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Abstract
Consider a graph G and an edge coloring cR : E(G)→ [k]. A rainbow path between u, v ∈ V (G)
is a path P from u to v such that for all e, e′ ∈ E(P ), where e 6= e′ we have cR(e) 6= cR(e′).
The problem Rainbow k-Coloring takes as an input a graph G, and the objective is to decide
if there exists cR : E(G) → [k] such that for all u, v ∈ V (G) there is a rainbow path between
u and v in G. Several variants of the Rainbow k-Coloring have been studied. Two such
variants are as follows. The Subset Rainbow k-Coloring takes as an input a graph G and a
set S ⊆ V (G)×V (G), and the objective is to decide if there exists cR : E(G)→ [k] such that for
all (u, v) ∈ S there is a rainbow path between u and v in G. The problem Steiner Rainbow
k-Coloring takes as an input a graph G and a set S ⊆ V (G), and the objective is to decide if
there exists cR : E(G) → [k] such that for all u, v ∈ S there is a rainbow path between u and v
in G. In an attempt to resolve the open problems posed by Kowalik et al. (ESA 2016), in this
paper we obtain the following results.

For every k ≥ 3, Rainbow k-Coloring does not admit an algorithm running in time
2o(|E(G)|)nO(1), unless ETH fails.
For every k ≥ 3, Steiner Rainbow k-Coloring does not admit an algorithm running in
time 2o(|S|2)nO(1), unless ETH fails.
Subset Rainbow k-Coloring admits an algorithm running in time 2O(|S|)nO(1). This
also implies an algorithm running in time 2o(|S|2)nO(1) for Steiner Rainbow k-Coloring,
which matches the lower bound we obtained.
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1 Introduction

Graph connectivity is one of the fundamental properties in graph theory. Several connectivity
measures like k-vertex connectivity, k-edge connectivity, hamiltonicity, etc. have been studied
for graphs. Inspired by applications in secure data transfer, Chartrand et al. [8] defined an
interesting connectivity measure, called rainbow connectivity, which is defined as follows.
Let G be a graph and cR : E(G)→ [k] be an edge coloring of G. A rainbow path between
u, v ∈ V (G) is a path P from u to v such that for all e, e′ ∈ E(P ), where e 6= e′ we have
cR(e) 6= cR(e′). A graph with an edge coloring is said to be rainbow connected if for every
pair of vertices there is a rainbow path between them. The problem Rainbow k-Coloring
takes as an input a graph G, and the goal is to decide whether there exists an edge coloring
cR : E(G) → [k] such that for all u, v ∈ V (G), there is a rainbow path between u and v

in G. The problem has received lot of attention recently, both from graph theoretic and
algorithmic point of view, the details of which can be found, for instance in [9, 25, 26].
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The problem Rainbow k-Coloring is a notoriously hard problem. It was conjectured
by Caro et al. [4] that Rainbow k-Coloring is NP-hard even for k = 2. Chakraborty et
al. [5] confirmed this conjecture by showing that the problem is NP-hard for k = 2. Later,
Ananth et al. [3] showed that for every k ≥ 2, Rainbow k-Coloring is NP-hard. An
alternate proof was also given by Le and Tuza [23]. For the complexity of the problem on
restricted graph classes see [5, 6, 7, 8]. The problem has received

Impagliazzo et al. introduced the Exponential time hypothesis (ETH) [18], which is used
as a basis for proving qualitative lower bounds for computational problems. ETH states that
the problem 3-SAT does not admit an algorithm running in time 2o(n)nO(1), where n is
the number of variables in the input 3-CNF formula. Since then it has been used to prove
that several of the NP-hard problems like Independent Set, Hitting set, Chromatic
Number, do not admit an algorithm running in sub-exponential time, assuming ETH (see
the survey [27]).

Kowalik et al. [22] studied the fine-grained complexity of Rainbow k-Coloring and its
variants. They showed that Rainbow k-Coloring neither admit an algorithm running in
time 2o(|V (G)|3/2)|V (G)|O(1), nor an algorithm running in time 2o(|E(G)|/ log |E(G)|)|V (G)|O(1),
unless ETH fails. They also studied a variant of Rainbow k-Coloring, called Subset
Rainbow k-Coloring (to be defined shortly), which was introduced by Chakraborty et
al. [5]. They showed that Subset Rainbow k-Coloring does not admit an algorithm
running in time 2o(|E(G)|)|V (G)|O(1) assuming ETH. Also, they designed an FPT algorithm
for Subset Rainbow k-Coloring running in time |S|O(|S|)nO(1), where S is a part of the
input. For k = 2 they designed an algorithm running in time 2O(|S|)nO(1). They proposed
yet another (parametric) variant of Rainbow k-Coloring, which they called Steiner
Rainbow k-Coloring. Their lower bound result for Rainbow k-Coloring implies that
Steiner Rainbow k-Coloring does not admit an algorithm running in time 2o|S|3/2

nO(1).
Moreover, their algorithm for Subset Rainbow k-Coloring gives an algorithm for Steiner
Rainbow k-Coloring running in time 2O(|S|2 log |S|)nO(1).

Our results. In this paper, we attempt to tighten the gaps in the fine-grained complexity
of Rainbow k-Coloring, Subset Rainbow k-Coloring, and Steiner Rainbow k-
Coloring, which was initiated by Kowalik et al. [22]. We now move to the description of
each of our results.

The first problem that we study is Steiner Rainbow k-Coloring, which is formally
defined below.

Steiner Rainbow k-Coloring Parameter: |S|
Input: A graph G and a subset S ⊆ V (G).
Question: Does there exist an edge coloring cR : E(G)→ [k] such that for every u, v ∈ S,
there is a rainbow path between u and v in G?
In Section 3, we show that Steiner Rainbow k-Coloring does not admit an algorithm

running in time 2o(|S|2)nO(1) for every k ≥ 3, thus resolving one of the problems posed by
Kowalik et al. [22]. We give a reduction from k-Coloring on graphs of maximum degree
2(k − 1) which does not admit an algorithm running in time 2o(n)nO(1), assuming ETH. Our
reduction starts by computing a harmonious coloring of the (bounded degree) input instance
of k-Coloring, which forms an essential step in the construction of S for the instance of
Steiner Rainbow k-Coloring that we create. The idea of using harmonious coloring for
proving lower bound of the form 2o(`2)nO(1) was used by Agrawal et al. [1] to prove a lower
bound for Split Contraction, when parameterized by the vertex cover number of the
input graph. Here, ` is some parameter of the input instance. Also, the idea of partitioning
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vertices of the input graph based on some coloring scheme was used by Cygan et al. [10] to
prove ETH based lower bounds for Graph Homomorphism and Subgraph Isomorphism.

The next problem we study is Rainbow k-Coloring, which is formally defined below.

Rainbow k-Coloring
Input: A graph G.
Question: Does there exist an edge coloring cR : E(G) → [k] such that for every
u, v ∈ V (G), there is a rainbow path between u and v in G?

Kowalik et al. [22] conjectured that for every k ≥ 2, Rainbow k-Coloring does not
admit an algorithm running in time 2o(|E(G)|)nO(1), unless ETH fails. In Section 4, we resolve
this conjecture for every k ≥ 3. We give a reduction from k-Coloring on bounded degree
graphs. Although, the general scheme of reduction is same as that for Steiner Rainbow
k-Coloring, but for this case the reduction is more involved. Furthermore, we require to
distinguish between the cases for k being odd and even in the gadget construction. Also, for
the sake of reducing the complexity of gadget construction, we separate the case for k = 3
and k > 3.

Finally, we study the problem Subset Rainbow k-Coloring, which is formally defined
below.

Subset Rainbow k-Coloring Parameter: |S|
Input: A graph G and a subset S ⊆ V (G)× V (G).
Output: An edge coloring cR : E(G) → [k] such that for every (u, v) ∈ S, there is a
rainbow path between u and v in G, if it exists. Otherwise, return no.

In Section 5 we design an FPT algorithm running in time 2O(|S|)nO(1) for Subset
Rainbow k-Coloring, for every fixed k. This resolves the conjecture of Kowalik et al. [22]
regarding the existence of an algorithm running in time 2O(|S|)nO(1) for Subset Rainbow
k-Coloring, and is an improvement over their algorithm, which runs in time |S|O(|S|)nO(1),
for k ≥ 3. Our algorithm is based on the technique of color coding, which was introduced
by Alon et al. [2]. Observe that Steiner Rainbow k-Coloring is a special case of
Subset Rainbow k-Coloring. Hence, as a corollary we obtain an algorithm running in
time 2O(|S|2)nO(1) for Steiner Rainbow k-Coloring, which matches the lower bound we
proved in Section 3.

2 Preliminaries

In this section, we state some basic definitions and introduce terminology from graph theory
and algorithms. We also establish some of the notations that will be used throughout.

We denote the set of natural numbers by N. For k ∈ N, by [k] we denote the set
{1, 2, · · · , k}. Let f : X → Y be a function. For y ∈ Y , by f−1(y) we denote the set
{x ∈ X | f(x) = y}. For X ′ ⊆ X, by f |X′ we denote the function f |X′ : X ′ → Y such that
f |X′(x) = f(x), for all x ∈ X ′. For an ordered set R = X ×Y , a function f : R→ Z, and an
element r = (x, y) ∈ R, we slightly abuse the notation to denote f(r) = f((x, y)) by f(x, y).

We use standard terminology from the book of Diestel [13] for the graph related ter-
minologies which are not explicitly defined here. We consider finite simple graphs. For a
graph G, by V (G) and E(G) we denote the vertex and edge sets of the graph G, respectively.
For v ∈ V (G), by NG(v) we denote the set {u ∈ V (G) | (v, u) ∈ E(G)}. We drop the
subscript G from NG(v) when the context is clear. For C,C ′ ⊆ V (G), we say that there is
an edge between C and C ′ in G if there exists u ∈ C and v ∈ C ′ such that (u, v) ∈ E(G).
A path P = (v1, v2, · · · , v`) is a graph with vertex set as {v1, v2, · · · , v`} and edge set as
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{(vi, vi+1) | i ∈ [l − 1]}. Furthermore, we call such a path as a path between v1 and v`. The
length of a path is the number of edges in it.

A vertex coloring of a graph G with k ∈ N colors is a function ϕ : V (G)→ [k]. For such
a vertex-coloring, we will call the sets C1, C2, · · ·Ck as color classes, where Ci = {v ∈ V (G) |
ϕ(v) = i} for i ∈ [k]. A vertex-coloring ϕ of G is said to be proper if for each (u, v) ∈ E(G),
ϕ(u) 6= ϕ(v). In this paper, by vertex coloring, we will always refer to a proper vertex
coloring. A harmonious coloring of a graph G is a vertex-coloring ϕ : V (G) → [k], with
color classes C1, C2, · · · , Ck such that for all i, j ∈ [k], where i 6= j there is at most one
edge between Ci and Cj in G. An edge coloring of a graph G with k colors is a function
φ : E(G)→ [k]. A path P in G is said to be a rainbow path if for all e, e′ ∈ E(P ) with e 6= e′

we have φ(e) 6= φ(e′). An edge coloring is said to be a rainbow coloring if for all u, v ∈ V (G)
there is a u− v rainbow path in G. We drop the prefix vertex and edge from vertex coloring
and edge coloring whenever the context is clear. For a graph G with an edge coloring
c : E(G)→ [k], and a path P = (v1, v2, · · · , v`−1, v`) in G by (v1

c1—v2
c2— · · · c`−2— v`−1

c`−1— v`) we
denote the path P annotated with the color of its edges. Here, c(vi, vi+1) = ci, for i ∈ [`− 1].

Parameterized complexity. A parameterized problem Π is a subset of Γ∗ × N, where Γ is
a finite alphabet set. An instance of a parameterized problem is a tuple (x, κ), where κ is
called the parameter. A parameterized problem is said to be fixed-parameter tractable (FPT)
if, for a given instance (x, κ), we can decide (x, κ) ∈ Π in time f(κ) · |x|O(1), where f(·) is a
computable function depending only on κ. For more details on parameterized complexity we
refer to the books of Downey and Fellows [14], Flum and Grohe [16], Niedermeier [30], and
the recent book by Cygan et al. [12].

3 Lower bound for Steiner Rainbow k-Coloring

In this section, we show that for every k ≥ 3, Steiner Rainbow k-Coloring does not
admit an algorithm running in time 2o(|S|2)nO(1), unless ETH fails. Towards this we give
an appropriate reduction from k-Coloring on graphs of maximum degree 2(k − 1). We
note that k-Coloring does not admit an algorithm running in time 2o(n)nO(1) unless ETH
fails [19]. Moreover, assuming ETH, 3-Coloring does not admit an algorithm running
in time 2o(n)nO(1) on graph of maximum degree 4 [20, 11]. This follows from the fact
that 3-Coloring does not admit such an algorithm, and a reduction from an instance G
of 3-Coloring to an equivalent instance G′ of 3-Coloring, where G′ is a graph with
maximum degree 4 with |V (G′)| ∈ O(|V (G)|) (see Theorem 4.1 [17]). In fact, we can show
that k-Coloring does not admit an algorithm running in time 2o(n)nO(1) on graph of
maximum degree 2(k − 1) (folklore). This result can be obtained (inductively) by giving a
reduction from an instance G of (k − 1)-Coloring on graphs of degree at most 2(k − 2)
to an instance of k-Coloring on a graphs of bounded average degree (by adding global
vertex), and then using an approach similar to that in Theorem 4.1 in [17] we can obtain an
(equivalent) instance of k-Coloring where the degree of the graph is bounded by 2(k − 1).

