
Fast Exact Algorithms for Survivable Network
Design with Uniform Requirements

Akanksha Agarwal1, Pranabendu Misra1, Fahad Panolan1, and Saket
Saurabh1,2

1 Department of Informatics, University of Bergen, Norway.
{Akanksha.Agrawal|Pranabendu.Misra|Fahad.Panolan}@uib.no

2 The Institute of Mathematical Sciences, HBNI, Chennai, India. saket@imsc.res.in

Abstract. We design exact algorithms for the following two problems
in survivable network design: (i) designing a minimum cost network with
a desired value of edge connectivity, which is called Minimum Weight
λ-connected Spanning Subgraph and (ii) augmenting a given net-
work to a desired value of edge connectivity at a minimum cost which is
called Minimum Weight λ-connectivity Augmentation. Many well
known problems such as Minimum Spanning Tree, Hamiltonian Cy-
cle, Minimum 2-Edge Connected Spanning Subgraph and Min-
imum Equivalent Digraph reduce to these problems in polynomial
time. It is easy to see that a minimum solution to these problems con-
tains at most 2λ(n−1) edges. Using this fact one can design a brute-force
algorithm which runs in time 2O(λn(logn+log λ). However no better algo-
rithms were known. In this paper, we give the first single exponential time
algorithm for these problems, i.e. running in time 2O(λn), for both undi-
rected and directed networks. Our results are obtained via well known
characterizations of λ-connected graphs, their connections to linear ma-
troids and the recently developed technique of dynamic programming
with representative sets.

1 Introduction

The survivable network design problem involves designing a cost effective com-
munication network that can survive equipment failures. The failure may be
caused by any number of things such as a hardware or software breakage, human
error or a broken link between two network components. Designing a network
which satisfies certain connectivity constraints, or augmenting a given network
to a certain connectivity are important and well studied problems in network
design. In terms of graph theory these problems correspond to finding a spanning
subgraph of a graph which satisfies given connectivity constraints and, augment-
ing the given graph with additional edges so that it satisfies the given constraints,
respectively. Designing a minimum cost network which connects all the nodes,
is the well-known Minimum Spanning Tree(MST) problem. However such a
network fails on the failure of a single link. This leads to the question of design-
ing a minimum cost network which can survive one or more link failures. Such a

network must be λ-connected, in order to survive λ− 1 link failures (we use the
term λ-connected to represent λ-edge connected). This problem is NP-hard (for
λ ≥ 2), and a 2-approximation algorithm is known [18]. In the special case when
the weights are 1 or ∞, i.e. we wish to find a minimum spanning λ-connected
subgraph, a 1+ 2

λ+1 approximation may be obtained in polynomial time [6]. The
above results also hold in the case of directed graphs. The case of λ = 1 for
digraphs, known as Minimum Strong Spanning Subgraph(MSSS), is NP-
hard as it is a generalization of the Hamiltonian Cycle. Further, the Minimum
Equivalent Graph(MEG) problem reduces to it in polynomial time.

Adding a minimum number of edges to make the graph satisfy certain con-
nectivity constrains is known as minimum augmentation problem. Minimum
augmentation find application in designing survivable networks [11, 15] and in
data security [13, 16]. Watanabe and Nakamura [25] gave a polynomial time algo-
rithm for solving the λ-edge connectivity augmentation in an undirected graph,
where we want to add minimum number of edges to the graph to make it λ-edge
connected. Frank gave a polynomial time algorithm for the same problem in
directed graphs [10]. However in the weighted case, or when the augmenting set
must be a subset of a given set of links, the problem becomes NP-Hard problem.
Even the restricted case of augmenting the edge connectivity of a graph from
λ − 1 to λ remains NP-hard [1]. A 2-approximation may be obtained for these
problems, by choosing a suitable weight function and applying the algorithm of
[18]. We refer to [1, 4, 17, 19] for more details, other related problems and further
applications. A few results are also known in the frameworks of parameterized
complexity and exact exponential time algorithms. Marx and Végh gave an FPT
algorithm for computing a minimum cost set of at most k links, which augments
the connectivity of an undirected graph from λ− 1 to λ [21]. Basavaraju et al.
[2] improved the running time of this algorithm and, also gave an algorithm for
another variant of this problem. Bang-Jensen and Gutin [1, Chapter 12] obtain
an FPT algorithm for a variant of MSSS in unweighted graphs. The first exact
algorithms for MEG and MSSS, running in time O(2O(m) · nO(1)), where m is
the number of edges in the graph, were given in by Moyles and Thompson [22] in
1969. Only recently, Fomin et al. [9] gave the first single-exponential algorithm
for MEG and MSSS, i.e. with a running time of 2O(n). For the special case of
Hamiltonian Cycle, a O(2n) time algorithm is known [14, 3] for digraphs from
1960s. It was recently improved to O(1.657n) for undirected graphs [5], and to
O(1.888n) for bipartite digraphs [8] (but these are randomized algorithms). For
other results and more details we refer to Chapter 12 of [1].

In this paper we consider the problem of designing an exact algorithm for
finding a minimum weight spanning subgraph of a given λ-connected (di)graph.

Minimum Weight λ-connected Spanning Subgraph
Input: A graph G (or digraph D), and a weight function w on the edges(or
the arcs).
Output: A minimum weight spanning λ-connected subgraph.

