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Computation Model

All the animated images used are the freely available ones from the results of Googles search engine.
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Palindrome Problem

How do we test if
the given string is

a palindrome?
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Our Computation Model

IS round, bu
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| building a house
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Computation Model
Our Computation Model: Word RAM Model

4 Basic operations on words take constant time.

4 All the basic elements in the input can be
represented in a word.

4 Read/write operation of a word takes constant time.



/

H

a

r

d
p
rob
le
m
S

-
fP
m
lv
coly
Vv
:a
bl
le

)




. Polynomial
time solvable

o




Hard Problems

Polynomial

ETH time solvable




. Polynomial
time solvable

0

o

/




Hard Problems

. Polynomial
time solvable

222

o

/




yoi |
¥ Py I‘J 2
b N
v R gos ] =3
o et .
. (i_" ' s L RE
fl. s - - l s I"
—- ‘. ..‘ .:'-‘ 0 u s ‘ e
- 1;\ : s. I .:‘Ib
A .'.,‘v-. &Y ™ "'.

| ~"We can concretely prove statements o
like: there is no algorithm for our
problem running in time "better” than

O(n log n)




4 Finding the maximum of n numbers require
n-1 comparisons

4 The best comparison based sorting algorithm must

use (n log n) time.

/ And a few
‘ more... '



Hard Problems

Polynomial
time solvable

222



strongly believe that for some _
~ complicated problem, obtaining “better” \

algorithms are not %ssible

For the problem at hand, if we obtain a
"better” algorithm, then the complicated
problem has a better algorithm.
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Hard Problems

Can we find all Polynomial

pair shortest path ETH time solvable
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Mimicking Approach for NP-Hardness Results

Consider a problem P

4 P admits an algorithm running in time nk,
where k is some constant.

4 Despite of lot of work no significantly better
algorithm for P has been obtained.

Here, by significantly better algorithm
we mean an algorithm running in time

nk-¢, where e>0.
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Mimicking Approach for NP-Hardness Results

Consider a problem P

4 P admits an algorithm running in time nk,
where k is some constant.

4 Despite of lot of work no significantly better
algorithm for P has been obtained.

Instance of Q <:I Instance of P

New problem Q

Fine grained Reduction

Evidence that problem Q does not
admit very fast algorithm as well.




Focus of Recent Works

4 Mimicking the approach towards showing hardness
results: Identifying hard problems.

4 Basing the hardness results on some reasonable
Complexity Theoretic Conjectures.



Hard Problems

Polynomial

ETH time solvable



Polynomial
time solvable




Some Problems in P with no improvements

Graph Algorithms:

4 Finding a centre of a graph.

Centre: arg min max dist(u,v)
veV(G)ueV(G)

o
Input: Graph G
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Centre: arg min max dist(u,v)
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Some Problems in P with no improvements
Graph Algorithms:

4 Finding a centre of a graph.

4 Can be computed using Floyd-Warshalls
algorithm for computing all pair shortest
path. -O(n3) time

No better algorithm known.
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Some Problems in P with no improvements
Computational Biology:

4 Longest Common Subsequence.

M Can be computed using a classical dynamic
programming based algorithm. -0O(n2) time

No (significantly) better algorithm known.
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Some Problems in P with no improvements
Computational Geometry:

4 Points in general position.

4 Can be computed using a classical algorithm.
-O(n2) time

No (significantly) better algorithm known.
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