Given an instance G of k-Coloring on n vertices and degree bounded by 2(k − 1), we
start by computing a harmonious coloring ϕ of G with t ∈ O(

√
n) color classes such that

each color class contains at most O(
√
n) vertices. A harmonious coloring can be computed in

polynomial time on bounded degree graphs using O(
√
n) colors with each color class having

at most O(
√
n) vertices [11, 15, 24, 28]. Let C1, C2, · · · , Ct be the color classes of ϕ. Recall

that for i, j ∈ [t] with i 6= j there is at most one edge between Ci and Cj in G. Moreover, Ci

is an independent set in G, where i ∈ [t]. We create an instance G′ of k-Coloring which
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has a harmonious coloring ϕ′ with color classes C ′1, C ′2, · · · , C ′t such that for all i, j ∈ [t],
i 6= j we have exactly one edge between Ci and Cj . Initially, we have G = G′ and C ′i = Ci,
for all i ∈ [t]. For each i, j ∈ [t], i 6= j such that there is no edge between Ci and Cj in G we
add two new vertices aij and aji to V (G′) and add the edge (aij , aji) to E(G′). Furthermore,
we add aij to C ′i and aji to C ′ji. Observe that |V (G′)| ∈ O(n), |E(G′)| ∈ O(n), and for each
i ∈ [t], |C ′i| ∈ O(

√
n). Also, for each i, j ∈ [t], i 6= j there is exactly one edge between C ′i and

C ′j in G′. It is easy to see that G is a yes instance of k-Coloring if and only if G′ is a yes
instance of k-Coloring.

Hereafter, we will be working with the instance G′ of k-Coloring, together with its
harmonious coloring ϕ′ with color classes C ′1, C ′2, · · · , C ′t. Moreover, for i, j ∈ [t], i 6= j there
is exactly one edge between C ′i and C ′j in G′.

We now move to the description of creating an equivalent instance (G̃, S) of Steiner
Rainbow k-Coloring, where k ≥ 3. Initially, we have V (G̃) = V (G′). For (u, v) ∈ E(G′)
we add k − 3 new vertices xuv

1 , xuv
2 , · · · , xuv

k−3 to G̃ and add all the edges in the path
(u, xuv

1 , · · · , xuv
k−3, v) to E(G̃). Note that for k = 3 we do not any new vertex and directly

add the edge (u, v) to G̃. For each i ∈ [t] we add a vertex ci to G̃ and add all the edges in
{(ci, v) | v ∈ C ′i} to E(G̃). Finally, we set S = {ci | i ∈ [t]}. Notice that |S| ∈ O(

√
n). In the

following lemma we establish that G′ is a yes instance of k-Coloring if and only if (G̃, S)
is a yes instance of Steiner Rainbow k-Coloring.

I Lemma 1. G′ is a yes instance of k-Coloring if and only if (G̃, S) is a yes instance of
Steiner Rainbow k-Coloring.

Proof. In the forward direction, let G′ be a yes instance of k-Coloring, and c : V (G′)→ [k]
be one of its solution. We create a coloring cR : E(G̃) → [k] as follows. For i ∈ [t] and
v ∈ C ′i we set cR(ci, v) = c(v). For i, j ∈ [t], i 6= j let u, v be the (unique) vertices in C ′i
and C ′j such that (u, v) ∈ E(G′). We now describe the value of cR for edges in the path
P = (u, xuv

1 , · · · , xuv
k−3, v). Notice that |E(P )| = k− 2 therefore, we arbitrarily assign distinct

integers in [k] \ {cR(ci, u), cR(cj , v)} to cR(e), where e ∈ E(P ). Since c is a proper coloring
of G′ therefore, cR(ci, u) = c(u) 6= c(v) = cR(cj , v). This together with the definition of cR

for edges in P implies that there is a rainbow path, namely (ci, u, x
uv
1 , · · · , xuv

k−3, v, cj) in G̃
between ci and cj . This concludes the proof in the forward direction.

In the reverse direction, let (G̃, S) be a yes instance of Steiner Rainbow k-Coloring,
and cR : E(G̃) → [k] be one of its solution. We create coloring c : V (G′) → [k] as follows.
For i ∈ [t] and v ∈ C ′i, we let c(v) = cR(ci, v). We show that c is a solution to k-Coloring
in G′. Consider (u, v) ∈ E(G′), and let u ∈ C ′i and v ∈ C ′j . Note that we have i 6= j.
Let P be a rainbow path between ci and cj in G̃. By the construction of G̃, we have
NG̃[ci]∩NG̃[cj ] = ∅. Moreover, since P is a rainbow path therefore, it can contain at most k
edges. Since NG̃(ci) = C ′i and NG̃(cj) = C ′j , and there is a exactly one path with at most
k − 2 edges between a vertex in C ′i and a vertex in C ′j , namely (ci, u, x

uv
1 , · · · , xuv

k−3, v, cj).
Therefore, by construction of c together with the fact that P is a rainbow path we have
c(u) 6= c(v). This concludes the proof. J

I Theorem 2. Steiner Rainbow k-Coloring does not admit an algorithm running in
time 2o(|S|2)nO(1), unless ETH fails. Here, n is the number of vertices in the input graph.

Proof. Follows from construction of an instance (G̃, S) with |S| ∈ O(
√
n) of Steiner

Rainbow k-Coloring for a given instance G of k-Coloring with maximum degree at
most 2(k − 2), Lemma 1, and existence of no algorithm running in time 2o(n)nO(1) for
k-Coloring on graphs of maximum degree 2(k − 2) (assuming ETH). J
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4 Lower bound for Rainbow k-Coloring

In this section, we show that for every k ≥ 3, Rainbow k-Coloring does not admit an
algorithm running in time 2o(|E(G)|)nO(1), unless ETH fails. We give different reductions for
the case when k = 3 (Section 4.1), k is an even number greater than 3 (Section 4.2), and k
is an odd number greater than 4 (Section 4.3). We note that although the approach used
for proving lower bound for Rainbow 3-Coloring is extensible to Rainbow k-Coloring
when k is odd, but it unnecessarily adds to complexity of the reduction. Moreover, the
approach we follow for showing the lower bound result for k > 3, where k is an odd number
introduces some technical issues when we try to extend it for k = 3.

Towards proving our lower bound result, we give an appropriate reduction from k-
Coloring on graphs of maximum degree 2(k − 1), which does not admit an algorithm
running in time 2o(n)nO(1) unless ETH fails. The key idea behind the reduction is same as
that presented in Section 3, but for this case it is more involved. Before moving on to the
description of the reductions we define a graph that will be useful in our reductions.

A clique sequence Zn,t = (Z1, Z2, · · ·Zt) of order (n, t) is a graph defined as follows. We
have V (Zk,t) = ]i∈[t]Zi, where |Zi| = n for all i ∈ [t]. For each i ∈ [t], all the edges in
{(z, z′) | z, z′ ∈ Zi} are present in E(Zn,t), i.e. Zi is a clique. Furthermore, for all i ∈ [t− 1]
all the edges in {(z, z′) | z,∈ Zi, x

′ ∈ Zi+1} are present in E(Zn,t). These are exactly edges
in E(Zn,t).

4.1 Lower bound for Rainbow 3-Coloring
In this section, we show that Rainbow 3-Coloring does not admit an algorithm running
in time 2o(|E(G)|)nO(1), where n is the number of vertices in the input graph G.

Let G be an instance of 3-Coloring on n vertices with maximum degree bounded by 4.
We start by computing (in polynomial time) a harmonious coloring ϕ of G with t ∈ O(

√
n)

color classes such that each color class contains at most O(
√
n) vertices [11, 15, 24, 28]. Let

C1, C2, · · · , Ct be the color classes of ϕ. From the discussion in Section 3, we assume that for
i, j ∈ [t], i 6= j there is exactly one edge between Ci and Cj in G. We construct an instance
G′ of Rainbow 3-Coloring as follows (see Figure 1).

Color class gadget. Consider i ∈ [t]. The color class gadget Ci comprises of the set Ci,
two vertices ci, bi, and a clique Ui on 3 vertices with vertex set as {ui

1, u
i
2, u

i
3}. We add

all the edges in {(v, ci), (v, bi), (v, ui
1), (v, ui

2), (v, ui
3) | v ∈ Ci} to E(Ci). Also, we add the

edge (bi, ci) to E(Ci).
Connection between color class gadgets. Consider i, j ∈ [t], i 6= j we add all the edges in
{(bi, u

j
`) | ` ∈ [3]} to E(G′). Furthermore, we add all the edges {(ui

`, u
j
`′) | `, `′ ∈ [3]} to

E(G′). Note that {ui′

` | i′ ∈ [t], ` ∈ [3]} induces a clique in G′.
Encoding edges. For this case encoding edges is quite simple. For i, j ∈ [t], i 6= j we add
the unique edge (u, v) between Ci and Cj with u ∈ Ci and v ∈ Cj to G′. Note that this
is same as adding all the edges in E(G) to E(G′).

This finishes the description of the instance G′ of Rainbow 3-Coloring. We note that
some of the edges in G′ are not necessary for the correctness of the reduction. However, they
are added to reduce the number of pairs for which we need to argue about existence of a
rainbow path. Before moving on to the proof of equivalence between these instances, we
create an edge coloring function cR : E(G′)→ [3]. Here, we create cR based on a solution
c to 3-Coloring in G, assuming that G is a yes instance of 3-Coloring. We will follow
computation modulo k, and therefore color 0 is same as color k.
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1 2 3

ci cj

bjbi

ui
1

ui
2

ui
3 uj

3

uj
1

uj
2

CjCi

Figure 1 An illustration of (partial) construction of the graph G′ and the coloring function cR.

I Definition 3. Given a solution c to 3-Coloring in G, we construct cR : E(G′)→ [3] as
follows (see Figure 1).
1. For i ∈ [t], and v ∈ Ci set cR(v, ci) = c(v), cR(v, bi) = c(v), and for ` ∈ [3], cR(v, ui

`) = `.
2. For i, j ∈ [t], i 6= j let (u, v) be the unique edge between Ci and Cj . We set cR(u, v) to

be the unique integer in [3] \ {c(u), c(v)}. Here, the uniqueness is guaranteed by the fact
that c is a 3-Coloring of G, and (u, v) ∈ E(G′) therefore, c(u) 6= c(v).

3. For i ∈ [t] set cR(bi, ci) = 3, cR(ui
1, u

i
2) = 3, cR(ui

2, u
i
3) = 2, and cR(ui

3, u
i
1) = 1.

4. For i, j ∈ [t], i 6= j and ` ∈ [3] set cR(bi, u
j
`) = `− 1.

5. For i, j ∈ [t], i 6= j and ` ∈ [3] set cR(ui
`, u

j
`) = `. Furthermore, for `′ ∈ [3] \ {`} we set

cR(ui
`, u

j
`′) = ˆ̀, where ˆ̀ is the unique integer in [3] \ {`, `′}.

Next, we prove some lemmata that will be useful in establishing the equivalence between
the instance G of 3-Coloring and the instance G′ of Rainbow 3-Coloring.

I Lemma 4. For i, j ∈ [t], where i 6= j let (u∗, v∗) be the unique edge between Ci and Cj

with u∗ ∈ Ci and v∗ ∈ Cj. There is exactly one path, namely (ci, u
∗, v∗, cj) in G′ between ci

and cj that has at most 3 edges.

Proof. Consider i, j ∈ [t], where i 6= j. Let u∗ ∈ Ci, v∗j ∈ Cj be the vertices such that
(u∗, v∗) ∈ E(G′). Recall that N(ci) = {bi} ∪ Ci and N(cj) = {bj} ∪ Cj . Therefore, any path
between ci and cj with at most 3 edges must contain a vertex u ∈ N(ci) ∪ {bi} and a vertex
v ∈ N(cj) ∪ {bj} such that (u, v) ∈ E(G′). Observe that (bi, bj) /∈ E(G′), bi /∈ N(Cj), and
bj /∈ N(Ci). Therefore, u must belong to Ci and v must belong to Cj . But there is unique
edge between Ci and Cj , namely (u∗, v∗). Therefore, u = u∗ and v = v∗. This concludes the
proof. J

I Lemma 5. Let G be a yes instance of 3-Coloring, and c be one of its solution. Fur-
thermore, let cR : E(G′)→ [3] be the coloring given by Definition 3 for the coloring c of G.
Then for all i ∈ [t], and u, v ∈ Ci there is a rainbow path between u and v in G′.

Proof. Consider i ∈ [t]. Recall that V (Ci) = Ci ∪ {ci, bi, u
i
1, u

i
2, u

i
3}. We will argue for the

pairs (u, v) ∈ V (Ci)× V (Ci) such that (u, v) /∈ E(Ci), since we trivially have a rainbow path
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between pair of vertices that have an edge between them. Therefore, we argue about pairs in
{(u, v) | u, v ∈ Ci, u 6= v} ∪ {(bi, u

i
`), (ci, u

i
`) | ` ∈ [3]}.

Consider u, v ∈ Ci where u 6= v. The path (u 1—ui
1

3—ui
2

2—v) is a rainbow path between u
and v in G′.
Consider v ∈ Ci. If cR(v, bi) = 1 then (bi

1—v 2—ui
2

3—ui
1) is a rainbow path between bi and

ui
1, (bi

1—v 2—ui
2) is a rainbow path between bi and ui

2, and (bi
1—v 3—ui

3) is a rainbow path
between bi and ui

3. All other cases can be argued analogously. Also, similar arguments
can be given for rainbow paths between ci and vertices in {ui

` | ` ∈ [3]}.
J

I Lemma 6. Let G be a yes instance of 3-Coloring, and c be one of its solution. Fur-
thermore, let cR : E(G′)→ [3] be the coloring given by Definition 3 for the coloring c of G.
Then for all i, j ∈ [t], i 6= j for all u ∈ Ci and v ∈ Cj there is a rainbow path between u and v
in G′.

Proof. Consider i, j ∈ [t], where i 6= j. Let (u∗, v∗) ∈ E(G′) be the unique edge between Ci

and Cj with u∗ ∈ Ci and v∗ ∈ Cj . We will argue for the pairs (u, v) ∈ V (Ci)× V (Cj) such
that (u, v) /∈ E(G′), since we trivially have a rainbow path between pair of vertices that have
an edge between them. Therefore, we argue only for pairs in the following sets.

A1 = {(ci, u) | v ∈ {bj , cj} ∪ Cj ∪ {uj
` | ` ∈ [3]}}.