One can observe that such a subgraph contains at most λ(n − 1) edges
(2λ(n − 1) arcs for digraphs). Hence a solution can be obtained by enumer-
ating all possible subgraphs with at most these many edges and testing if it is
λ-connected. However such an algorithm will take 2O(λn(logn+log λ)) time. One
may try a more clever approach, by using the observation that we can enu-
merate all possible minimal λ-connected graphs in 2O(λn) time. Then we test
if any of these graph is isomorphic to a subgraph of the input graph. However,
subgraph isomorphism requires 2λn(logn+log λ) unless the Exponential Time Hy-
pothesis fails [7]. In this paper, we give the first single exponential algorithm
for this problem that runs in time 2O(λn). As a corollary, we also obtain single
exponential time algorithm for the minimum weight connectivity augmentation
problem.

Minimum Weight λ-connectivity Augmentation
Input: A graph G (or a digraph D), a set of links L ⊆ V ×V (ordered pairs
in case of digraphs), and a weight function w : L→ N.
Output: A minimum weight subset L′ of L such that G ∪ L (or D ∪ L) is
λ-connected

Our Methods and Results. We extend the algorithm of Fomin et al. for finding a
Minimum equivalent Graph [9], to solve Minimum weight λ- Connected
sub-digraph, exploiting the structural properties of λ-connected (di)graphs. A
digraph D is λ-connected if and only if for some r ∈ V (D), there is a collection
I of λ arc disjoint in-branchings rooted at r and a collection O of λ arc disjoint
out-branchings rooted at r. Then computing a I and a O with the largest pos-
sible intersection yields a minimum weight λ-connected spanning sub-digraph.
We show that the solution can be embedded in a linear matroid of rank O(λn),
and then compute the solution by a dynamic programming algorithm with rep-
resentative sets over this matroid.

Theorem 1. Let D be a λ-edge connected digraph on n vertices and w : A(D)→
N. Then we can find a minimum weight λ-edge connected subgraph of D in 2O(λn)

time.

For the case of undirected graphs, no equivalent characterization is known. How-
ever, we obtain a characterization by converting the graph to a digraph with
labels on the arcs, corresponding to the undirected edges. Then computing a
solution that minimizes the number of labels used, gives the following theorem.

Theorem 2. Let G be a λ-edge connected graph on n vertices and w : E(G)→
N. Then we can find a minimum weight λ-edge connected subgraph of G in 2O(λn)

time.

For the problem of augmenting a network to a given connectivity requirement,
at a minimum cost, we obtain the following results by applying the previous
theorems with suitably chosen weight functions.

Theorem 3. Let D be a digraph (or a graph) on n vertices, L ⊆ V (D)× V (D)
be a collection of links with weight function w : L → N. For any integer λ, we
can find a minimum weight L′ ⊆ L such that D′ = (V (D), A(D) ∪ L′) is λ-edge
connected, in time 2O(λn).

Due to space constraints, notations, standard definitions and other preliminar-
ies have been moved to the appendix. The definitions and notation related to
matriods and representative sets may also be found in [9].

2 Directed Graphs

In this section, we give a single exponential exact algorithm, that is of running
time 2O(λn), for computing a minimum weight spanning λ-connected subgraph of
a λ connected n-vertex digraph. We first consider the unweighted version of the
problem and it will be clear that the same algorithm works for weighted version
as well. In a digraph D, we define OutD(v) = {(v, w) ∈ A(D)} and InD(v) =
{(u, v) ∈ A(D)} to be the set of out-edges and in-edges of v respectively. We
begin with the following characterization of λ-connectivity in digraphs.

Lemma 1 (∗3). Let D be a digraph. Then D is λ-connected if and only if for
any r ∈ V (D), there is a collection of λ arc disjoint in-branchings rooted at r,
and a collection of λ arc disjoint out-branchings rooted at r.

Let D be the input to our algorithm, which is a λ-connected digraph on n
vertices. Let us fix a vertex r ∈ V (D). By Lemma 1, any minimal λ-connected
subgraph of D is a union of a collection I of λ arc disjoint in-branchings and a
collection O of λ arc disjoint out-branchings which are all rooted at vertex r.
The following lemma relates the size of such a minimal subgraph to the number
of arcs which appear in both I and O and it follows easily from Lemma 1. Here,
A(I) denotes the set of arcs which are present in some I ∈ I and A(O) denotes
the set of arcs which are present in some O ∈ O.

Lemma 2. Let D be a λ-connected digraph, r be a vertex in V (D) and ` ∈
[λ(n− 2)]. Then a subdigraph D′ with at most 2λ(n− 1)− ` arcs, is a minimal
λ-connected spanning subdigraph of D if and only if D′ is a union of a collection
I of arc disjoint in-branchings rooted at r, and a collection O of arc disjoint
out-branchings rooted at r such that |A(I) ∩ A(O)| ≥ ` (i.e. they have at least `
common arcs).

By Lemma 2, a minimum λ connected subgraph of D is I ∪ O, where O =
{O1, O2, . . . Oλ} is a collection of λ arc disjoint out-branchings rooted at r, I =
{I1, I2, . . . Iλ} is a collection of λ arc disjoint in-branchings rooted at r, and
A(O)∩A(I) is maximized. To explain the concept of the algorithm let us assume
that the number of arcs in a minimum λ connected spanning subdigraph D′ is
2λ(n − 1) − ` and let A(D′) = A(O) ∪ A(I), where O = {O1, O2, . . . Oλ} is a

3 Proof of the results marked (∗) will appear in the full version of the paper.

collection of λ arc disjoint out-branchings rooted at r and I = {I1, I2, . . . Iλ}
is a collection of λ arc disjoint in-branchings rooted at r. Note that |A(O) ∩
A(I)| = `. The first step of our algorithm is to construct the set A(O) ∩ A(I),
and then, given the intersection, we can construct O and I in polynomial time.
Observe that A(O) and A(I) can intersect in at most λ(n − 2) arcs. The main
idea is to enumerate a subset of potential candidates for the intersection, via
dynamic programming. But note that there could be as many as nO(λn) such
candidates, and enumerating them all will violate the claimed running time. So
we try a different approach. We first observe that the arcs in a solution, O ∪ I,
can be embedded into a linear matroid of rank O(λn). Then we prove that, it
is enough to keep a representative family of the partial solutions in the dynamic
programming table. Since, the size of the representative family is bounded by
2O(λn), our algorithm runs in the claimed running time.

