmarked vertices in 3(Ky). Then
applying this reduction rule over all pairs of consecutive marked bags in every nice-clique path,
we conclude that all vertices in the clique path K are marked. Finally, we apply the above
marking schemes and reduction rules for every clique path in G — M, and conclude that all the
vertices in G — M are marked. We now proceed to bounding the number of vertices in the graph.

7 Bounding the Number of Vertices

Let (G, k) be an instance of IVD on which none of the reduction rules apply. In the following
we bound the number of vertices in G. Recall that we start by computing a 9-redundant
solution M, whose size is bounded by O(k!") (see Lemma 3.1). Next, we consider the connected
components of G — M. First, we bound the total number of vertices in the module components
of G — M by O(k®|M|%) = O(k®) (see Observation 4.2). Then, we bound the total number
of vertices in the non-module components of G — M by a collection marking rules (and the
non-applicability of a number of reduction rules). From Observation 4.2 we obtain that the
number of non-module components in G — M is bounded by O(k|M|) = O(k''). We note
that each non-module component is a clique path. Then, we consider a clique path K of a
non-module connected component in G — M, and bound the size of the maximum clique in
it by n = O(k|M[1°) = O(k'%!) (see Lemma 5.4). Next, we focus on bounding the number of
bags in a clique path K that is a non-module component in G — M. In the following, for a
fixed (non-module) clique path K, we summarize the number of bags we mark using each of our
bag-marking schemes in Section 6.

1. Using Marking Scheme I, we mark at most O(n|M]|) bags in K.

2. Using Marking Scheme 11, we mark at most O(k?n|M|) bags in K.
3. Using Marking Scheme I1I, we mark at most O(n®|M|) bags in K.

4. Using Marking Scheme IV, we mark at most O(n3|M]) bags in K.

5. Using Marking Scheme V, we mark at most O(k3n*®|M|) bags in K.
6. Using Marking Scheme VI, we mark at most O(k3n%|M|) bags in K.

7. Using Marking Scheme VII, we mark at most O(k3n®|M|) bags in K.
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From the above, we obtain that the number of marked bags for each (non-module) clique
path is upper bounded by O(k3*n'6|M|) = O(k'62?). Further, since none of the reduction rules is
applicable, there is no vertex in GG that belongs to an unmarked bag of a non-module component.
Moreover, there are at most O(k'') non-module components in G — M, and a bag in a clique
path of a non-module component has size at most 7. Thus, the total number of vertices in G is
bounded by O(k6% . 1. g101) = O(k1741),

8 Conclusion

In this paper, we proved that the IVD problem admits a polynomial kernel. We remark that
the degree in the polynomial that bounds the kernel size can be improved to be about a 100 at
the cost of significantly more involved arguments. In particular, this can be done by considering
a solution M of lower redundancy and far more involved case analysis for bounding the clique
size and clique paths of G — M in Sections 5 and 6. However, obtaining a kernel of size around
O(k1%) will require new ideas. We leave this as an interesting open problem. We also believe
that our techniques and methods, especially the Two Families Lemma (Lemma 1.1), will be
useful in other algorithmic applications.
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