A2 = {(bi, u) | v ∈ {bj} ∪ Cj}.
A3 = {(u, v) | v ∈ Ci, v ∈ Cj ∪ {uj

` | ` ∈ [3]}}.

Although, A1 ∪A2 ∪A3 does not include all the pairs in (V (Ci)× V (Cj)) \ E(G′), but a
rainbow path for all such pairs can be obtained by following a symmetric argument (swapping
i and j). We now show that for each pair in A1 ∪A2 ∪A3 we have a rainbow path between
them in G′.

The path (ci, u
∗, v∗, cj) is a rainbow path between ci and cj in G′ (see item 1 and 2 of

Definition 3). Similarly, (ci, u
∗, v∗, bj) is a rainbow path between ci and bj in G′. Consider

a vertex v ∈ Cj . The path (ci
3—bi

1—uj
2

2—v) is a rainbow path between ci and v (see item
1, 3, and 4 of Definition 3). This also gives a rainbow path between ci and uj

2. The paths
(ci

3—bi
2—uj

3) and (ci
3—bi

2—uj
3

1—uj
1) are rainbow paths between ci and uj

3, and between ci

and uj
1, respectively (see item 3 and 4 of Definition 3).

The path (bi, u
∗, v∗, bj) is a rainbow path between bi and bj in G′ (see item 1 and 2 of

Definition 3). For v ∈ Cj , (bi
1—uj

2
2—v) is a rainbow path between bi and v (see item 1

and 4 of Definition 3).
Consider a vertex u ∈ Ci. For v ∈ Cj , (u 1—ui

1
3—uj

2
2—v) is a rainbow path between u

and v in G′ (see item 1 and 5 of Definition 3). Note that this also gives a rainbow path
between u and uj

2. The path (u 1—ui
1

2—uj
3) is a rainbow path between u and uj

3. Finally,
the path u 3—ui

3
2—uj

1 is a rainbow path between u and uj
1.

J

We now establish equivalence between the instance G of 3-Coloring and the instance
G′ of Rainbow 3-Coloring.

I Lemma 7. G is a yes instance of 3-Coloring if and only if G′ is a yes instance of
Rainbow 3-Coloring.
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Proof. In the forward direction, let G be a yes instance of 3-Coloring, and c : V (G)→ [3]
be one of its solution. Let cR : E(G′) → [3] be the coloring given by Definition 3 for the
given coloring c of G. From Lemma 5 and 6 it follows that cR is a solution to Rainbow
3-Coloring in G′.

In the reverse direction, let G′ be a yes instance of Rainbow 3-Coloring, and cR :
E(G′)→ [3] be one of its solution. We create coloring c : V (G)→ [3] as follows. For i ∈ [t]
and v ∈ Ci, we let c(v) = cR(ci, v). We show that c is a valid solution to 3-Coloring
in G. Consider (u, v) ∈ E(G), and let u ∈ Ci and v ∈ Cj . Note that we have i 6= j.
Let P be a rainbow path between ci and cj in G′. Note that P can have at most 3
edges. By Lemma 4 we know that P = (ci, u, v, cj), therefore by construction of c, we have
cR(ci, u) = c(u) 6= c(v) = cR(ci, v). This concludes the proof. J

I Theorem 8. Rainbow 3-Coloring does not admit an algorithm running in time
2o(|E(G)|)nO(1), unless ETH fails. Here, n is the number of vertices in the input graph.
Proof. Follows from construction of an instance G′ of Rainbow 3-Coloring with |E(G′)| ∈
O(|V (G)|) for a given instance G of 3-Coloring with maximum degree bounded by 4,
Lemma 7, and existence of no algorithm running in time 2o(n)nO(1) for 3-Coloring on
graphs of maximum degree 4 (assuming ETH). J

4.2 Lower Bound for Rainbow k-Coloring, k > 3 and even
In this section, we show that Rainbow k-Coloring does not admit an algorithm running
in time 2o(|E(G)|)nO(1), for every even k where k > 3. Here, n is the number of vertices in
the input graph.

Let G be an instance of k-Coloring on n vertices with maximum degree bounded by
2(k − 1). Here, k > 3 and k is an even number. We start by computing (in polynomial
time) a harmonious coloring ϕ of G with t ∈ O(

√
n) color classes such that each color class

contains at most O(
√
n) vertices [11, 15, 24, 28]. Let C1, C2, · · · , Ct be the color classes of ϕ

with exactly one edge between Ci and Cj in G, where i, j ∈ [t]. We modify the graph G and
its harmonious coloring ϕ, to obtain a more structured instance, which will be useful later.
For each i ∈ [t], we add k new vertices v∗i1, v∗i2, · · · , v∗ik to V (G), and add them to Ci. We
continue to call the modified graph as G and its harmonious coloring as ϕ with color classes
C1, C2, · · · , Ct. We note that {v∗ij | i ∈ [t], j ∈ [k]} induce an independent set in G. The
purpose of adding these k new vertices is to ensure that if G is a yes instance of k-Coloring
then there is a k-coloring c of G, such that for each i ∈ [t] and j ∈ [k], we have c−1(j)∩Ci 6= ∅.
This will helpful in simplifying some of the arguments later. Observe that original instance
is a yes instance of a k-Coloring is and only if the modified instance is a yes instance of
k-Coloring. Moreover, given a k-coloring of G (modified graph), in polynomial time we
can obtain another k-coloring c′ of G such that for all i ∈ [t], j ∈ [k] we have c(v∗ij) = j.
Also, we have |V (G)| ∈ O(n), and |E(G)| ∈ O(n), where n is the number of vertices in the
original instance. Hereafter, whenever we talk about a solution c to k-Coloring in G (if it
exists) we will assume (without explicitly mentioning) that for all i ∈ [t] and p ∈ [k] we have
Ci ∩ c−1(p) 6= ∅. We now move to description of the reduction.

We proceed by describing color class gadget Ci, corresponding to the color class Ci, where
i ∈ [t], and gadgets to encode edges in G. Then we state the connection between various
color class gadgets and edge gadgets. We let k = 2`, where ` ∈ N and ` > 1. We create an
instance G′ of Rainbow k-Coloring as described below (see Figure 2).

Color class gadget. Consider i ∈ [t]. The color class gadget Ci comprises of the set Ci, a
vertex ci, and a clique sequence Zi = (U i

1∪Di
1, · · · , U i

`−1∪Di
`−1) of order (2k, `−1). Here,

2017
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Ci

xij
1

xij
2

xij
`�2

Cj

cj

xji
2

xji
`�2

xji
1

ci

u⇤
i v⇤j

U i
`�1

U i
1

U i
2

Di
2

Di
1 U j

1

U j
2

U j
`�1

Dj
1

Dj
2

Ci Cj

U i
`�2

Di
`�2

Dj
`�2 U j

`�2

zij
Dj

`�1Di
`�1

Figure 2 An illustration of (partial) construction the instance G′ of k-Coloring, where k > 3
and k is even.

for each i ∈ [`− 1] we have |Ui| = |Di| = k. For r ∈ [`− 1] we let U i
r = {ui

rp | p ∈ [k]},
and Di

r = {di
rp | p ∈ [k]}. We add all the edges in {(ci, v) | v ∈ Ci} to E(Ci). Also, we

add all the edges in {(v, w) | v ∈ Ci, w ∈ U i
1 ∪Di

1} to E(Ci).
Connection between color class gadgets. For each i, j ∈ [t] where i 6= j, we add all the
edges in {(w,w′) | w ∈ U i

`−1 ∪Di
`−1, w

′ ∈ U j
`−1 ∪D

j
`−1} to E(G′).

Edge gadget. Consider i, j ∈ [t] with i < j. Recall that there is exactly one edge between Ci

and Cj . Corresponding to this edge we create a path P = (xij
1 , · · · , x

ij
`−2, zij , x

ji
`−2, · · · , x

ji
1 )

on k − 3 vertices, and add it to G′. We note that whenever we say vertex zji it refers to
the vertex zij i.e. zij and zji denotes the same vertex.
Connection between color class gadgets and edge gadgets. Consider i, j ∈ [t], where i < j.
Let (u∗i , v∗j ) be the unique edge between Ci and Cj with u∗i ∈ Ci and v∗j ∈ Ci. We add
the edges (u∗i , x

ij
1 ), (xji

1 , v
∗
j ) to E(G′). Notice that when ` = 2 xij

1 does not exists. In this
case, we add the edges (u∗i , z), (z, v∗j ) to E(G′). For each r ∈ [`− 2] we add all the edges
in {(xij

r , w) | w ∈ U i
r ∪Di

r} to E(G′). Similarly, we add all the edges in {(xji
r , w) | w ∈

U j
r ∪Dj

r} to E(G′). Also, we add all the edges in {(zij , u) | u ∈ U i
`−1∪Di

`−1∪U
j
`−1∪D

j
`−1}

to E(G′).

This finishes the construction of instance G′ of Rainbow k-Coloring for the given
instance G of k-Coloring. Before moving on to proving the equivalence between these
instances, we create an edge coloring function cR : E(G′)→ [k]. Here, we create cR based on
a solution c to k-Coloring in G, assuming that is G a yes instance of k-Coloring. We
will follow computation modulo k (color 0 is same as color k).

I Definition 9. Given a solution c to k-Coloring in G, we construct cR : E(G′)→ [k] as
follows.
1. For i ∈ [t], and v ∈ Ci we set cR(v, ci) = c(v).
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2. For i, j ∈ [t], i < j let (u∗i , v∗j ) be the unique edge between Ci and Cj . Consider the
path P = (u∗i , x

ij
1 , · · ·x

ij
`−2, zij , x

ji
`−2, · · ·x

ji
1 , v

∗
j ). We arbitrarily assign unique integers in

[k] \ {c(u∗i ), c(v∗j )} to cR(e), for each e ∈ E(P ).
3. For i ∈ [t], a vertex v ∈ Ci , and p ∈ [k] we set cR(v, ui

1p) = p− 1, and cR(v, di
1p) = p.

4. For i ∈ [t], r ∈ [`− 1], and p, q ∈ [k] we set cR(di
rp, u

i
rq) = p.

5. For i, j ∈ [t], where i 6= j, r ∈ [` − 1], and p ∈ [k] we set cR(xij
r , u

i
rp) = p, and

cR(xij
r , d

i
rp) = p+ 1.

6. For i ∈ [t], r ∈ [`− 2], p, q ∈ [k] we set cR(di
(r+1)p, d

i
rq) = p, and cR(ui

rp, u
i
(r+1)q) = p.

7. For i, j ∈ [t] where i 6= j, p, q ∈ [k] we set cR(ui
(`−1)p, d

j
(`−1)q) = p, cR(ui

(`−1)p, zij) = p,
and cR(di

(`−1)p, zij) = p+ 1.
8. For i ∈ [t], r ∈ [`− 2], p, q ∈ [k] we set cR(ui

rp, d
i
(r+1)q) = q and cR(ui

(r+1)p, d
i
rq) = p.

9. For all i ∈ [t], r ∈ [`− 1], p, q ∈ [k], where p 6= q we set cR(ui
rp, u

i
rq) = k.

10. For all the remaining edges in E(G′), cR assigns it an integer in [k] arbitrarily.

For a vertex v ∈ V (G′), by Tv we denote the breadth first search tree in G′ with v as the
root vertex. We let Lv

0 = {v}. For i ∈ [n′], by Lv
i we denote the set of vertices which are at

a distance i from v in Tv. Here, the distance between u ∈ V (G′) and v denotes the number
of edges in the unique path between v and u in Tv and n′ = |V (G′)|.

Next, we prove some lemmata that will be useful in establishing equivalence between the
instance G of k-Coloring and the instance G′ of Rainbow k-Coloring.

I Lemma 10. For i, j ∈ [t], where i 6= j, let P be a path between ci and cj with at most k
edges in G′. If ` > 2 then P contain the edge (xij

`−2, zij). Otherwise, P contains the edge
(u, zij), where u is the unique vertex in Ci that in adjacent to a vertex in Cj.

Proof. Consider i, j ∈ [t], where i 6= j. Let P be a path between ci and cj with at most k
edges in G′. Recall that N(ci) = Ci and N(cj) = Cj , where Ci ∩ Cj = ∅. Therefore, P must
contain an edge (ci, u) and (v, cj), where u ∈ Ci and v ∈ Cj (u 6= v). Consider the breadth
first search tree Tci . We start by looking at first `−1 levels of trees Tci and Tcj (starting from
0). Notice that for r ∈ [`− 2] we have Lci

r+1 = U i
r ∪Di

r ∪ {xij′

r | j′ ∈ [t] \ {i}}, and Lci
1 = Ci.

Similarly, for r ∈ [`− 2] we have Lcj

r+1 = U j
r ∪Dj

r ∪ {xji′

r | i′ ∈ [t] \ {j}}, and Lcj

1 = Cj . For
all r, r′ ∈ [`− 1] we have Lci

r ∩ L
cj

r′ = ∅. For each w ∈ {ci, cj} and r ∈ [`], P must contain
a vertex from Lw

r . But then P can contain at most one other vertex. Recall that for all
r, r′ ∈ [` − 1], there is no edge between a vertex in Lci

r and a vertex in Lcj

r′ . Therefore, P
must contain exactly one other vertex, which belongs to Lci

` ∩ L
cj

` . But Lci

` ∩ L
cj

` = {zij}.
Therefore, P must contain the vertex zij . Notice that P must contain exactly one vertex
from each Lw

r , where w ∈ {ci, cj} and r ∈ [`− 1]. Moreover, the only vertex adjacent to zij

in Lci
0 ∪ (∪r∈[`−1]L

ci
r ) is xij

`−2. Therefore, P must contain the edge (xij
`−2, zij). We note here

that when ` = 2, then xij
`−2 is same as the vertex unique vertex u ∈ Ci, which is adjacent to

a vertex in Cj . J

I Lemma 11. For i, j ∈ [t], where i 6= j let (u∗, v∗) be the unique edge between Ci and Cj with
u∗ ∈ Ci and v∗ ∈ Cj . There is exactly one path, namely (ci, u

∗, xij
1 , · · · , x

ij
`−2, zij , x

ji
`−2, · · · , x

ji
1

, v∗, cj) in G′ between ci and cj that has at most k edges.