Let us delve into the details of the algorithm. Let D−r be the digraph obtained
from D after removing the arcs in OutD(r). Similarly, let D+

r be the digraph
obtained from D after removing the arcs in InD(r). Observe that the arc sets of
D−r and D+

r can be partitioned as follows. A(D−r) =
⊎
v∈V (D−r) OutD−r (v) and

A(D+
r) =

⊎
v∈V (D+

r) InD+
r

(v). We construct a pair of matroids corresponding
to each of the λ in-branching in I and each of the λ out-branching in O. For
each in-branching Ii ∈ I, we have a matroid Mi

I,1 = (EiI,1, IiI,1) which is a

graphic matroid in D and EiI,1 is a copy of the arc set of D. And similarly,

for each out-branching Oi ∈ O, we have a matroid Mi
O,1 = (EiO,1, IiO,1) which

is a graphic matroid in D and EiO,1 is again a copy of the arc set of D. Note
that the rank of these graphic matroids is n − 1. Next, for each Ii, we define
matroid Mi

I,2 = (EiI,2, IiI,2) which is a partition matroid where EiI,2 is a copy

of the arc set of D−r and IiI,2 = {X | X ⊆ EiI,2, |X ∩ OutD−r (v)| ≤ 1, for all v ∈
V (D−r)} 4. Since OutD−r (r) = ∅ and |V (D−r)| = n, we have that the rank of

these partition matroids,Mi
I,2, i ∈ [λ], is n−1. Similarly, for each Oi, we define

Mi
O,2 = (EiO,2, IiO,2) as the partition matroid, where EiO,2 is a copy of the arc set

of D+
r and IiO,2 = {X | X ⊆ EiO,2, |X ∩ InD+

r
(v)| ≤ 1, for all v ∈ V (D+

r)} Since

InD+
r

(r) = ∅ and V (D+
r) = n, we have that the rank of these partition matroids,

Mi
O,2, i ∈ [λ], is n − 1. We define two uniform matroids MI and MO of rank

λ(n− 1), corresponding to I and O, on the ground sets EI and EO, respectively,
where Ei and EO are copies of the arc set of D. We define matroid M = (E, I)
as the direct sum of MI ,MO, Mi

I,j ,Mi
O,j , for i ∈ [λ] and j ∈ [2], That is,

M =
(⊕
i∈[λ],j∈[2]

(Mi
I,j ⊕Mi

O,j)
)
⊕MI ⊕MO

Since the rank of Mi
I,j ,Mi

O,j where i ∈ [λ] and j ∈ [2], are n − 1 each, and
rank of MI and MO is λ(n− 1), we have that the rank of M is 6λ(n− 1). We
briefly discuss the representation of these matroids. The matroids Mi

I,1, Mi
O,1

4 We slightly abuse notation for the sake of clarity, as strictly speaking X and
OutDr

G
(v) are disjoint, since they are subsets of two different copies of the arc set.

for i ∈ [λ] are graphic matroids, which are representable over any field of size at
least 2. The matroids Mi

I,2,Mi
O,1 are partition matroids with partition size 1,

and therefore they are representable over any field of at least 2 as well. Finally,
the two uniform matroids, MI and MO, are representable over any field with
at least |A(D)| + 1 elements. Hence, at the start of our algorithm, we choose a
representation of all these matroids over a field F of size at least |A(D)|+ 1. So
by Proposition 2, M is representable over any field of size at least |A(D)|+ 1.

For an arc e ∈ A(D) not incident to r there are 4λ + 2 copies of it in
M. Let eiJ,j denotes it’s copy in EiJ,j , where i ∈ [λ], j ∈ [2] and J ∈ {I,O}.
An arc incident to r has only 3λ + 2 copies in M. For an arc e ∈ InD(r) we
will denote its copies in EiI,1, E

i
O,1, E

i
I,2 by eiI,1, e

i
O,1, e

i
I,2, and similarly for an

arc e ∈ OutD(r) we will denote its copies in EiI,1, E
i
O,1, E

i
O,2 by eiI,1, e

i
O,1, e

i
O,2.

And finally, for any arc e ∈ A(D), let eI and eO denote it’s copies in EI and
EO, respectively. For e ∈ A(D) \ OutD(r) and i ∈ [λ], let SiI,e = {eiI,1, eiI,2}.
Similarly for e ∈ A(D) \ InD(r), i ∈ [λ], let SiO,e = {eiO,1, eiO,2}. Let Se =

(∪λi=1S
i
I,e)

⋃
(∪λj=1S

j
O,e)

⋃
{eI , eO}. For X ∈ I, let AX denote the set of arcs

e ∈ A(D) such that Se ∩X 6= ∅.

Observation 1 Let I be an in-branching in D rooted at r. Then for any i ∈ [λ],
{eiI,1 | e ∈ A(I)} is a basis in Mi

I,1 and {eiI,2 | e ∈ A(I)} is a basis in Mi
I,2.

And conversely, let X and Y be basis of Mi
I,1 and Mi

I,2, respectively, such that
AX = AY . Then AX is an in-branching rooted at r in D.

