## Fine Grained Algorithms \& Complexity

CS6100
Topics in Design \& Analysis of Algorithms

Different computers, Sifferent running times?

## Computation Model



## Computation Model

## Palindrome Problem



## Computation Model

## Palindrome Problem



How do we test if the given string is a palindrome?

## Computation Model

## Model 1: Single Tape Turing Machine

Palindrome Problem


## Computation Model

## Model 1: Single Tape Turing Machine

Palindrome Problem


## Computation Model

## Model 1: Single Tape Turing Machine

Palindrome Problem


## Computation Model

## Model 1: Single Tape Turing Machine

Palindrome Problem


## Computation Model

## Model 1: Single Tape Turing Machine

Palindrome Problem


## Computation Model

## Model 1: Single Tape Turing Machine

## Palindrome Problem



## Computation Model

## Model 1: Single Tape Turing Machine

## Palindrome Problem



## Computation Model

## Model 1: Single Tape Turing Machine

## Palindrome Problem



## Computation Model

## Model 1: Single Tape Turing Machine

## Palindrome Problem



## Computation Model

## Model 1: Single Tape Turing Machine

## Palindrome Problem



## Computation Model

## Model 1: Single Tape Turing Machine

## Palindrome Problem



## Computation Model

## Model 1: Single Tape Turing Machine

Palindrome Problem


## Computation Model

## Model 1: Single Tape Turing Machine

## Palindrome Problem



## Computation Model

## Model 1: Single Tape Turing Machine

## Palindrome Problem



## Computation Model

## Model 1: Single Tape Turing Machine

## Palindrome Problem



## Computation Model

## Model 1: Single Tape Turing Machine

## Palindrome Problem



## Computation Model

## Model 1: Single Tape Turing Machine

## Palindrome Problem



## Computation Model

## Model 1: Single Tape Turing Machine

Palindrome Problem


## Computation Model

## Model 1: Single Tape Turing Machine

Palindrome Problem


Computation Model

## Model 1: Single Tape Turing Machine

## $O\left(n^{2}\right)$ time

Palindrome Problem


## Computation Model

## Model 2: Two Tape Turing Machine:

Palindrome Problem


## Computation Model

## Model 2: Two Tape Turing Machine:

Palindrome Problem

Input Tape | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | \# | $\mathbf{b}$ | $\mathbf{b}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



## Computation Model

## Model 2: Two Tape Turing Machine:

Palindrome Problem


## Computation Model

## Model 2: Two Tape Turing Machine:

Palindrome Problem


## Computation Model

## Model 2: Two Tape Turing Machine:

Palindrome Problem


## Computation Model

## Model 2: Two Tape Turing Machine:

Palindrome Problem

Input Tape | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | \# | $\mathbf{b}$ | $\mathbf{b}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



## Computation Model

## Model 2: Two Tape Turing Machine:

## $O(n)$ time

Palindrome Problem


## Computation Model

## Our Computation Model



## Computation Model

## Our Computation Model



## Computation Model

## Our Computation Model



## Computation Model

## Our Computation Model: Word RAM Model

$\checkmark$ Basic operations on words take constant time.

## Computation Model

## Our Computation Model: Word RAM Model

$\checkmark$ Basic operations on words take constant time.
$\checkmark$ All the basic elements in the input can be represented in a word.

## Computation Model

## Our Computation Model: Word RAM Model

$\checkmark$ Basic operations on words take constant time.
$\checkmark$ All the basic elements in the input can be represented in a word.
$\checkmark$ Read/write operation of a word takes constant time.

## ALGORITHMIC RESEARCH?

Hard Problems

## Polynomial

time solvable

## ALGORITHMIC RESEARCH?

Hard Problems

## Ros. Why?




```
ALGORITHMIC
```

Hard Problems


Polynomial
time solvable
???

## ALGORITHMIC RESEARCH?

## Nolfs

 or ButsWe can concretely prove statements
like: there is no algorithm for our problem running in time "better" than $O(n \log n)$

## ALGORITHMIC RESEARCH?

$\checkmark$ Finding the maximum of $n$ numbers require n-1 comparisons

- The best comparison based sorting algorithm must use $\Omega(n \log n)$ time.

And a few more...

```
ALGORITHMIC RESEARCH?
```

Seems difficult

## Hard Problems



## Polynomial

time solvable
???

## ALGORITHMIC RESEARCH?

We strongly believe that for some complicated problem, obtaining "better" algorithms are not possible

For the problem at hand, if we obtain a "better" algorithm, then the complicated problem has a better algorithm.