Proof. Consider i, j ∈ [t], where i 6= j. Let u∗ ∈ Ci, v∗j ∈ Cj be the vertices such that
(u∗, v∗) ∈ E(G′). Also, let P be a (simple) path between ci and cj with at most k edges in
G′. By construction of G′, P contains an edge (ci, u) and an edge (v, cj), where u ∈ Ci and
v ∈ Cj , respectively. Recall that for r ∈ [`−2] we have Lci

r+1 = U i
r ∪Di

r ∪{xij′

r | j′ ∈ [t]\{i}},
Lci

1 = Ci, L
cj

r+1 = U j
r ∪Dj

r∪{xji′

r | i′ ∈ [t]\{i}}, and Lcj

1 = Cj . Moreover, for all r, r′ ∈ [`−1]
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we have Lci
r ∩ L

cj

r′ = ∅, and there is no edge between a vertex in Lci
r and a vertex in Lcj

r′ .
From Lemma 10 we know that P contains the vertex zij . If ` = 2, then the claim trivially
follows. Otherwise, for each w ∈ {ci, cj} and r ∈ [`− 1], P contains exactly one vertex from
Lw

r . Also, from Lemma 10 we know that (xij
`−2, zij), (zij , x

ji
`−2) ∈ E(P ). Therefore, P either

contains a sub-path P1 from ci to xji
`−2 and a sub-path P2 from xij

`−2 to cj or it contains a
sub-path P ′1 from ci to xij

`−2 and a sub-path P ′2 from xji
`−2 to cj . Consider the case when P

contains a sub-path P1 from ci to xji
`−2 and a sub-path P2 from xij

`−2 to cj . Since P is simple
path therefore, E(P1) ∩ E(P2) = ∅, and V (P1) ∩ V (P2) = ∅. Moreover, any path from ci to
xji

`−2 contains at least ` edges. This is implied from the fact that xji
`−2 ∈ L

ci

`+1. Similarly, any
path from cj to xij

`−1 contains at least ` edges. But then P contains at least 2`+ 1 > k edges.
Next, consider the case when P contains a sub-path P ′1 from ci to xij

`−2 and a sub-path P ′2
from xji

`−2 to cj . Notice that the shortest path from ci to xij
`−1 has at least `− 1 edges. This

follows from the fact that xij
`−2 ∈ L

ci

`−1. Similarly, the shortest path from xji
`−2 to cj has at

least `−1 edges. This implies that P ′1 and P ′2 both have exactly `−1 edges. We now show that
P ′1 = (ci, u

∗, xij
1 , · · · , x

ij
`−2). Consider the smallest number r ∈ [`− 2] such that xij

r−1 /∈ V (P ′1)
and xij

r ∈ V (P ′1). Here, for r = 1 we assume that xij
r−1 = u∗. If such an r does not exists

then we have P ′1 = (ci, u
∗, xij

1 , · · · , x
ij
`−2). This follows from the fact that xij

`−2 ∈ V (P ′1), and
the unique vertex in Ci that is adjacent to xij

1 is u∗. We now consider the case when such an
r exists. Recall that for each r′ ∈ [`− 1] we have |V (P ′1) ∩ Lci

r′ | = 1. Therefore, there exists
x ∈ Lci

r−1 ∩ V (P ′1). By construction of G′ (and r), we have (x, xij
r ) /∈ E(G′). This together

with the fact that for each r′ ∈ [`− 1] we have |V (P ′1) ∩ Lci

r′ | = 1 implies that such an r does
not exist. This concludes the proof. J

I Lemma 12. Let G be a yes instance of k-Coloring, and c be one of its solution.
Furthermore, let cR : E(G′)→ [k] be the coloring given by Definition 9 for the coloring c of
G. For all i ∈ [t], and u, v ∈ V (Ci) ∪ {zij | j ∈ [k] \ {i}} ∪ {xij

r | j ∈ [t] \ {i}, r ∈ [` − 2]}
there is a rainbow path between u and v in G′.

Proof. Consider i ∈ [t]. Recall that V (Ci) = {ci} ∪ Ci ∪ {ui
rp, d

i
rp | r ∈ [`− 1], p ∈ [k]}. Let

Ui = ∪r∈[`−1]U
i
r, Di = ∪r∈[`−1]D

i
r, Xi = {xij

r | j ∈ [t] \ {i}, r ∈ [`− 2]}, and Z = {zij | j ∈
[k] \ {i}}. We consider pairs of vertices in the following sets.

A1 = {(ci, v) | v ∈ Ui ∪Di ∪Xi ∪ Z}.
A2 = {(u, v) | u ∈ Ci, v ∈ (Ui \ U i

1) ∪ (Di \Di
1) ∪Xi ∪ Z}.

A3 = {(u, v) | u 6= v, u ∈ Ui, v ∈ Ui ∪Di ∪Xi ∪ Z}.
A4 = {(u, v) | u 6= v, u ∈ Di, v ∈ Di ∪Xi ∪ Z}.
A5 = {(u, v) | u 6= v, u ∈ Xi, v ∈ Xi ∪ Z}

We now show that each pair in ∪r∈[5]Ar has a rainbow path between them. We will argue
only about non-adjacent pairs of vertices.

For each x ∈ Xi ∪ Z, by construction of cR (and G′) it follows that there is a rainbow
path between ci and x (see item 1 and 2 of Definition 9). For p ∈ [k], let v∗p ∈ Ci be
a vertex such that cR(ci, v

∗
p) = p. For p ∈ [k] the path (ci

p—v∗p
p−1— ui

1p) is a rainbow
path between ci and ui

1p (see item 1 and 3 of Definition 9). Similarly, (ci
p+1— v∗p+1

p—di
1p)

is a rainbow path between ci and di
1p. For r ∈ [` − 1] \ {1} and p ∈ [k] the path

(ci
k−1— v∗k−1

k—ui
11

1—ui
22 · · · ui

(r−1)(r−1)
r−1— ui

rp) is a rainbow path between ci and ui
rp in G′

(see item 1, 3, and 6 of Definition 9). Similarly, for r ∈ [` − 1] \ {1}, p ∈ [k] the path
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(ci
p+r— v∗p+r

p+r−1— di
1(p+r−1)

p+r−2— di
2(p+r−2) · · · d

i
(r−1)(p+1)

p—di
rp) is a rainbow path between

ci and di
rp in G′.

Consider v ∈ Ci. For a vertex z ∈ Z, the path (v k—ui
11

1—ui
22 · · ·ui

`−2(`−2)
`−2— ui

(`−1)(`−1)
`−1—

z) is a rainbow path between v and z in G′ (see item 3, 6, and 7 of Definition 9). For
r ∈ [`−1]\{1} and p ∈ [k] the path (v k—ui

11
1—ui

22 · · · ui
(r−1)(r−1)

r−1— ui
rp) is a rainbow path

between v and ui
rp in G′ (see item 3 and 6 of Definition 9). Similarly, for r ∈ [`− 1] \ {1},

p ∈ [k] the path (vp+r−1— di
1(p+r−1)

p+r−2— di
2(p+r−2) · · · d

i
(r−2)(p+2)

p+1— di
(r−1)(p+1)

p—di
rp) is a

rainbow path between v and di
rp in G′. For xij

r , where j ∈ [t] \ {i} and r ∈ [` − 2] the
path (v k—ui

11
1—ui

22 · · · ui
(r−1)(r−1)

r−1— ui
rr

r—xij
r ) is a rainbow path between v and xij

r in
G′ (see item 3, 5, and 6 of Definition 9).
Consider a vertex ui

rp, where r ∈ [`− 1] and p ∈ [k]. Also, consider a vertex ui
sq, where

s ∈ [`− 1] \ {r} and q ∈ [k]. Without loss of generality we assume that r < s. The path
(ui

rp
p—ui

(r+1)(p+1)
p+1— · · ·ui

(s−1)(p+s−r−1)
p+s−r−1— ui

sq) is a rainbow path between ui
rp and

ui
sq in G′ (see item 6 of Definition 9). Consider a vertex di

sq, where s ∈ [`−1]\{r} and q ∈
[k]. If r < s then the path (di

sq
q—di

(s−1)(q+1)
q+1— di

(s−2)(q+2) · · · d
i
(r+1)(q+s−r−1)

q+s−r−1— ui
rp)

is a rainbow path between ui
rp and di

sq in G′ (see item 6 and 8 of Definition 9). Otherwise,
s < r and the path (di

sq
q—ui

s(q+1)
q+1— ui

(s+1)(q+2)
q+2— · · ·ui

(r−1)(q+s−r)
q+s−r— ui

rp) is a rainbow
path between di

sq and ui
rp. Consider a vertex xij

s ∈ Xi, where s ∈ [`− 1] \ {r}. If r < s

then the path (ui
rp

p—ui
(r+1)(p+1)

p+1— · · ·ui
s(p+s−r)

p+s−r— xij
s ) is a rainbow path between

ui
rp and xij

s in G′ (see item 5 and 6 of Definition 9). Otherwise, r > s, and the
path (ui

rp
p—di

(r−1)(p+1)
p+1— di

(r−2)(p+2) · · · d
i
(s+1)(p+r−s−1)

p+r−s−1— di
s(p+r−s−1)

p+r−s— xij
s ) is a

rainbow path between ui
rp and xij

s in G′ (see item 5, 6, and 8 of Definition 9). Roughly
speaking here, using di

s(p+r−s−1) as a neighbor of xij
s is just a choice so as to make all

the edges in the path to have colors in ascending order. For a vertex z ∈ Z the path (ui
rp

p—ui
(r+1)(p+1)

p+1— · · ·ui
(`−1)(p+`−r−1)

p+`−r−1— z) is a rainbow path between ui
rp and z in G′

(see item 6 and 7 of Definition 9).
Consider a vertex di

rp, where r ∈ [`− 1] and p ∈ [k]. Next, consider a vertex di
sq, where

s ∈ [` − 1] \ {r} and q ∈ [k]. Without loss of generality we assume r < s. The path
(di

rp
q+s−r−1— di

(r+1)(q+s−r−1) · · · d
i
(s−1)(q+1)

q—di
sq) is a rainbow path between di

rp and di
sq

in G′ (see item 6 of Definition 9). For z ∈ Z the path (di
rp

r+1— di
(r+1)(r+1) · · · d

i
(`−2)(`−2)

`−1— di
(`−1)(`−1)

`—z) is a rainbow path between di
rp and z in G′ (see item 6 and 7 of

Definition 9). For xij
s , where s ∈ [` − 1] \ {r} consider the following. If r < s then

the path (di
rp

r+1— di
(r+1)(r+1) · · · d

i
(s−1)(s−1)

s—di
ss

s+1— xij
s ) is a rainbow path between di

pr

and xij
s in G′ (see item 5 and 6 of Definition 9). Otherwise, s < r, and the path

(di
rp

p—di
(r−1)(p+1)

p+1— di
(r−2)(p+2) · · · d

i
(s+1)(p+r−s−1)

p+r−s−1— di
s(p+r−s−1)

p+r−s— xij
s ) is a rain-

bow path between di
pr and xij

s in G′ (see item 5 and 6 of Definition 9). Here, we have
selected di

s(p+r−s−1) as the neighbor of xij
s in the rainbow path we construct instead of

di
s(p+r−s) is just for ensuring that all edges have coloring in ascending order, but we can

choose other vertices as well.
Consider a vertex xij

r , where j ∈ [t] \ {i} and r ∈ [`− 1]. For all x ∈ {xij
s | s ∈ [`− 2]}, by

the construction of G′ and cR we have a rainbow path between xij
r and xij

s (see item 2 in
the Definition 9). For a vertex xij′

r , where j′ ∈ [t] \ {i, j} by construction of cR the path
(xij

r , u
i
r1, u

i
r2, x

ij′

r ) is a rainbow path between xij
r and xij′

r (see item 5 and 9 of Definition 9).
Next, consider a vertex xij′

s where j′ ∈ [t] \ {j} and s ∈ [` − 2] \ {r}. Without loss of
generality we assume that r < s. The path (xij

r
r—ui

r(r+1)
r+1— ui

(r+1)(r+2) · · ·u
i
s(s+1)

s+1— xij′

s )

2017
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is a rainbow path between xij
r and xij

s (see item 5 and 6 of Definition 9). For z ∈ Z, the
path (xij

r
r—ui

r(r+1)
r+1— ui

(r+1)(r+2) · · ·u
i
(`−1)`

`—z) is a rainbow path between xij
r and z (see

item 5, 6, and 7 of Definition 9).
J

I Lemma 13. Let G be a yes instance of k-Coloring, and c be one of its solution.
Furthermore, let cR : E(G′)→ [k] be the coloring given by Definition 9 for the coloring c of G.
For all i, j ∈ [t] where i 6= j, u ∈ V (Ci)∪{zij′ | j′ ∈ [k]\{i}}∪{xij′

r | j′ ∈ [t]\{i}, r ∈ [`−2]}
and v ∈ V (Cj)∪{zji′ | i′ ∈ [k] \ {j}}∪ {xji′

r | i′ ∈ [t] \ {j}, r ∈ [`− 2]} there is a rainbow path
between u and v in G′.

Proof. For i ∈ [t], let Ui = ∪r∈[`−1]U
i
r, Di = ∪r∈[`−1]D

i
r, Xi = {xij

r | j ∈ [t]\{i}, r ∈ [`−1]},
and Zi = {zij | j ∈ [k] \ {i}}. For i, j ∈ [t], where i 6= j we consider the pairs in the following
sets.

A1 = {(ci, v) | v ∈ {cj} ∪ Cj ∪ Uj ∪Dj ∪Xj ∪ Zj}.
A2 = {(u, v) | u ∈ Ci, v ∈ Cj ∪ Uj ∪Dj ∪Xj ∪ Zj}.
A3 = {(u, v) | u ∈ Ui, v ∈ Uj ∪Dj ∪Xj ∪ Zj}.
A3 = {(u, v) | u ∈ Di, v ∈ Dj ∪Xj ∪ Zj}.
A3 = {(u, v) | u ∈ Xi ∪ Zi, v ∈ Xj ∪ Zj}.