Observation 2 Let O be an out-branching in D. Then for any i ∈ [λ], {eiO,1 | e ∈
A(O)} is a basis in Mi

O,1 and {eiO,2 | e ∈ A(O)} is a basis in Mi
O,2. And

conversely, let X and Y be basis of Mi
O,1 and Mi

O,2, respectively, such that
AX = AY . Then AX is an out-branching rooted at r in D.

Observe that any arc e ∈ A(D) can belong to at most one in-branching in
I and at most one out-branching in O, because both I and O are collection of
arc disjoint subgraphs of D. Because of Observation 1 and 2, if we consider that
each Ii ∈ I is embedded into Mi

I,1 and Mi
I,2 and each Oi ∈ O is embedded

into Mi
O,1 and Mi

O,2, then we obtain an independent set Z ′ of rank 4λ(n − 1)
corresponding to I ∪ O in the matroid M. Further, since the collection I is arc
disjoint, {eI | e ∈ A(I)} is a basis of MI . And similarly, {eO | e ∈ A(O)}
is a basis of MO. Therefore, Z = Z ′ ∪ {eI | e ∈ A(I)} ∪ {eO | e ∈ A(O)}
is a basis of M. Now observe that, each arc in the intersection I ∩ O has six
copies in the independent set Z. The remaining arcs in I ∪ O have only three
copies each, and this includes any arc which is incident on r. Now, we define a
function φ : I × A(D) → {0, 1}, where for W ∈ I and e ∈ A(D), φ(W, e) =
1 if and only if exactly one of the following holds. Either, W ∩ Se = ∅. Or,
{eI , eO} ⊆ W and there exists t, t′ ∈ [λ] such that StI,e ⊆ W and St

′

O,e ⊆ W .

And for each i ∈ [λ] \ {t} and j ∈ [λ] \ {t′}, SiI,e ∩W = ∅ and SjO,e ∩W = ∅.
Using function φ we define the following collection of independent sets of M.
B6` = {W | W ∈ I, |W | = 6`,∀e ∈ A(D) φ(W, e) = 1} By the definitions of

φ, I and O,
⋃
e∈A(O)∩A(I) Se is an independent set of M, which is contained in

B6`. In fact, for the optimal value of `, the collection B6` contains all possible
candidates for the intersection of O′ and I′, where O′ and I′ are collections of arc
disjoint in-branchings and arc disjoint out-branchings which form an optimum
solution. Our goal is to find one such candidate partial solution from B6`. We
are now ready to state the following lemma which shows that a representative
family of B6` always contains a candidate partial solution which can be extended
to a complete solution.

Lemma 3. Let D be a λ-connected digraph on n vertices, r ∈ V (D) and ` ∈
[λ(n − 2)]. There exists a λ-connected spanning subdigraph D′ of D with at

most 2λ(n − 1) − ` arcs if and only if, there exists T̂ ∈ B̂6` ⊆n′−6`rep B6`, where
n′ = 6λ(n− 1), such that D has λ arc disjoint in-branchings containing AT̂ and
λ arc disjoint out-branchings containing AT̂ , which are all rooted at r.

Proof. In the forward direction consider a λ-connected spanning subdigraph D′

of D with at most 2λ(n − 1) − ` arcs. By Lemma 2, D′ is union of a collection
I = {I1, I2, . . . , Iλ} of arc disjoint in-branchings rooted at r, and a collection
O = {O1, O2, . . . , Oλ} of arc disjoint out-branchings rooted at r such that |A(I)∩
A(O)| ≥ `. By Observation 1, for all i ∈ [λ], {eiI,1 | e ∈ A(Ii)} is a basis inMi

I,1

and {eiI,2 | e ∈ A(Ii)} is a basis in Mi
I,2. Similarly, by Observation 2, for all

i ∈ [λ], {eiO,1 | e ∈ A(Oi)} is a basis in Mi
O,1 and {eiO,2 | e ∈ A(Oi)} is a basis

inMi
O,2. Further {eI | e ∈ A(I)} and {eO | e ∈ A(O)} are bases ofMI andMO

respectively. Hence the set ZD′ = {eiI,1, eiI,2 | e ∈ A(Ii), i ∈ [λ]} ∪ {eiO,1, eiO,2 |
e ∈ A(Oi), i ∈ [λ]} ∪ {eI | e ∈ A(I)} ∪ {eO | e ∈ A(O)} is an independent
set in M. Since |ZD′ | = 6λ(n − 1), ZD′ is actually a basis in M. Consider
T ⊆ A(I)∩A(O) with exactly ` arcs. Let T ′ = {eiI,1, eiI,2 | e ∈ T∩Ii, for some i ∈
[λ]} ∪ {eiO,1, eiO,2 | e ∈ T ∩Oi, for some i ∈ [λ]} ∪ {eI , eO | e ∈ T}. Note that T ′

is a set of six copies of the ` arcs that are common to a pair of an in-branching in
I and an out-branching in O. Therefore, by the definition of B6`, T ′ ∈ B6`. Then,
by the definition of representative family, there exists T̂ ∈ B̂6` ⊆n′−6`rep B6`, such

that Ẑ = (ZD′ \ T ′)∪ T̂ is an independent set inM. Note that |Ẑ| = 6λ(n− 1),
and hence it is a basis in M. Also note that AT̂ ⊆ AẐ .

Claim. 1 (∗) For any i ∈ [λ] and e ∈ A(D), either {eiI,1, eiI,2} ⊆ Ẑ or {eiI,1, eiI,2}∩
Ẑ = ∅. And further for every e ∈ A(D) such that eiI,1 ∈ Ẑ for some i ∈ [λ], Ẑ

also contains eI . Similarly, for any i ∈ [λ] and e ∈ A(D), either {eiO,1, eiO,2} ⊆ Ẑ
or {eiO,1, eiO,2} ∩ Ẑ = ∅, and further, for every e ∈ A(D) such that eiO,1 ∈ Ẑ for

some i ∈ [λ], Ẑ also contains eO.

