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Different computers, 

different running times?



Computation Model

Why?

All the animated images used are the freely available ones from the results of Google’s search engine. 
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How do we test if 
the given string is 
a palindrome?
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Compare!

O(n) time
Model 2: Two Tape Turing Machine:
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computation 
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Our Computation Model
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Earth is round
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must be flat!
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Computation Model

Our Computation Model

Earth is round, but 
for the purpose of 
building a house 
you can assume it 

to be flat.
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Computation Model

Our Computation Model: Word RAM Model

Basic operations on words take constant time.

All the basic elements in the input can be 
represented in a word.

Read/write operation of a word takes constant time.
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We can concretely prove statements 
like: there is no algorithm for our 
problem running in time “better” than 
O(n log n)
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Cond
itiona

l Low
er Bo

unds?
ALGORITHMIC 
RESEARCH?

We strongly believe that for some 
complicated problem, obtaining “better” 
algorithms are not possible

For the problem at hand, if we obtain a 
“better” algorithm, then the complicated 

problem has a better algorithm.
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Polynomial 
time solvable

Hard Problems

???

P   NP≠

SETH

ETH

PH

Cond
itiona

l Low
er Bo

unds?

Any favourite 
problem in P?



ALGORITHMIC 
RESEARCH?

Polynomial 
time solvable

Hard Problems

???

Seems difficult

P   NP≠

SETH

ETH

PHCan we find all 
pair shortest path 
in O(n2.99)-time?

Cond
itiona

l Low
er Bo

unds?
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where k is some constant. 

Despite of lot of work no significantly better 
algorithm for P has been obtained.
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Mimicking Approach for NP-Hardness Results 

Consider a problem P

P admits an algorithm running in time nk, 
where k is some constant. 

Despite of lot of work no significantly better 
algorithm for P has been obtained.

Instance of Q Instance of P
Fine grained Reduction

Evidence that problem Q does not 
admit very fast algorithm as well.New problem Q



Focus of Recent Works

Mimicking the approach towards showing hardness 
results: Identifying hard problems.

Basing the hardness results on some reasonable 
Complexity Theoretic Conjectures.
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For P?
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itiona

l Low
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unds?
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arg min
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dist(u, v)Centre:



Some Problems in P with no improvements

Graph Algorithms:

Finding a centre of a graph.

Can be computed using Floyd-Warshall’s 
algorithm for computing all pair shortest 
path.                            -O(n3) time

No better algorithm known.
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Computational Biology:

Longest Common Subsequence.

a a b c c d e w f g h

x y a c b p c a e h b

a b c e h



Some Problems in P with no improvements

Computational Biology:

Longest Common Subsequence.

Can be computed using a classical dynamic 
programming based algorithm.  -O(n2) time

No (significantly) better algorithm known.
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Some Problems in P with no improvements

Computational Geometry:

Points in general position.

Input: Points in the plane Output: Yes/ No

Yes

(no three point collinear)



Some Problems in P with no improvements

Computational Geometry:

Points in general position.

Can be computed using a classical algorithm.              
                                           -Ô(n2) time

No (significantly) better algorithm known.



This course



Polynomial 
Method

Better 
algorithms 
for 3-SUM

Relating 
problems in P 
and beyond

Improvements 
using lookups

Famous 
conjectures 

from P

BMM and 
its 

applications

Decision 
Trees

Revise basics 
of algorithmic 

analysis

Revise theory 
of NP-

completeness

FFT based 
improvements

Understanding 
recent research 

paper(s)

Unconditional 
lower bounds



Unconditional 
lower bounds

Polynomial 
Method

Better 
algorithms 
for 3-SUM

Relating 
problems in P 
and beyond

Famous 
conjectures 

from P

Decision 
Trees

Revise theory 
of NP-

completeness

Thanks

BMM and 
its 

applications

Improvements 
using lookups

Revise basics 
of algorithmic 

analysis

Understanding 
recent research 

paper(s)

FFT based 
improvements