Notice that to prove the claim it is enough to show that for every pair in ∪r∈[5]Ar there
is a rainbow path between them in G′. For p ∈ [k], let v∗p ∈ Ci be a vertex such that
cR(ci, v

∗
p) = p. Next, we show that there is a rainbow path between every pair of vertices in

∪r∈[5]Ar.

Recall that by construction of cR (and G′) we have a rainbow path between ci and cj (see
item 1 and 2 of Definition 9). For v ∈ Cj the path (ci

k−1— v∗k−1
k—ui

11
1—ui

22 · · ·ui
(`−1)(`−1)

`−1—
dj

(`−1)`
`—dj

(`−2)(`+1) · · · d
j
2(2`−3)

2`−3— dj
1(2`−2)

2`−2— v) is a rainbow path between ci and v in
G′ (see item 1, 3, 6, and 7 of Definition 9). For uj

rp, where r ∈ [` − 1] and p ∈ [k]
the path (ci

k−1— v∗k−1
k—ui

11
1—ui

22 · · ·ui
(`−2)(`−2)

`−2— ui
(`−1)(`−1)

`−1— dj
(`−1)`

`—dj
(`−2)(`+1) · · ·

dj
(r+1)(2`−r−2)

2`−r−2— dj
r(2`−r−1)

2`−r−1— uj
rp) is a rainbow path between ci and uj

rp in G′

(see item 1, 3, 4, 6, and 7 of Definition 9). For dj
rp, where r ∈ [` − 1] and p ∈ [k]

the path (ci
k−1— v∗k−1

k—ui
11

1—ui
22 · · ·ui

(`−2)(`−2)
`−2— ui

(`−1)(`−1)
`−1— dj

(`−1)`
`—dj

(`−2)(`+1) · · ·
dj

(r+1)(2`−r−2)
2`−r−2— dj

rp) is a rainbow path between ci and dj
rp in G′ (see item 1, 3,

6, and 7 of Definition 9). For xji
r , where r ∈ [` − 2] by construction of cR and G′ we

have rainbow path between ci and xji (see item 1 and 2 of Definition 9). For xji′

r ,
where i′ ∈ [t]\{i, j} and r ∈ [`−2] consider the path (ci

k−1— v∗k−1
k—ui

11
1—ui

22 · · ·ui
(`−2)(`−2)

`−2— ui
(`−1)(`−1)

`−1— dj
(`−1)`

`—dj
(`−2)(`+1) · · · d

j
(r+1)(2`−r−2)

2`−r−2— dj
r(2`−r−1)

2`−r— xji′

r ) is a rain-
bow path between ci and xji′

r in G′ (see item 1, 3, and 5-7 of Definiton 9). For zji by
construction of cR and G′ we have rainbow path between ci and zji (see item 1 and 2 of
Definition 9). For zji′ , where i′ ∈ [t] \ {i, j} the path (ci

k−1— v∗k−1
k—ui

11
1—ui

22 · · ·ui
(`−2)(`−2)

`−2— ui
(`−1)(`−1)

`−1— dj
(`−1)(`−1)

`—zji′) is a rainbow path between ci and zji′ in G′ (see item
1, 3, and 5-7 of Definiton 9).
Consider u ∈ Ci. For v ∈ Cj the path (u k—ui

11
1—ui

22 · · ·ui
(`−2)(`−2)

`−2— ui
(`−1)(`−1)

`−1—
dj

(`−1)`
`—dj

(`−2)(`+1) · · · d
j
2(2`−3)

2`−3— dj
1(2`−2)

2`−2— v) is a rainbow path between u and v in
G′ (see item 3, 6, and 7 of Definition 9). For uj

rp, where r ∈ [`− 1] and p ∈ [k] the path
(u k—ui

11
1—ui

22 · · ·ui
(`−2)(`−2)

`−2— ui
(`−1)(`−1)

`−1— dj
(`−1)`

`—dj
(`−2)(`+1) · · · d

j
(r+1)(2`−r−2)

2`−r−2—
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dj
r(2`−r−1)

2`−r−1— uj
rp) is a rainbow path between u and uj

rp in G′ (see item 3, 4, 6, and 7 of
Definition 9). For dj

rp, where r ∈ [`−1] and p ∈ [k] the path (u k—ui
11

1—ui
22 · · ·ui

(`−1)(`−1)
`−1—

dj
(`−1)`

`—dj
(`−2)(`+1) · · · d

j
(r+1)(2`−r−2)

2`−r−2— dj
rp) is a rainbow path between u and dj

rp in
G′ (see item 3, 6, and 7 of Definition 9). For xji′

r , where i′ ∈ [t] \ {j} and r ∈ [` − 2]
the path (u k—ui

11
1—ui

22 · · ·ui
(`−1)(`−1)

`−1— dj
(`−1)`

`—dj
(`−2)(`+1) · · · d

j
(r+1)(2`−r−2)

2`−r−2—
dj

r(2`−r−2)
2`−r−1— xji′

r ) is a rainbow path between u and xji′

r in G′ (see item 3, and
5-7 of Definiton 9). For zji′ , where i′ ∈ [t] \ {j} the path (u k—ui

11
1—ui

22 · · ·ui
(`−2)(`−2)

`−2— ui
(`−1)(`−1)

`−1— dj
(`−1)(`−1)

`—zji′) is a rainbow path between u and zji′ in G′ (see item
1, 3, and 5-7 of Definiton 9).
Consider ui

rp where r ∈ [` − 1] and p ∈ [k]. For uj
sq where s ∈ [` − 1] and q ∈ [k]

the path (ui
rp

p—ui
(r+1)(p+1)

p+1— ui
(r+2)(p+2) · · · u

i
(`−1)(p+`−1−r)

p+`−1−r— dj
(`−1)(p+`−r)

p+`−r—

dj
(`−2)(p+`+1−r) · · · d

j
(s+1)(p+2`−r−s−2)

p+2`−r−s−2— dj
s(p+2`−r−s−1)

p+2`−r−s−1— uj
sq) is a rain-

bow path between ui
rp and uj

sq in G′ (see item 4, 6, and 7 of Definition 9). For dj
sq where

s ∈ [`−1] and q ∈ [k] the path (ui
rp

p—ui
(r+1)(p+1)

p+1— ui
(r+2)(p+2) · · · u

i
(`−1)(p+`−1−r)

p+`−1−r—
dj

(`−1)(p+`−r)
p+`−r— dj

(`−2)(p+`+1−r) · · · d
j
(s+1)(p+2`−r−s−2)

p+2`−r−s−2— dj
sq) is a rainbow

path between ui
rp and dj

sq in G′ (see item 4, 6, and 7 of Definition 9). For xji′

s , where i′ ∈
[t]\{j} and s ∈ [`−2] the path (ui

rp
p—ui

(r+1)(p+1)
r+1— ui

(r+2)(p+2) · · · u
i
(`−1)(p+`−1−r)

p+`−1−r—
dj

(`−1)(p+`−r) · · · d
j
(s+1)(p+2`−r−s−2)

p+2`−r−s−2— dj
s(p+2`−r−s−2)

p+2`−r−s−1— xji′

s ) is a rain-
bow path between ui

rq and xji′

s in G′ (see item 5 to 7 of Definition 9). For zji′ ,
where i′ ∈ [t] \ {j} the path (ui

rp
p—ui

(r+1)(p+1)
r+1— ui

(r+2)(p+2) · · ·u
i
(`−2)(p+`−2−r)

p+`−2−r—
ui

(`−1)(p+`−1−r)
p+`−1−r— dj

(`−1)(p+`−1−r)
p+`−r— zji′ is a rainbow pat between ui

rp and zji′

in G′ (see item 4, 6, and 7 of Definition 9).
Consider di

rp where r ∈ [`− 1] and p ∈ [k]. For dj
sq, where s ∈ [`− 1] and q ∈ [k] the path

(di
rp

p—ui
r(p+1)

p+1— ui
(r+1)(p+2)

p+2— ui
(r+2)(p+3) · · · u

i
(`−2)(p+`−1−r)

p+`−1−r— ui
(`−1)(p+`−r)

p+`−r—
dj

(`−1)(p+`+1−r)
p+`+1−r— dj

(`−2)(p+`+2−r) · · · d
j
(s+1)(p+2`−r−s−1)

p+2`−r−s−1— dj
sq) is a rainbow

path between di
rp and dj

sq in G′ (see item 4, 6 and 7 of Definition 9). For xji′

s where i′ ∈ [t]\
{j} and s ∈ [`−2] the path (di

rp
p—ui

r(p+1)
p+1— ui

(r+1)(p+2)
p+2— ui

(r+2)(p+3) · · · u
i
(`−2)(p+`−1−r)

p+`−1−r— ui
(`−1)(p+`−r)

p+`−r— dj
(`−1)(p+`+1−r)

p+`+1−r— dj
(`−2)(p+`+2−r) · · · d

j
(s+1)(p+2`−r−s−1)

p+2`−r−s−1— dj
s(p+2`−r−s−1)

p+2`−r−s— xji′

s ) is a rainbow path between di
rp and xji′

s in G′

(see item 4-7 of Definition 9). For zji′ where i′ ∈ [t] \ {j} the path (di
rp

p— ui
r(p+1)

p+1— ui
(r+1)(p+2)

p+2— ui
(r+2)(p+3) · · · u

i
(`−2)(p+`−1−r)

p+`−1−r— ui
(`−1)(p+`−r)

p+`−r— dj
(`−1)(p+`−r)

p+`+1−r— zji′ is a rainbow path between di
rp and zji′ in G′ (see item 4, 6 and 7 of

Definition 9).
For xij

r and xji′

s where i′ ∈ [t]\{j} and r, s ∈ [k] the path xij
r

r−1— di
r(r−2)

r−2— ui
rr

r—ui
(r+1)(r+1)

· · ·ui
(`−1)(`−1)

`−1— dj
(`−1)`

`—dj
(`−2)(`+1) · · · d

j
(s−1)(2`−s−2)

2`−s−2— dj
s(2`−s−2)

2`−s−1— xji′

s is a rain-
bow path between xij

r and xji′

s in G′ (see item 4 to 7 of Definition 9). For xij
r and

zji′ where i′ ∈ [t] \ {j} and r ∈ [` − 1] the path xij
r

r−1— di
r(r−2)

r−2— ui
rr

r—ui
(r+1)(r+1)

· · ·ui
(`−1)(`−1)

`−1— dj
(`−1)(`−1)

`—zji′ is a rainbow path between xij
r and zji′ in G′ (see item

4 to 7 of Definition 9).

J
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We now establish equivalence between the instance G of k-Coloring and the instance
G′ of Rainbow k-Coloring.

I Lemma 14. G′ is a yes instance of k-Coloring if and only if G′ is a yes instance of
Rainbow k-Coloring.

Proof. In the forward direction, let G be a yes instance of k-Coloring, and c : V (G)→ [k]
be one of its solution. Let cR : E(G′)→ [k] be the coloring given by Definition 9 with the
given coloring c of G. From Lemma 12 and 13 it follows that cR is a solution to Rainbow
k-Coloring in G′.

In the reverse direction, let G′ be a yes instance of Rainbow k-Coloring, and cR :
E(G′)→ [k] be one of its solution. We create coloring c : V (G)→ [k] as follows. For i ∈ [t]
and v ∈ Ci, we let c(v) = cR(ci, v). We show that c is a valid solution to k-Coloring in
G. Consider (u, v) ∈ E(G), where u ∈ Ci and v ∈ Cj . Note that we have i 6= j. Let P be a
rainbow path between ci and cj in G′. Note that P can have at most k edges. By Lemma 11
we know that P = (ci, u, x

ij
1 , · · · , x

ij
`−2, zij , x

ji
`−2, · · · , x

ji
1 , v, cj) therefore, by construction of

c, we have that cR(ci, u) = c(u) 6= c(v) = cR(ci, v). This concludes the proof. J

I Theorem 15. Rainbow k-Coloring does not admit an algorithm running in time
2o(|E(G)|)nO(1), unless ETH fails. Here, n is the number of vertices in the input graph, and k
is an even number greater than 3.

Proof. Follows from construction of an instance G′ of Rainbow k-Coloring with |E(G′)| ∈
O(|V (G)|) for a given instance G of k-Coloring with maximum degree bounded by 2(k−1),
Lemma 14, and existence of no algorithm running in time 2o(n)nO(1) for k-Coloring on
graphs of maximum degree 2(k − 1) (assuming ETH). J

4.3 Lower Bound for Rainbow k-Coloring, k > 3 and odd
In this section, we show that Rainbow k-Coloring does not admit an algorithm running
in time 2o(|E(G)|)nO(1), for every odd k where k > 3. Here, n is the number of vertices in the
input graph.

Let G be an instance of k-Coloring on n vertices with maximum degree bounded by
2(k − 1). Here, k > 3 and k is an odd number. We start by computing (in polynomial
time) a harmonious coloring ϕ of G with t ∈ O(

√
n) color classes such that each color class

contains at most O(
√
n) vertices [11, 15, 24, 28]. Let C1, C2, · · · , Ct be the color classes of

ϕ. From the discussion in Section 3, we assume that for i, j ∈ [t], i 6= j there is exactly one
edge between Ci and Cj in G. As discussed in Section 4.2, we modify the graph G and its
harmonious coloring ϕ, to obtain a more structured (equivalent) instance of k-Coloring.
This is achieved by adding k new vertices v∗i1, v∗i2, · · · , v∗ik to Ci (and G) for each i ∈ [t]. The
purpose of adding these k new vertices is to ensure that if G is a yes instance of k-Coloring
then there is a k-coloring c of G, such that for each i ∈ [t] and j ∈ [k], we have c−1(j)∩Ci 6= ∅.
Hereafter, whenever we talk about a solution c to k-Coloring in G (if it exists) we will
assume (without explicitly mentioning) that for all i ∈ [t] and p ∈ [k] we have Ci∩c−1(p) 6= ∅.
We now move to description of the reduction.