Claim. 2 (∗) For any i, j ∈ [λ], i 6= j, either {eiI,1, eiI,2} ∩ Ẑ = ∅ or {ejI,1, e
j
I,2} ∩

Ẑ = ∅. Similarly, for any i, j ∈ [λ], i 6= j, either {eiO,1, eiO,2} ∩ Ẑ = ∅ or

{eiO,1, eiO,2} ∩ Ẑ = ∅.

Since Ẑ is a basis in M, by Proposition 1, for any i ∈ [λ], j ∈ [2] and

k ∈ {I,O}, we have that Ẑ ∩ Eik,j is a basis in Mi
k,j . For each i ∈ [λ], let

X̂i
1 = Ẑ ∩ EiI,1 and X̂i

2 = Ẑ ∩ EiI,2. By Claim 1, AX̂i
1

= AX̂i
2

and hence, by

Observation 1, Îi = AX̂i
1

forms an in-branching rooted at r. Because of Claim 2,

{Îi | i ∈ λ} are pairwise arc disjoint as Îi∩Îj = ∅ for every i 6= j ∈ [λ]. Further AT̂
is covered in arc disjoint in-branchings {AIi,1 | i ∈ λ}, as T̂∩EiI,j ⊆ X̂i

j for j ∈ [2].

By similar arguments we can show that there exist a collection {Ôi | i ∈ [λ]} of
λ out-branchings rooted at r containing AT̂ . The reverse direction of the lemma
follows from Lemma 2. ut

Lemma 4. Let D be a λ connected digraph on n vertices and ` ∈ [λ(n − 2)].

In time 2O(λn) we can compute B̂6` ⊆n′−6`rep B6` such that |B̂6`| ≤
(
n′

6`

)
. Here

n′ = 6λ(n− 1).

Proof. We give an algorithm via dynamic programming. Let D be an array of size
`+ 1. For i ∈ {0, 1, . . . , `} the entry D[i] will store the family B̂6i ⊆n′−6irep B6i. We
will fill the entries in array D according to the increasing order of index i, i.e. from
0, 1, . . . , `. For i = 0, we have B̂0 = {∅}. Let W = {{eI , eO, eiI,1, eiI,2, e

j
O,1, e

j
O,2} |

i, j ∈ [λ], e ∈ A(D)} and note that |W| = λ2m, where m = |A(D)|. Given that
we have filled all the entries D[i′], where i′ < i+ 1, we fill the entry D[i+ 1] at

step i+ 1 as follows. Let F6(i+1) = (B̂6i •W) ∩ I.

Claim. 1 (∗) F6(i+1) ⊆n
′−6(i+1)
rep B̂6(i+1), for all i ∈ {0, 1, . . . `− 1}

Now the entry for D[i + 1] is F̂6(i+1) which is n′ − 6(i + 1) representa-
tive family for F6(i+1), which is computed as follows. By Theorem 6 we know

that |B̂6i| ≤
(
n′

6i

)
. Hence it follows that |F6(i+1)| ≤ λ2m

(
n′

6i

)
and moreover,

we can compute F6(i+1) in time O(λ2mn
(
n′

6i

)
). We use Theorem 6 to compute

F̂6(i+1) ⊆n
′−6(i+1)
rep F6(i+1) of size at most

(
n′

6(i+1)

)
. This step can be done in

time O(
(

n′

6(i+1)

)
tpω + t

(
n′

6(i+1)

)ω−1
), where t = |F6(i+1)| = λ2m

(
n′

6i

)
. We know

from Claim 1 that F6(i+1) ⊆n
′−6(i+1)
rep B6(i+1), and therefore by Lemma 10 we

have B̂6(i+1) = F̂6(i+1) ⊆n
′−6(i+1)
rep B6(i+1). Finally, we assign the family B̂6(i+1)

to D[i+ 1]. This completes the description of the algorithm and its correctness.
Since ` ≤ n′/6, we can bound the total running time of this algorithm as

O
(∑`

i=1

(
iω
(

n′

6(i+1)

)
+
(

n′

6(i+1)

)ω−1)
λ2m

(
n′

6i

))
≤ 2O(λn). ut

We have the following algorithm for computing I and O given A(I) ∩ A(O).
This algorithm extends a given set of arcs to an minimum weight collection of
λ arc disjoint out-branchings. This is a simple corollary of [24, Theorem 53.10]
and it also follows from the results of Gabow [12].

Lemma 5 (∗). Let D be a digraph and w be a weight function on the arcs.
For any subset X of arcs of D, a vertex r and an integer λ, we can find a
minimum weight collection O of λ arc disjoint out-branchings rooted at r, such
that X ⊆ A(O), if it exists, in polynomial time.

Theorem 4. Let D be a λ edge connected digraph on n vertices. Then we can
find a minimum λ edge connected subgraph of D in 2O(λn) time.

