

Fine Grained Algorithms & Complexity

CS6100 Topics in Design & Analysis of Algorithms

Akanksha Agrawal

Different computers,

different running times?

All the animated images used are the freely available ones from the results of Google's search engine.

Palindrome Problem

How do we test if the given string is a palindrome?

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 1: Single Tape Turing Machine

Model 2: Two Tape Turing Machine:

Our Computation Model

Our Computation Model: Word RAM Model

✦ Basic operations on words take constant time.
Computation Model

Our Computation Model: Word RAM Model

- Basic operations on words take constant time.
- All the basic elements in the input can be represented in a word.

Computation Model

Our Computation Model: Word RAM Model

- Basic operations on words take constant time.
- All the basic elements in the input can be represented in a word.

Read/write operation of a word takes constant time.

• The best comparison based sorting algorithm must use $\Omega(n \log n)$ time.

ETH

SETH

SETH

ETH

SETH

Following the league...

Consider a problem P

- P admits an algorithm running in time n^k,
 where k is some constant.
- Despite of lot of work no significantly better algorithm for P has been obtained.

Here, by significantly better algorithm we mean an algorithm running in time n^{k-e}, where e>0.

Consider a problem P

- P admits an algorithm running in time n^k,
 where k is some constant.
- Despite of lot of work no significantly better algorithm for P has been obtained.

New problem Q

Here, by significantly better algorithm we mean an algorithm running in time n^{k-e}, where e>0.

Consider a problem P

- P admits an algorithm running in time n^k,
 where k is some constant.
- Despite of lot of work no significantly better algorithm for P has been obtained.

Better algorithm for Q

Better algorithm for P

New problem Q

Consider a problem P

- P admits an algorithm running in time n^k,
 where k is some constant.
- Despite of lot of work no significantly better algorithm for P has been obtained.

admit very fast algorithm as well.

New problem Q

Focus of Recent Works

Mimicking the approach towards showing hardness results: Identifying hard problems.

Basing the hardness results on some reasonable
 Complexity Theoretic Conjectures.

SETH

Graph Algorithms:

✦ Finding a centre of a graph.

Centre: $\arg \min_{v \in V(G)} \max_{u \in V(G)} \operatorname{dist}(u, v)$

Graph Algorithms:

✦ Finding a centre of a graph.

Centre: $\arg \min_{v \in V(G)} \max_{u \in V(G)} \operatorname{dist}(u, v)$

Graph Algorithms:

- ✦ Finding a centre of a graph.
 - $\ensuremath{\overline{M}}$ Can be computed using Floyd-Warshall'salgorithm for computing all pair shortestpath. $-O(n^3)$ time

No better algorithm known.

Computational Biology:

Longest Common Subsequence.

a a b c c d e w f g h x y a c b p c a e h b

Computational Biology:

✦ Longest Common Subsequence.

a a b c c d e w f g h x y a c b p c a e h b a b c e h

Computational Biology:

Longest Common Subsequence.

 \checkmark Can be computed using a classical dynamic programming based algorithm. $-O(n^2)$ time

No (significantly) better algorithm known.

Computational Geometry:

✦ Points in general position.

(no three point collinear)

Input: Points in the plane

Output: Yes/ No

Computational Geometry:

✦ Points in general position.

(no three point collinear)

No

Input: Points in the plane

Output: Yes/ No

Computational Geometry:

Points in general position.

(no three point collinear)

Yes

Input: Points in the plane

Output: Yes/ No

Computational Geometry:

✦ Points in general position.

 \overrightarrow{O} Can be computed using a classical algorithm. - $\hat{O}(n^2)$ time

No (significantly) better algorithm known.