We first describe the color class gadget Ci, corresponding to each color class Ci, where
i ∈ [t], and gadgets to encode edges in G. We also have a link vertex which is connected to
all color class gadgets (but not all vertices). After this, we state connections between color
class gadgets and edge gadgets. We let k = 2` + 1, where ` ∈ N and ` ≥ 2. We create an
instance G′ of Rainbow k-Coloring as described below (see Figure 3).
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Ci

xij
1

xij
2

xij
`�1

Cj

cj

xji
2

xji
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1
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`�1
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`�1
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`�1
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1

Dj
2

Ci Cj
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Figure 3 An illustration of (partial) construction the instance G′ of k-Coloring, where k > 3
and k is odd.

Color class gadget. Consider i ∈ [t]. The color class gadget Ci comprises of the set Ci, a
vertex ci, and a clique sequence Zi = (U i

1∪Di
1, · · · , U i

`−1∪Di
`−1) of order (2k, `−1). Here,

for each i ∈ [`− 1] we have |Ui| = |Di| = k. For r ∈ [` − 1] we let U i
r = {ui

rp | p ∈ [k]}
and Di

r = {di
rp | p ∈ [k]}. We add all the edges in {(ci, v) | v ∈ Ci} to E(Ci). Also, we

add all the edges in {(v, w) | v ∈ Ci, w ∈ U i
1 ∪Di

1} to E(Ci).
Link vertex and its connection to color class gadgets. We add a vertex z to G′. For each
i ∈ [t], we add all the edges in {(z, w) | w ∈ U i

`−1 ∪Di
`−1} to E(G′).

Edge gadget. Consider i, j ∈ [t] with i 6= j. Recall that there is exactly one edge between
Ci and Cj . Corresponding to this edge we create a path P = (xij

1 , · · · , x
ij
`−1, x

ji
`−1, · · · , x

ji
1 )

on k − 3 vertices, and add it to G′.
Connection between color class gadgets and edge gadgets. Consider i, j ∈ [t], where i 6= j.
Let (u∗i , v∗j ) be the unique edge between Ci and Cj with u∗i ∈ Ci and v∗j ∈ Ci. We add the
edges (u∗i , x

ij
1 ), (xji

1 , v
∗
j ) to E(G′). For each r ∈ [`− 1] we add all the edges in {(xij

r , w) |
w ∈ U i

r ∪Di
r} to E(G′). Similarly, we add all the edges in {(xji

r , w) | w ∈ U j
r ∪Dj

r} to
E(G′).

This finishes the construction of the instance G′ of Rainbow k-Coloring for the given
instance G of k-Coloring. Before moving on to proving the equivalence between these
instances, we create an edge coloring function cR : E(G′)→ [k]. Here, we create cR based on
a solution c to k-Coloring in G, assuming that is G a yes instance of k-Coloring. We
will follow computation modulo k (color 0 is same as color k).

I Definition 16. Given a solution c to k-Coloring in G, we construct cR : E(G′)→ [k] as
follows.
1. For i ∈ [t], and v ∈ Ci we set cR(v, ci) = c(v).
2. For i, j ∈ [t], i 6= j let (u∗i , v∗j ) be the unique edge between Ci and Cj . Consider the

path P = (u∗i , x
ij
1 , · · ·x

ij
`−1, x

ji
`−1, · · ·x

ji
1 , v

∗
j ). We arbitrarily assign unique integers in

2017
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[k] \ {c(u∗i ), c(v∗j )} to cR(e), for each e ∈ E(P ).
3. For i ∈ [t], a vertex v ∈ Ci ∪ {xij

1 | j ∈ [t] \ {i}}, and p ∈ [k] we set cR(v, ui
1p) = p − 1,

and cR(v, di
1p) = p.

4. For i ∈ [t], r ∈ [`− 1], and p, q ∈ [k] we set cR(di
rp, u

i
rq) = p.

5. For i, j ∈ [t], where i 6= j, r ∈ [` − 1], and p ∈ [k] we set cR(xij
r , u

i
rp) = p, and

cR(xij
r , d

i
rp) = p+ 1.

6. For i ∈ [t], r ∈ [`− 2], p, q ∈ [k] we set cR(di
(r+1)p, d

i
rq) = p, and cR(ui

rp, u
i
(r+1)q) = p.

7. For i ∈ [t], p ∈ [k] we set cR(ui
(`−1)p, z) = p, and cR(di

(`−1)p, z) = p− 1.
8. For i ∈ [t], r ∈ [`− 2], p, q ∈ [k] we set cR(ui

rp, d
i
(r+1)q) = q and cR(ui

(r+1)p, d
i
rq) = p.

9. For all i ∈ [t], r ∈ [`], p, q ∈ [k], where p 6= q we set cR(ui
rp, u

i
rq) = k.

10. For all the remaining edges in E(G′), cR assigns it an integer in [k] arbitrarily.

For a vertex v ∈ V (G′), by Tv we denote the breadth first search tree in G′ with v as the
root vertex. We let Lv

0 = {v}. For i ∈ [n], by Lv
i we denote the set vertices which are at a

distance i from v in Tv. Here, the distance between u ∈ V (G′) and v denotes the number of
edges in the unique path between v and u in Tv.

Next, we prove some lemmata that will be useful in establishing the equivalence between
the instance G of k-Coloring and the instance G′ of Rainbow k-Coloring.

I Lemma 17. For i, j ∈ [t], where i 6= j, let P be a path between ci and cj with at most k
edges in G′. Then (xij

`−1, x
ij
`−1) ∈ E(P ).

Proof. Consider i, j ∈ [t], where i 6= j. Let P be a path between ci and cj with at most
k edges in G′. Recall that N(ci) = Ci and N(cj) = Cj , where Ci ∩ Cj = ∅. Therefore, P
must contain an edge (ci, u) and (v, cj), where u ∈ Ci and v ∈ Cj (u 6= v). We consider the
breadth first search trees Tci

and Tcj
. We start by looking at first ` levels (including level

0). Notice that for r ∈ [`− 1] we have Lci
r+1 = U i

r ∪Di
r ∪ {xij′

r | j′ ∈ [t] \ {i}}, and Lci
1 = Ci.

Similarly, for r ∈ [`− 1] we have Lcj

r+1 = U j
r ∪Dj

r ∪ {xji′

r | i′ ∈ [t] \ {j}}, and Lcj

1 = Cj . For
all r, r′ ∈ [`] we have Lci

r ∩ L
cj

r′ = ∅. Therefore, for each w ∈ {ci, cj} and r ∈ [`], P must
contain a vertex from Lw

r . This implies that P must contain at least 2`+ 2 = k + 1 vertices.
Since P is a path on at most k edges between ci and cj , P must contain exactly one vertex
from each Lw

r , where w ∈ {ci, cj} and r ∈ [`− 1]. Moreover, the vertices u∗`−1 ∈ L
ci

` ∩ V (P )
and v∗`−1 ∈ L

cj

` ∩ V (P ) must contain an edge between them. By construction of G′, there is
exactly one edge, namely (xij

`−1, x
ji
`−1) between a vertex in Lci

` and a vertex in Lcj

` . Therefore,
P must contain the edge (xij

`−1, x
ji
`−1). J

I Lemma 18. For i, j ∈ [t], where i 6= j let (u∗i , v∗j ) be the unique edge between Ci and Cj with
u∗i ∈ Ci and v∗j ∈ Cj . There is exactly one path, namely (ci, u

∗
i , x

ij
1 , · · · , x

ij
`−1, x

ji
`−1, · · · , x

ji
1 , v

∗
j

, cj) in G′ between ci and cj that has at most k edges.

Proof. Consider i, j ∈ [t], where i 6= j. Let u∗i ∈ Ci, v∗j ∈ Cj be the vertices such that
(u∗i , v∗j ) ∈ E(G′). Also, let P be a (simple) path between ci and cj with at most k edges in
G′. By construction of G′, P contains an edge (ci, u) and an edge (v, cj), where u ∈ Ci and
v ∈ Cj , respectively. Recall that for r ∈ [`−1] we have Lci

r+1 = U i
r ∪Di

r ∪{xij′

r | j′ ∈ [t]\{i}},
L

cj

r+1 = U j
r ∪Dj

r ∪ {xji′

r | i′ ∈ [t] \ {i}}, Lci
1 = Ci, and L

cj

1 = Cj . Since for all r, r′ ∈ [`] we
have Lci

r ∩ L
cj

r′ = ∅. Therefore, for each w ∈ {ci, cj} and r ∈ [`], P contains exactly one
vertex from Lw

r . From Lemma 17 we know that (xij
`−1, x

ji
`−1) ∈ E(P ). Therefore, either P

contains a sub-path P1 from ci to xji
`−1 and a sub-path P2 from xij

`−1 to cj or it contains a
sub-path P ′1 from ci to xij

`−1 and a sub-path P ′2 from xji
`−1 to cj . Consider the case when

P contains a sub-path P1 from ci to xji
`−1 and a sub-path P2 from xij

`−1 to cj . Since P is
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simple path therefore, E(P1) ∩ E(P2) = ∅, and V (P1) ∩ V (P2) = ∅. Moreover, any path
from ci to xji

`−1 contains at least `+ 1 edges. This is implied from the fact that xji
`−1 ∈ L

ci

`+1.
Similarly, any path from cj to xij

`−1 contains at least `+ 1 edges. But then P contains at
least 2(`+ 1) + 1 > k edges.

Next, consider the case when P contains a sub-path P ′1 from ci to xij
`−1 and a sub-path

P ′2 from xji
`−1 to cj . Notice that the shortest path from ci to xij

`−1 has at least ` edges. This
follows from the fact that xij

`−1 ∈ L
ci

` . Similarly, the shortest path from xji
`−1 to cj has at

least ` edges. This implies that P ′1 and P ′2 both have exactly ` edges. We now show that
P ′1 = (ci, u

∗
i , x

ij
1 , · · · , x

ij
`−1) (and an analogous argument can be applied for P ′2). Consider

the smallest number r ∈ [`− 1] such that xij
r−1 /∈ V (P ′1) and xij

r ∈ V (P ′1). Here, for r = 1 we
assume that xij

r−1 = u∗i . If such an r does not exists then we have P ′1 = (ci, u
∗
i , x

ij
1 , · · · , x

ij
`−1).

This follows from the fact that xij
`−1 ∈ V (P ′1), the unique vertex in Ci that is adjacent to xij

1
is u∗i , and |V (P ) ∩ Ci| = 1. We now consider the case when such an r exists. Since for each
r′ ∈ [`] we have |V (P ′1) ∩ Lci

r′ | = 1 therefore, there exists x ∈ Lci
r−1 ∩ V (P ′1). By construction

of G′ (and r), we have (x, xij
r ) /∈ E(G′). This together with the fact that for each r′ ∈ [`] we

have |V (P ′1) ∩ Lci

r′ | = 1 implies that such an r cannot exists. This concludes the proof. J

I Lemma 19. Let G be a yes instance of k-Coloring, and c be one of its solution.
Furthermore, let cR : E(G′)→ [k] be the coloring given by Definition 16 for the coloring c of
G. For all i ∈ [t], and u, v ∈ V (Ci) ∪ {xij

r | j ∈ [t] \ {i}, r ∈ [`− 1]} ∪ {z} there is a rainbow
path between u and v in G′.

Proof. Consider i ∈ [t]. Recall that V (Ci) = {ci} ∪ Ci ∪ {ui
rp, d

i
rp | r ∈ [`− 1], p ∈ [k]}. Let

Ui = ∪r∈[`−1]U
i
r, Di = ∪r∈[`−1]D

i
r, and Xi = {xij

r | j ∈ [t] \ {i}, r ∈ [`− 1]}. We will argue
only for non-adjacent pair of vertices, since we trivially have a rainbow path between pair of
vertices that have an edge between them. Therefore, we argue consider pairs of vertices in
the following sets.

A1 = {(ci, v) | v ∈ Ui ∪Di ∪Xi ∪ {z}}.
A2 = {(u, v) | u ∈ Ci, v ∈ (Ui \ U i

1) ∪ (Di \Di
1) ∪Xi ∪ {z}}.

A3 = {(u, v) | u 6= v, u ∈ Ui, v ∈ Ui ∪Di ∪Xi ∪ {z}}.
A4 = {(u, v) | u 6= v, u ∈ Di, v ∈ Di ∪Xi ∪ {z}}.
A5 = {(u, v) | u 6= v, u ∈ Xi, v ∈ Xi ∪ {z}}

We now show that each pair in ∪r∈[5]Ar has a rainbow path between them.