Proof. Let n′ = 6λ(n − 1). By Lemma 2 we know that finding a minimum
subdigraph D′ of D is equivalent to finding a collection I of λ arc disjoint in-
branchings and a collection O of λ arc disjoint out-branchings which are all
rooted at a vertex r ∈ V (D) such that |A(I) ∩ A(O)| is maximized . We fix an
arbitrary r ∈ V (D) and for each choice of `, the cardinality of |A(I) ∩ A(O)|,
we attempt to construct a solution. By Lemma 3 we know that there exists a
λ-connected spanning subdigraph D′ of D with at most 2λ(n−1)− ` arcs if and

only if there exists T̂ ∈ B̂6` ⊆n′−6`rep B6`, where n′ = 6λ(n− 1), such that D has
a collection I = {I1, I2, . . . , Iλ} of arc disjoint in-branchings rooted at r and a
collection O = {O1, O2, . . . , Oλ} of arc disjoint out-branchings rooted at r such

that AT̂ ⊆ A(I) ∩ A(O). Using Lemma 4 we compute B̂6l ⊆n′−6`rep B6` in time

2O(λn), and for every F ∈ B̂6` we check if AF can be extended to a collection
of λ arc disjoint out-branchings rooted at r and a collection of λ arc disjoint
in-branchings rooted at r, using Lemma 5. Since ` ≤ λ(n− 2), the running time
of the algorithm is bounded by 2O(λn). ut

An algorithm with the same running time can be obtained for the weighted
version of the problem using the notion of weighted representative sets in the
above, thus proving Theorem 1.

3 Undirected Graphs

In this section, we give an algorithm for computing a minimum λ-connected sub-
graph of an undirected graph G. As before, we only consider the unweighted ver-
sion of the problem. While there is no equivalent characterization of λ-connected
graphs as there was in the case of digraphs, we show that we can obtain a charac-
terization by converting the graph to a digraph with labels on the arcs. Then, as
in the previous section, we embed the solutions in a linear matroid and compute
them by a dynamic programming algorithm with representative families. Let
DG be the digraph with V (DG) = V (G) and for each edge e = (u, v) ∈ E(G),
we have two arcs ae = (u, v) and a′e = (v, u) in A(DG). We label the arcs ae
and a′e by the edge e, which is called the type of these arcs. For X ⊆ A(DG) let
Typ(X) = {e ∈ E(G) | ae ∈ X or a′e ∈ X}. The following two lemmata relate
λ-connected subgraphs of G with collections of out-branchings in DG.

Lemma 6 (∗). Let G be an undirected graph and DG be the digraph constructed
from G as described above. Then G is λ-connected if and only if for any r ∈
V (DG), there are λ arc disjoint out-branchings rooted at r in DG.

By Lemma 6 we know that G is λ-connected if and only if for any r ∈ V (D),
there is a collection O of λ arc disjoint out-branchings rooted at r in DG. Given
a collection of out-branchings, we can obtain a λ-connected subgraph of G with
at most λ(n − 1) edges. For an edge e ∈ E(G) which is not incident on r, the

two arcs corresponding to it in DG may appear in two distinct out-branchings of
O, but for an edge e incident on r in G, only the corresponding outgoing arc of
r may appear in O. Since there are λ(n− 1) arcs in total that appear in O and
at least λ of those are incident on r, the number of edges of G such that both

the arcs corresponding to it appear in O is upper bounded by λ(n−2)
2 . So any

minimal λ-connected subgraph of G has λ(n− 1)− ` edges where ` ∈ [bλ(n−2)2 c].

Lemma 7 (∗). Let G be an undirected λ-connected graph on n vertices and

` ∈ [bλ(n−2)2 c]. G has a λ-connected subgraph G′ with at most λ(n − 1) − `
edges if and only if for any r ∈ V (DG), DG′ has λ arc disjoint out-branchings
O = {O1, O2, . . . , Oλ} rooted at r such that |Typ(A(O))| ≤ λ(n− 1)− `.

By Lemma 7, a collection O of out-branchings rooted at some vertex r, that
minimizes |Typ(A(O))| corresponds to a minimum λ-connected subgraph of G.
In the rest of this section, we design an algorithm that finds a collection of arc
disjoint out-branchings O in DG such that |Typ(A(O))| is minimized. The first
step of our algorithm is to compute the set of edges of G such that both the arcs
corresponding to it appear in the collection O, and then we can extend this to
a full solution in polynomial time.

Fix a vertex r. Let Dr
G denote the digraph obtained from DG by removing the

arcs in InDG
(r). Observe that A(Dr

G) can be partitioned as follows. A(Dr
G) =⊎

v∈V (Dr
G) InDr

G
(v) We construct a pair of a graphic matroid and a partition

matroid, corresponding to each of the λ out-branching that we want to find. For
each i ∈ [λ], we define a matroid Mi

1 = (Ai1, Ii1) which is a graphic matroid
of Dr

G whose ground set Ai1 is a copy of the arc set A(Dr
G). Similarly, for each

i ∈ [λ] we define matroid Mi
2 = (Ai2, Ii2), which is a partition matroid on the

ground set Ai2, which is a copy of the arc set A(Dr
G), such that the following

holds. Ii2 = {I | I ⊆ Ai2, |I ∩ InDr
G

(v)| ≤ 1, for all v ∈ V (Dr
G)} Next, letMO be

a uniform matroid of rank λ(n − 1) on the ground set AO where AO is also a
copy of A(Dr

G). Finally, we define the matroidM = (AM, I) as the direct sum of

MO andMi
1,Mi

2, for i ∈ [λ], i.e.M =
(⊕

i∈[λ](Mi
1⊕Mi

2)
)
⊕MO. Note that

the rank of this matroid is 3λ(n− 1) and it is representable over any field of size
at least |A(Dr

G)|+ 1. For an arc a ∈ A(Dr
G), we denote its copies in Ai1, A

i
2 and

AO by ai1, a
i
2 and aO respectively. For a collection O of λ out-branchings in Dr

G,
by A(O) we denote the set of arcs which is present in some O ∈ O. For X ∈ I,

by AX we denote the set of arcs a ∈ A(Dr
G) such that X ∩

⋃λ
i=1{ai1, ai2} 6= ∅.