ALGORITHMIC RESEARCH?

## Hard Problems



Polynomial
time solvable
???

ALGORITHMIC RESEARCH?

## Hard Problems



## Polynomial

time solvable

ALGORITHMIC RESEARCH?

## Hard Problems



## Polynomial

time solvable
???

```
ALGORITHMIC
RESEARCH?
```

$\Omega_{0}$ problem in P?


Hard Problems
Any favourite
problem in $P$ ?
$P \neq N P$
PH
ETH

SETH

## Polynomial

time solvable
???

## ALGORITHMIC RESEARCH?

## Hard Problems



## Polynomial

time solvable

Following the league...

## Mimicking Approach for NP-Hardness Results

## Consider a problem P

$\uparrow P$ admits an algorithm running in time $n^{k}$, where $k$ is some constant.
$\checkmark$ Despite of lot of work no significantly better algorithm for $P$ has been obtained.

Here, by significantly better algorithm we mean an algorithm running in time $n^{k-e}$, where e>0.

## Mimicking Approach for NP-Hardness Results

## Consider a problem P

$\uparrow P$ admits an algorithm running in time $n^{k}$, where $k$ is some constant.
$\checkmark$ Despite of lot of work no significantly better algorithm for $P$ has been obtained. $\mathrm{n}^{k-e}$, where e>0.

## Mimicking Approach for NP-Hardness Results

## Consider a problem P

$\uparrow P$ admits an algorithm running in time $n^{k}$, where $k$ is some constant.
$\checkmark$ Despite of lot of work no significantly better algorithm for $P$ has been obtained.

Better algorithm for $Q$ Better algorithm for $P$

New problem $Q$

## Mimicking Approach for NP-Hardness Results

## Consider a problem P

$\uparrow P$ admits an algorithm running in time $n^{k}$, where $k$ is some constant.
$\checkmark$ Despite of lot of work no significantly better algorithm for $P$ has been obtained.


Fine grained Reduction

## Focus of Recent Works

$\checkmark$ Mimicking the approach towards showing hardness results: Identifying hard problems.
$\checkmark$ Basing the hardness results on some reasonable Complexity Theoretic Conjectures.

ALGORITHMIC RESEARCH?

## Hard Problems



## Polynomial

time solvable

```
ALGORITHMIC
RESEARCH?
```

Hard Problems



ETH SETH

## Polynomial

time solvable

## Some Problems in P with no improvements

## Graph Algorithms:

$\checkmark$ Finding a centre of a graph.
Centre: $\quad \arg \min _{v \in V(G)} \max _{u \in V(G)} \operatorname{dist}(u, v)$


## Input: Graph G

## Some Problems in $P$ with no improvements

## Graph Algorithms:

$\checkmark$ Finding a centre of a graph.
Centre: $\quad \arg \min _{v \in V(G)} \max _{u \in V(G)} \operatorname{dist}(u, v)$


Input: Graph G


## Some Problems in $P$ with no improvements

## Graph Algorithms:

- Finding a centre of a graph.
- Can be computed using Floyd-Warshall's algorithm for computing all pair shortest path.
$-O\left(n^{3}\right)$ time

No better algorithm known.

## Some Problems in $P$ with no improvements

## Computational Biology:

$\uparrow$ Longest Common Subsequence.

$$
\begin{aligned}
& a \mathrm{a} b \text { ccdewfgh } \\
& x y a c b p c a e h b
\end{aligned}
$$

## Some Problems in P with no improvements

## Computational Biology:

$\uparrow$ Longest Common Subsequence.

$$
\begin{aligned}
& a a b c c d e w f g h \\
& x y a c b p c a e h b
\end{aligned}
$$

$a b c e h$

## Some Problems in $P$ with no improvements

## Computational Biology:

$\downarrow$ Longest Common Subsequence.

■ Can be computed using a classical dynamic programming based algorithm. $-O\left(n^{2}\right)$ time No (significantly) better algorithm known.

## Some Problems in $P$ with no improvements

## Computational Geometry:

$\checkmark$ Points in general position.

> (no three point collinear)

## Some Problems in P with no improvements

## Computational Geometry:

$\checkmark$ Points in general position.

> (no three point collinear)


## Some Problems in P with no improvements

## Computational Geometry:

$\checkmark$ Points in general position.

# (no three point collinear) 

Yes

## Some Problems in $P$ with no improvements

## Computational Geometry:

$\checkmark$ Points in general position.

V Can be computed using a classical algorithm.
-Ô( $n^{2}$ ) time

No (significantly) better algorithm known.

This course




Improvements using lookups