For p ∈ [k], let v∗p ∈ Ci be a vertex such that cR(ci, v
∗
p) = p. For each x ∈ Xi, by construc-

tion of cR (and G′) it follows that there is a rainbow path between ci and x (see item 1
and 2 of Definition 16). The path (ci

k−1— v∗k−1
k—ui

11
1—ui

22 · · ·ui
`−2(`−2)

`−2— ui
(`−1)(`−1)

`−1— z)
is a rainbow path between ci and z in G′ (see item 1, 3, 6, and 7 of Definition 16). For
p ∈ [k], the path (ci

p—v∗p
p−1— ui

1p) is a rainbow path between ci and ui
1p (see item 1 and

3 of Definition 16). Similarly, (ci
p+1— v∗p+1

p—di
1p) is a rainbow path between ci and di

1p.
For r ∈ [`− 1] \ {1} and p ∈ [k] the path (ci

k−1— v∗k−1
k—ui

11
1—ui

22 · · · ui
(r−1)(r−1)

r−1— ui
rp) is

a rainbow path between ci and ui
rp in G′ (see item 1, 3, and 6 of Definition 16). Sim-

ilarly, for r ∈ [`− 1] \ {1}, p ∈ [k] the path (ci
p+r— v∗p+r

p+r−1— di
1(p+r−1)

p+r−2— di
2(p+r−2) · · ·

di
(r−1)(p+2)

p+1— di
r(p+1)

p—di
rp) is a rainbow path between ci and di

rp in G′.
Consider v ∈ Ci. The path (v k—ui

11
1—ui

22 · · ·ui
(`−2)(`−2)

`−2— ui
(`−1)(`−1)

`−1— z) is a rainbow
path between v and z in G′ (see item 3, 6, and 7 of Definition 16). For r ∈ [`− 1] \ {1}
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and p ∈ [k] the path (v k—ui
11

1—ui
22 · · · ui

(r−1)(r−1)
r−1— ui

rp) is a rainbow path between v
and ui

rp in G′ (see item 3 and 6 of Definition 16). Similarly, for r ∈ [`− 1] \ {1}, p ∈ [k]
the path (vp+r−1— di

1(p+r−1)
p+r−2— di

2(p+r−2) · · · d
i
(r−2)(p+2)

p+1— di
(r−1)(p+1)

p—di
rp) is a rainbow

path between v and di
rp in G′. For xij

r , where j ∈ [t]\{i} and r ∈ [`− 1] the path (v k—ui
11

1—ui
22 · · · ui

(r−1)(r−1)
r−1— ui

rr
r—xij

r ) is a rainbow path between v and xij
r in G′ (see item 3,

5, and 6 of Definition 16).
Consider a vertex ui

rp, where r ∈ [`− 1] and p ∈ [k]. Also, consider a vertex ui
sq, where

s ∈ [`− 1] \ {r} and q ∈ [k]. Without loss of generality we assume that r < s. The path
(ui

rp
p—ui

(r+1)(p+1)
p+1— · · ·ui

(s−1)(p+s−r−1)
p+s−r−1— ui

sq) is a rainbow path between ui
rp and

ui
sq in G′ (see item 6 of Definition 16). For a vertex di

sq, where s ∈ [` − 1] \ {r} and
q ∈ [k]. If r < s then path (di

sq
q—di

(s−1)(q+1) · · · d
i
(r+1)(q+s−r−1)

q+s−r−1— ui
rp) is a rainbow

path between ui
rp and di

sq in G′ (see item 6 of Definition 16). Otherwise, r > s and
the path (di

sq
q—ui

s(q+1)
q+1— ui

(s+1)(q+2)
q+2— ui

(s+2)(q+3) · · ·u
i
(r−1)(q+r−s)

q+r−s— ui
rp) is a rainbow

path between ui
rp and di

sq in G′ (see item 4 and 6 of Definition 16). For a vertex xij
s ∈ Xi,

where s ∈ [`−1]\{r} and j ∈ [t]\{i} the path (ui
rp

p—ui
(r+1)(p+1)

p+1— · · ·ui
s(p+s−r)

p+s−r— xij
s )

is a rainbow path between ui
rp and xij

s in G′ (see item 5 and 6 of Definition 16). The path
(ui

rp
p—ui

(r+1)(p+1)
p+1— · · ·ui

(`−1)(p+`−r−1)
p+`−r−1— z) is a rainbow path between ui

rp and z
in G′ (see item 6 and 7 of Definition 16).
Consider a vertex di

rp, where r ∈ [` − 1] and p ∈ [k]. Next, consider a vertex di
sq,

where s ∈ [` − 1] \ {r} and q ∈ [k]. Without loss of generality we assume r < s. The
path (di

rp
q+s−r−1— di

(r+1)(q+s−r−1) · · · d
i
(s−1)(q+1)

s—di
sq) is a rainbow path between di

rp and
di

sq in G′ (see item 6 of Definition 16). The path (di
rp

p+1— di
(r+1)(p+1) · · · d

i
(`−2)(p+`−r−2)

p+`−r−2— di
(`−1)(p+`−r)

p+`−r−1— z) is a rainbow path between di
sq and z in G′ (see item 6 and

7 of Definition 16). For xij
s , where s ∈ [`−1]\{r} and j ∈ [t]\{i} consider the following. If

r < s then the path (di
rp

p+1— di
(r+1)(p+1)

p+2— · · · di
(s−1)(p+s−r−1)

p+s−r— di
s(p+s−r)

p+s−r+1— xij
s )

is a rainbow path between di
pr and xij

s in G′ (see item 5 and 6 of Definition 16). Otherwise,
s < r and the path (di

rp
p—di

(r−1)(p+1)
p+1— di

(r−2)(p+2) · · · d
i
(s+1)(p+r−s−1)

p+r−s−1— di
s(p+r−s−1)

p+r−s— xij
s ) is a rainbow path between di

pr and xij
s in G′ (see item 5 and 6 of Definition 16).

Consider a vertex xij
r , where j ∈ [t] \ {i} and r ∈ [` − 1]. For all x ∈ {xij

s | s ∈
[` − 1]}, by the construction of G′ and cR we have a rainbow path between xij

r and
xij

s (see item 2 in the Definition 16). For a vertex xij′

r , where j′ ∈ [t] \ {i, j} by
construction of cR the path (xij

r , u
i
r1, u

i
r2, x

ij′

r ) is a rainbow path between xij
r and xij′

r

(see item 5 and 9 of Definition 16). Next, consider a vertex xij′

s where j′ ∈ [t] \ {i, j}
and s ∈ [` − 1] \ {r}. Without loss of generality we assume that r < s. The path
(xij

r
r—ui

r(r+1)
r+1— ui

(r+1)(r+2) · · ·u
i
s(r+1+s−r)

r+1+s−r— xij′

s ) is a rainbow path between xij
r and

xij
s (see item 5 and 6 of Definition 16). The path (xij

r
r—ui

r(r+1)
r+1— ui

(r+1)(r+2) · · ·u
i
(`−1)`

`—z)
is a rainbow path between xij

r and z (see item 5, 6, and 7 of Definition 16).
J

I Lemma 20. Let G be a yes instance of k-Coloring, and c be one of its solution.
Furthermore, let cR : E(G′) → [k] be the coloring given by Definition 16 for the coloring
c of G. For all i, j ∈ [t] where i 6= j, u ∈ V (Ci) ∪ {xij′

r | j′ ∈ [t] \ {i}, r ∈ [` − 1]} and
v ∈ Cj ∪ {xji′

r | i′ ∈ [t] \ {j}, r ∈ [`− 1]} there is a rainbow path between u and v in G′.

Proof. For i ∈ [t], let Ui = ∪r∈[`−1]U
i
r, Di = ∪r∈[`−1]D

i
r, and Xi = {xij

r | j ∈ [t] \ {i}, r ∈
[`− 1]}. For i, j ∈ [t], where i 6= j we consider the pairs in the following sets.
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A1 = {(ci, v) | v ∈ {cj} ∪ Cj ∪ Uj ∪Dj ∪Xj}.
A2 = {(u, v) | u ∈ Ci, v ∈ Cj ∪ Uj ∪Dj ∪Xj}.
A3 = {(u, v) | u ∈ Ui, v ∈ Uj ∪Dj ∪Xj}.
A3 = {(u, v) | u ∈ Di, v ∈ Dj ∪Xj}.
A3 = {(u, v) | u ∈ Xi, v ∈ Xj}.

Although, ∪r∈[5]Ar does not contain all the pairs in (V (Ci) ∪ Xi) × V (Cj ∪ Xj), but it is
enough to argue about pairs of vertices in ∪r∈[5]Ar. This follows from the fact that for all the
missing pairs in ∪r∈[5]Ar, we can obtain rainbow path by a symmetric argument (swapping
roles of i and j). Next, we proceed to prove that we have a rainbow path between every pair
of vertices in ∪r∈[5]Ar.

Recall that by construction of cR (and G′) we have a rainbow path between ci and
cj (see item 1 and 2 of Definition 16). For v ∈ Cj the path (ci

k−1— v∗k−1
k—ui

11
1—ui

22 · · ·
ui

(`−1)(`−1)
`−1— z `—dj

(`−1)(`+1)
`+1— dj

(`−2)(`+2) · · · d
j
2(2`−2)

2`−2— dj
1(2`−1)

2`−1— v) is a rainbow path
between ci and v in G′ (see item 1, 3, 6, and 7 of Definition 16). For uj

rp, where
r ∈ [`− 1] and p ∈ [k] the path (ci

k−1— v∗k−1
k—ui

11
1—ui

22 · · ·ui
(`−2)(`−2)

`−2— ui
(`−1)(`−1)

`−1— z `—
dj

(`−1)(`+1)
`+1— dj

(`−2)(`+2) · · · d
j
(r+1)(2`−r−1)

2`−r−1— dj
r(2`−r)

2`−r— uj
rp) is a rainbow path between

ci and uj
rp in G′ (see item 1, 3, 4, 6 and 7 of Definition 16). For dj

rp, where r ∈
[` − 1] and p ∈ [k] the path (ci

k−1— v∗k−1
k—ui

11
1—ui

22 · · ·ui
(`−2)(`−2)

`−2— ui
(`−1)(`−1)

`−1— z `—
dj

(`−1)(`+1)
`+1— dj

(`−2)(`+2) · · · d
j
(r+1)(2`−r−1)

2`−r−1— dj
rp) is a rainbow path between ci and

dj
rp in G′ (see item 1, 3, 6, and 7 of Definition 16). For xji

r , where r ∈ [` − 1] by
construction of cR and G′ we have rainbow path between ci and xji (see item 1 and 2
of Definition 16). For xji′

r , where i′ ∈ [t] \ {i, j} and r ∈ [` − 1] consider the path (ci
k−1— v∗k−1

k— ui
11

1— ui
22 · · · ui

(`−2)(`−2)
`−2— ui

(`−1)(`−1)
`−1— z `— dj

(`−1)(`+1)
`+1— dj

(`−2)(`+2) · · ·
dj

(r+1)(2`−r−1)
2`−r−1— dj

r(2`−r−1)
2`−r— xji′

r ) is a rainbow path between ci and xji′

r in G′ (see
item 1, 3, and 5-7 of Definiton 16).
Consider u ∈ Ci. For v ∈ Cj the path (u k—ui

11
1—ui

22 · · ·ui
(`−2)(`−2)

`−2— ui
(`−1)(`−1)

`−1— z `—
dj

(`−1)(`+1)
`+1— dj

(`−2)(`+2) · · · d
j
2(2`−2)

2`−2— dj
1(2`−1)

2`−1— v) is a rainbow path between u and
v in G′ (see item 3, 6, and 7 of Definition 16). For uj

rp, where r ∈ [` − 1] and p ∈
[k] the path (u k—ui

11
1—ui

22 · · ·ui
(`−2)(`−2)

`−2— ui
(`−1)(`−1)

`−1— z `— dj
(`−1)(`+1)

`+1— dj
(`−2)(`+2) · · ·

dj
(r+1)(2`−r−1)

2`−r−1— dj
r(2`−r)

2`−r— uj
rp) is a rainbow path between u and uj

rp in G′ (see item
3, 4, 6, and 7 of Definition 16). For dj

rp, where r ∈ [` − 1] and p ∈ [k] the path
(u k—ui

11
1—ui

22 · · ·ui
(`−1)(`−1)

`−1— z `— dj
(`−1)(`+1)

`+1— dj
(`−2)(`+2) · · · d

j
(r+1)(2`−r−1)

2`−r−1— dj
rp)

is a rainbow path between u and dj
rp in G′ (see item 3, 6, and 7 of Definition 16). For

xji′

r , where i′ ∈ [t] \ {j} and r ∈ [` − 1] consider the path (u k—ui
11

1—ui
22 · · ·ui

(`−1)(`−1)
`−1— z `— dj

(`−1)(`+1)
`+1— dj

(`−2)(`+2) · · · d
j
(r+1)(2`−r−1)

2`−r−1— dj
r(2`−r−1)

2`−r— xji′

r ) is a rainbow
path between u and xji′

r in G′ (see item 3, 5, 6, and 7 of Definiton 16).
Consider ui

rp where r ∈ [` − 1] and p ∈ [k]. For uj
sq where s ∈ [` − 1] and q ∈ [k] the

path (ui
rp

p—ui
(r+1)(p+1)

r+1— ui
(r+2)(p+2) · · ·u

i
(`−2)(p+`−2−r)

p+`−2−r— ui
(`−1)(p+`−1−r)

p+`−1−r— z
p+`−r— dj

(`−1)(p+`+1−r)
p+`+1−r— dj

(`−2)(p+`+2−r) · · · d
j
(s+1)(p+2`−r−s−1)

p+2`−r−s−1— dj
s(p+2`−r−s)

p+2`−r−s— uj
sq) is a rainbow path between ui

rp and uj
sq in G′ (see item 4, 6, and 7 of Defini-

tion 16). For dj
sq, where s ∈ [`−1] and q ∈ [k] the path (ui

rp
p—ui

(r+1)(p+1)
r+1— ui

(r+2)(p+2) · · ·
ui

(`−1)(p+`−1−r)
p+`−1−r— z

p+`−r— dj
(`−1)(p+`+1−r) · · · d

j
(s+1)(p+2`−r−s−1)

p+2`−r−s−1— dj
sq) is a
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rainbow path between ui
rp and dj

sq in G′ (see item 4, 6 and 7 of Definition 16). For
xji′

s , where i′ ∈ [t] \ {j} and s ∈ [` − 1] the path (ui
rp

p—ui
(r+1)(p+1)

r+1— ui
(r+2)(p+2) · · ·

ui
(`−1)(p+`−1−r)

p+`−1−r— z
p+`−r— dj

(`−1)(p+`+1−r) · · · d
j
(s+1)(p+2`−r−s−1)

p+2`−r−s−1— dj
s(p+2`−r

−s−1)
p+2`−r−s— xji′

s ) is a rainbow path between ui
rq and xji′

s in G′ (see item 4 to 7 of
Definition 16).
Consider a vertex di

rp, where r ∈ [` − 1] and p ∈ [k]. For dj
sq, where s ∈ [` − 1]

and q ∈ [k] the path (di
rp

p—ui
r(p+1)

p+1— ui
(r+1)(p+2)

p+2— ui
(r+2)(p+3) · · · u

i
(`−1)(p+`−r)

p+`−r— z
p+`+1−r— dj

(`−1)(p+`+2−r)
p+`+2−r— dj

(`−2)(p+`+3−r) · · · d
j
(s+1)(p+2`−r−s)

p+2`−r−s— dj
sq) is a rain-

bow path between di
rp and uj

sq in G′ (see item 4, 6, and 7 of Definition 16). For xji′

s

where i′ ∈ [t] \ {j} and s ∈ [`− 1] the path (di
rp

p—ui
r(p+1)

p+1— ui
(r+1)(p+2)

p+2— ui
(r+2)(p+3) · · ·

ui
(`−1)(p+`−r)

p+`−r— z
p+`+1−r— dj

(`−1)(p+`+2−r)
p+`+2−r— dj

(`−2)(p+`+3−r) · · · d
j
(s+1)(p+2`−r−s)

p+2`−r−s— dj
s(p+2`−r−s)

p+2`−r−s+1— xji′

s ) is a rainbow path between di
rp and xji′

s in G′ (see
item 4, 6, and 7 of Definition 16).
For xij

r and xji′

s where i′ ∈ [t]\{j} and r, s ∈ [`−1] the path xij
r

r−1— di
r(r−2)

r−2— ui
rr

r—ui
(r+1)(r+1)

· · ·ui
(`−1)(`−1)

`−1— z `—dj
(`−1)(`+1)

`+1— dj
(`−2)(`+2) · · · d

j
(s+1)(2`−s−1)

2`−s−1— dj
s(2`−s−1)

2`−s— xji′

s is a
rainbow path between xij

r and xji′

s in G′ (see item 4 to 7 of Definition 16).