For e ∈ E(G) and i ∈ [λ], we let Sie = {(ae)i1, (ae)i2, (a′e)i1, (a′e)i2} and Se =

{(ae)O, (a′e)O} ∪
(⋃λ

i=1 S
i
e

)
. We define a function ψ : I ×E(G)→ {0, 1}, where

for W ∈ I, e ∈ E(G), ψ(W, e) = 1 if and only if exactly one of the following
holds. Either W ∩ Se = ∅; or, there exists t, t′ ∈ [λ], t 6= t′, such that, (i)
(ae)O, (a

′
e)O ∈ W , (ii) Ste ∩W = {(ae)t1, (ae)t2}, (iii) St

′

e ∩W = {(a′e)t
′

1 , (a
′
e)
t′

2 },
and (iv) ∀i ∈ [λ] \ {t, t′}, Sie ∩W = ∅. Now for each ` ∈ [bλ(n− 2)/2c], we define
the following set. B6` = {W | W ∈ I, |W | = 6` and ∀e ∈ E(G), ψ(W, e) = 1}
Observe that for every W ∈ B6`, |Typ(AW)| = ` and, ae ∈ AW if and only
if a′e ∈ AW . Therefore, any set in this collection corresponds to a potential

candidate for the subset of arcs which appear in exactly two out-branchings in
O. We are now ready to state the following lemma, which relates the computation
of λ out-branchings minimizing types and representative sets.

Lemma 8 (∗). Let G be a λ-connected undirected graph on n vertices, DG its

corresponding digraph and ` ∈ [bλ(n−2)2 c]. There exists a set O of out-branchings
rooted at r, with |Typ(A(O))| ≤ λ(n − 1) − ` in DG if and only if there exists

T̂ ∈ B̂6` ⊆n′−6`rep B6`, where n′ = 3λ(n − 1), such that DG has a collection Ô of

λ out-branchings rooted at r, AT̂ ⊆ A(Ô) and |Typ(Ô)| ≤ λ(n− 1)− `.

Lemma 9 (∗). Let G be a λ-connected undirected graph on n vertices, DG its
corresponding digraph and ` ∈ [bλ(n − 2)/2c]. In time 2O(λn) we can compute

B̂6` ⊆n′−6`rep B6` such that |B̂6`| ≤
(
n′

6`

)
. Here n′ = 3λ(n− 1).

Finally, Lemmata 5, 7, 8 and 9 give us the following theorem.

Theorem 5 (∗). Let G be a λ edge connected graph on n vertices. Then we can
find a minimum λ edge connected subgraph of G in 2O(λn) time.

As before, the above theorem can be extended to prove Theorem 2.

4 Augmentation Problems

The algorithms for Minimum Weight λ-connected Spanning Subgraph
may be used to solve instances of Minimum Weight λ-connectivity Aug-
mentation as well. Given an instance (D,L,w, λ) of the augmentation problem,
we construct an instance (D′, w′, λ) of Minimum Weight λ-connected Span-
ning Subgraph, where D′ = D ∪ L and w′ is a weight function that gives a
weight 0 to arcs in A(D) and it is w for the arcs from L. It is easy to see that
the solution returned by our algorithm contains a minimum weight augmenting
set. A similar approach works for undirected graphs as well, proving Theorem 3.

References

1. Jørgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and ap-
plications. Springer Science & Business Media, 2008.

2. Manu Basavaraju, Fedor V Fomin, Petr Golovach, Pranabendu Misra, MS Ra-
manujan, and Saket Saurabh. Parameterized algorithms to preserve connectivity.
In Automata, Languages, and Programming, pages 800–811. Springer, 2014.

3. Richard Bellman. Dynamic programming treatment of the travelling salesman
problem. Journal of the ACM (JACM), 9(1):61–63, 1962.

4. Piotr Berman, Bhaskar Dasgupta, and Marek Karpinski. Approximating transitive
reductions for directed networks. In Proceedings of the 11th International Sympo-
sium on Algorithms and Data Structures, pages 74–85. Springer-Verlag, 2009.

5. Andreas Bjorklund. Determinant sums for undirected hamiltonicity. SIAM Journal
on Computing, 43(1):280–299, 2014.

6. Joseph Cheriyan and Ramakrishna Thurimella. Approximating minimum-size
k-connected spanning subgraphs via matching. SIAM Journal on Computing,
30(2):528–560, 2000.

7. Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan
Mihajlin, Jakub Pachocki, and Arkadiusz Socala. Tight bounds for graph ho-
momorphism and subgraph isomorphism. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington,
VA, USA, January 10-12, 2016, pages 1643–1649, 2016.

8. Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking
via bases of perfect matchings. In Proceedings of the forty-fifth annual ACM Sym-
posium on Theory of Computing, pages 301–310. ACM, 2013.

9. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient
computation of representative families with applications in parameterized and ex-
act algorithms. J. ACM, 63(4):29:1–29:60, September 2016.

10. András Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM
Journal on Discrete Mathematics, 5(1):25–53, 1992.

11. H Frank and W Chou. Connectivity considerations in the design of survivable
networks. Circuit Theory, IEEE Transactions on, 17(4):486–490, 1970.

12. Harold N Gabow. A matroid approach to finding edge connectivity and packing
arborescences. Journal of Computer and System Sciences, 50(2):259–273, 1995.

13. Dan Gusfield. A graph theoretic approach to statistical data security. SIAM
Journal on Computing, 17(3):552–571, 1988.