J

We now establish equivalence between the instance G of Rainbow k-Coloring and the
instance G′ of Rainbow 3-Coloring.

I Lemma 21. G′ is a yes instance of k-Coloring if and only if G′ is a yes instance of
Rainbow k-Coloring.

Proof. In the forward direction, let G be a yes instance of k-Coloring, and c : V (G)→ [k]
be one of its solution. Let cR : E(G′)→ [k] be the coloring given by Definition 16 with the
given coloring c of G. From Lemma 19 and 20 it follows that cR is a solution to Rainbow
k-Coloring in G′.

In the reverse direction, let G′ be a yes instance of Rainbow k-Coloring, and cR :
E(G′)→ [k] be one of its solution. We create coloring c : V (G)→ [k] as follows. For i ∈ [t]
and v ∈ Ci, we let c(v) = cR(ci, v). We show that c is a valid solution to k-Coloring
in G. Consider (u, v) ∈ E(G), where u ∈ Ci and v ∈ Cj . Note that we have i 6= j.
Let P be a rainbow path between ci and cj in G′. Observe that P can have at most k
edges. By Lemma 18 we know that P = (ci, u, x

ij
1 , · · · , x

ij
`−1, x

ji
`−1, · · · , x

ji
1 , v, cj) therefore,

by construction of c, we have that cR(ci, u) = c(u) 6= c(v) = cR(ci, v). This concludes the
proof. J

I Theorem 22. Rainbow k-Coloring does not admit an algorithm running in time
2o(|E(G)|)nO(1), unless ETH fails. Here, n is the number of vertices in the input graph, and k
is an odd number greater than 3.

Proof. Follows from construction of an instance G′ of Rainbow k-Coloring with |E(G′)| ∈
O(|V (G)|) for a given instance G of k-Coloring with maximum degree bounded by 2(k−1),
Lemma 21, and existence of no algorithm running in time 2o(n)nO(1) for k-Coloring on
graphs of maximum degree 2(k − 1) (assuming ETH). J
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5 FPT Algorithm for Subset Rainbow k-Coloring

In this section, we design an FPT algorithm running in time O(2|S|nO(1)) for Subset
Rainbow k-Coloring, when parameterized by |S|. Our algorithm is based on the technique
of color coding, which was first introduced by Alon et al. [2]. We first describe a randomized
algorithm for Subset Rainbow k-Coloring, which we derandomize using splitters.

The intuition behind the algorithm is as follows. Let (G,S) be an instance of Subset
Rainbow k-Coloring on n vertices and m edges. For a solution cR : E(G) → [k], to
Subset Rainbow k-Coloring in (G,S) the following holds. For each (u, v) ∈ S, there
exist a path P from u to v in G with at most k edges such that for all e, e′ ∈ E(P ), where
e 6= e′ we have cR(e) 6= cR(e′). Therefore, at most k|S| edges in G seems to be “important”
for us, i.e. if we color at most k|S| edges “nicely” then we would obtain the desired soultion.
To capture this, we start by randomly coloring edges in G, hoping that with sufficiently
high probability we obtain a coloring that colors the desired set of edges “nicely”. Once we
have obtained such a “nice” coloring, we employ the algorithm of Kowalik and Lauri [21] to
check if there is a rainbow path for each (u, v) ∈ S. We note that we use the algorithm given
by [21] instead of the one in [31] because the latter requires exponential space.

Algorithm Rand-SRC. Let c : E(G)→ [k] be a coloring of E(G), where each edge is colored
with one of the colors in [k] uniformly and independently at random. If for each (u, v) ∈ S,
there is rainbow path between u and v in G′ with edge coloring c then the algorithm return
c as a solution to Subset Rainbow k-Coloring in (G,S). Otherwise, it returns no. We
note that for a given graph G with edge coloring c, and vertices u and v, in time 2knO(1)

time we can check if there is a rainbow path between u and v in G′ by using the algorithm
given by Corollary 5 in [21]. This completes the description of the algorithm.

We now proceed to show how we can obtain an algorithm with constant success probability.

I Theorem 23. There is an algorithm that, given an instance (G,S) of Subset Rainbow
k-Coloring, in time 2O(|S|k log k)nO(1) either returns no or outputs a solution to Subset
Rainbow k-Coloring in (G,S). Moreover, if the input is a yes instance of Subset
Rainbow k-Coloring, then it returns a solution with constant probability.

Proof. We start by showing that Rand-SRC runs in time 2knO(1), and given a yes instance of
Subset Rainbow k-Coloring, outputs a solution with probability at least 2−O(|S|k log k).
Clearly, by repeating Rand-SRC 2O(|S|k log k) times, we obtain the desired success probability
and running time.

The algorithm Rand-SRC starts by coloring edges in G′ uniformly and independently at
random to obtain a coloring c : E(G′)→ [k]. This step can be executed in time O(m). Then,
for each pair (u, v) ∈ S, in time 2knO(1) it checks if there is a rainbow path between u and v
in G for the edge coloring c. If for every pair in S it find a rainbow path between them, it
correctly outputs a solution. The correctness and the running time bound of this step relies
on the correctness of Corollary 5 of [21]. Otherwise, Rand-SRC outputs no. Therefore, we
have the desired running time bound.

Towards proving the desired success probability, assume that (G,S) is a yes instance
of Subset Rainbow k-Coloring, and cR be one of its solution. Moreover, for a pair
(u, v) ∈ S let Puv be a rainbow path in G. Here, if there are many such paths then we
arbitrarily choose one of them. Note that for each (u, v) ∈ S we have |E(P )| ≤ k. Consider
the set ER = ∪(u,v)∈SE(Puv). We now show that the probability with which c|ER

= cR|ER

is at least 2−O(|S|k log k). Notice that there are k|E(G)| many distinct colourings of edges in
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G. Moreover, at least k|E(G)|−k|S| of these colorings satisfy the desired property (agree with
cR on edges in ER). Thus, we obtain the desired success probability bound. J

We start by defining some terminologies which will be useful in derandomization of our
algorithm (see [12, 29]). An (n, p, `)-splitter F , is a family of functions from [n] to ` such
that for every S ⊆ [n] of size at most p there is a function f ∈ F such that f splits S evenly.
That is, for all i, j ∈ [`], |f−1(i)| and |f−1(j)| differs by at most 1. Observe that when
` ≥ p then for any S ⊆ [n] of size at most p and a function f ∈ F that splits S, we have
|f−1(i) ∩ S| ≤ 1, for all i ∈ [`]. An (n, `, `)-splitter is called as an (n, `)-perfect hash family.
Moreover, for any ` ≥ 1, we can construct an (n, `)-perfect hash family of size e``O(log `) logn
in time e``O(log `)n logn [29].

We next move to the description of derandomization of the algorithm presented in The-
orem 23. For the sake of simplicity in explanation, we associate each e ∈ E(G) with a unique
integer, say ie in [m], and whenever we refer to e as an integer, we actually refer to the integer
ie. We start by computing an (m, k|S|)-perfect hash family F of size ek|S|(k|S|)O(log k|S|) logm
in time ek|S|(k|S|)O(log k|S|)

m logm using the algorithm of Naor et al. in [29]. We will cre-
ate a family of function F ′ from [m] to [k] of size ek|S|(k|S|)O(log k|S|)

kk|S| logm. Towards
this, consider an f ∈ F and a partition P = {P1, P2, · · ·Pk′} of [k|S|] into k′ sets, where
k′ ≤ k. We let fP to be the function obtained from f as follows. For each i ∈ [k′] we have
f−1
P (i) = ∪x∈Pif

−1(x). For every such pair f and P, we add the function fP to the set F ′.
We will call such an F ′ as (m, k|S|, k)-unified perfect hash family. Observe that F ′ has size
at most ek|S|(k|S|)O(log k|S|)

kk|S| logm. We now describe the derandomized algorithm SRC,
which is a result of derandomization of Rand-SRC.

Algorithm SRC. Given an instance (G,S) of Subset Rainbow k-Coloring, the algorithm
start by computing an (m, k|S|, k)-unified perfect hash family F ′. If there exists c : E(G)→
[k], where c ∈ F ′ such that for each (u, v) ∈ S, there is rainbow path between u and v in G′
with the edge coloring c then we return c as a solution to Subset Rainbow k-Coloring in
(G,S). Otherwise, we return that (G,S) is a no instance of Subset Rainbow k-Coloring.
We note that for a given graph G with edge coloring c, and vertices u and v, in time 2knO(1)

time we can check if there is a rainbow path between u and v in G′ by using the algorithm
given by Corollary 5 in [21]. This completes the description of the algorithm.

I Theorem 24. Given an instance (G, k) of Subset Rainbow k-Coloring, the algorithm
SRC either correctly reports that (G, k) is a no instance of Subset Rainbow k-Coloring
or returns a solution to Subset Rainbow k-Coloring in (G,S). Moreover, SRC runs in
time 2O(|S|)nO(1), for every fixed k. Here, n = |V (G)|.

Proof. Suppose (G, k) is a yes instance of Subset Rainbow k-Coloring, and let cF :
E(G) → [k] be one of its solution. For (u, v) ∈ S, let Puv be a rainbow path in G′.
Furthermore, let ER = ∪(u,v)∈SE(Puv). If |ER| < k|S|, we arbitrarily add edges in G to ER to
make its size exactly k|S|. Since |ER| ≤ k|S|, there exists f ∈ F that splits EF . Moreover, for
each i ∈ [k|S|], we have |f−1(i)∩EF | ≤ 1. For i ∈ [k], let Pi = {f(e) | e ∈ EF and cF (e) = i},
and P ′ = {Pi | i ∈ [k]}. Notice that P = P ′ \ {∅} is a partition of [k|S|] into at most k
parts. Therefore, the function fP ∈ F ′. Moreover, fP |EF

= cF |EF
. The algorithm SRC

checks for each c ∈ F ′ whether c is a solution to Subset Rainbow k-Coloring in (G,S).
In particular, it checks if fP is a solution to Subset Rainbow k-Coloring in (G,S).
The correctness of this checking is given by Corollary 5 of [21]. Therefore, SRC correctly
concludes that (G,S) is a yes instance of Subset Rainbow k-Coloring, and outputs a
correct solution.
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Given an instance (G, k) of Subset Rainbow k-Coloring, whenever it returns a
solution then indeed (G, k) is a yes instance of Subset Rainbow k-Coloring. This is
implied from Corollary 5 of [21].

Next, we move to the runtime analysis. The algorithm starts by computing an (m, k|S|, k)-
unified perfect hash family F ′ of size ek|S|(k|S|)O(log k|S|)

kk|S| logm in time ek|S|(k|S|)O(log k|S|)

kk|S| m logm. Then, for each c ∈ F ′ it checks if for all (u, v) ∈ S, there is a rainbow path
between then in G with edge coloring c in time 2knO(1). If it finds such a c then returns it as
a solution. Otherwise, correctly reports no. Therefore, the running time of the algorithm is
bounded by 2O(S)nO(1), for every fixed k. Here, we rely on the fact that log |S| ∈ o(

√
|S|). J

I Corollary 25. Steiner Rainbow k-Coloring admits an algorithm running in time
2O(|S|2)nO(1).

Proof. Follows from Theorem 24. J

6 Conclusion

In this paper, we proved that for all k ≥ 3, Rainbow k-Coloring does not admit an
algorithm running in time 2o(|E(G)|)nO(1), unless ETH fails. This (partially) resolves the
conjecture of Kowalik et al. [22], which states that for every k ≥ 2, Rainbow k-Coloring
does not admit an algorithm running in time 2o(|E(G)|)nO(1). It would be an interesting
direction to study whether or not Rainbow k-Coloring admits an algorithm running
in time 2o(|E(G)|)nO(1), for k = 2. We also studied the problem Steiner Rainbow k-
Coloring, and proved that for every k ≥ 3 the problem does not admit an algorithm
running in time 2o(|S|2)nO(1), unless ETH fails. We complemented this by designing an
algorithm for Subset Rainbow k-Coloring running in time 2O(|S|)nO(1), which implies
an algorithm running in time 2O(|S|2)nO(1) for Steiner Rainbow k-Coloring. It would
be interesting to study whether or not Steiner Rainbow k-Coloring admits an algorithm
running in time 2o(|S|2)nO(1), for k = 2. Kowalik et al. [22] also conjectured that for every
k ≥ 2, Rainbow k-Coloring does not admit an algorithm running in time 2o(n2)nO(1),
which is another interesting direction of research.

Acknowledgements: The author is thankful to Saket Saurabh for helpful discussions.
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