14. Michael Held and Richard M Karp. A dynamic programming approach to se-
quencing problems. Journal of the Society for Industrial and Applied Mathematics,
10(1):196–210, 1962.

15. SP Jain and Krishna Gopal. On network augmentation. Reliability, IEEE Trans-
actions on, 35(5):541–543, 1986.

16. Ming-Yang Kao. Data security equals graph connectivity. SIAM Journal on Dis-
crete Mathematics, 9(1):87–100, 1996.

17. Samir Khuller. Approximation algorithms for finding highly connected subgraphs.
Vertex, 2:2, 1997.

18. Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings.
Journal of the ACM (JACM), 41(2):214–235, 1994.

19. Guy Kortsarz and Zeev Nutov. Approximating minimum cost connectivity prob-
lems. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für In-
formatik, 2010.

20. Dániel Marx. A parameterized view on matroid optimization problems. Theor.
Comput. Sci., 410(44):4471–4479, 2009.

21. Dániel Marx and László A Végh. Fixed-parameter algorithms for minimum-
cost edge-connectivity augmentation. ACM Transactions on Algorithms (TALG),
11(4):27, 2015.

22. Dennis M Moyles and Gerald L Thompson. An algorithm for finding a minimum
equivalent graph of a digraph. Journal of the ACM (JACM), 16(3):455–460, 1969.

23. James G Oxley. Matroid theory, volume 3. Oxford University Press, USA, 2006.
24. Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, vol-

ume 24. Springer Science & Business Media, 2003.
25. Toshimasa Watanabe, Takanori Narita, and Akira Nakamura. 3-edge-connectivity

augmentation problems. In Circuits and Systems, 1989., IEEE International Sym-
posium on, pages 335–338. IEEE, 1989.

26. Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-
winograd. In ACM symposium on Theory of computing, pages 887–898, 2012.

5 Appendix A: Preliminaries

We denote the set of natural numbers by N. For n ∈ N, by [n] we denote the set
{1, . . . , n}. We use the term universe to distinguish a set from its subsets. For
any two subsets X and Y of a universe U , we use X \ Y to denote the subset of
X whose elements are not present in Y . For any set U define

(
U
i

)
= {X | X ⊆

U, |X| = i}. We say that a family S = {S1, . . . , St} of subsets of a universe U is
a p-family if each set in S has cardinality at most p. For two families S1 and S2
of a universe U , define S1 •S2 = {Si∪Sj | Si ∈ S1, Sj ∈ S2 and Si∩Sj = ∅}. We
will use ω to denote the exponent in the running time of matrix multiplication,
the current best known bound for which ω < 2.373 [26].

Graphs. We define various terms with respect to undirected graphs. Many of
these terms are analogously defined for digraphs, and we only mention those
that are defined differently. For a graph G (or digraph D) we use V (G) (V (D))
and E(G) (A(D)) to denote the vertex set and the edge set (arc set) respectively.
In an undirected graph, the neighbourhood of a vertex v ∈ V (G) is defined as
the set N(v) = {u ∈ V (G) | (u, v) ∈ E(G)}. In a directed graph D, we define
OutD(v) = {(v, w) ∈ A(D)} and InD(v) = {(u, v) ∈ A(D)} to be the set of out-
edges and in-edges of v respectively. The underlying graph of a digraph D is the
undirected graph obtained from D by removing the direction of every edge. Note
that this graph may not be a simple graph. A path P is a graph with vertex set
V (P) = {v1, v2, . . . , v`} and edge set E(P) = {(vi, vi+1) | 1 ≤ i ≤ `−1} for some
` ∈ N. A cycle is a graph (or digraph) with vertex set V (P) = {v1, v2, . . . , v`}
and edge set E(P) = {(vi, vi+1) | 1 ≤ i ≤ `−1}∪{(v`, v1)}. An acyclic graph (or
a digraph), as the name implies, contains no cycles. A connected acyclic graph
is called a tree. An undirected acyclic graph which is union of trees is called as
a forest. An acyclic digraph is called DAG, which is short for “directed acyclic
graph”. For r ∈ V (D), an in-branching rooted at r is a DAG whose underlying
graph is a tree rooted at r and the out-degree of every vertex is 1, except r
whose out-degree in 0. Observe that there is a path from any vertex to r in the
in-branching. We similarly define out-branching rooted at r, where every vertex
has in-degree 1, except r whose in-degree is 0. A graph is called connected if there
is a path between every pair of vertices. Similarly, a digraph is called strongly
connected if for every ordered pair of vertices, (u, v), there is a path from u to
v. Let λ be a natural number. A graph G is called λ-edge connected if for all
u, v ∈ V (G), there is a collection of λ edge disjoint paths with u and v as their
endpoints. A digraph is called λ-edge connected if for every ordered pair (u, v)
of vertices, there is a collection of λ arc disjoint paths from u to v. An edge cut
in a graph G is a partition (X,X) of V (G) and, δG(X) denotes edges of G with
one endpoint in X and the other in X. When the graph is clear from context, we
simply write δ(X). Note that in digraphs, (X,X) and (X,X) denote different
cuts, and δ(X) denotes those directed edges with their tail in X and head in X.
In this paper we are mainly concerned with the edge connectivity of graphs and
digraphs, we use the terms “cut” and “λ-connected graph” to mean an edge cut
and a λ-edge connected graph.

Matroids and Representative Families. In the following we state some of basic
definitions related to matroids. We refer the reader to [23] for more details. We
also state the definition of representative families and give a result regarding its
computation.

Definition 1 (Matroid). A pair M = (E, I), where E is a set called ground
set and I is a family of subsets of E, called independent sets, is called a matroid
if it satisfies the following properties: (i) ∅ ∈ I, (ii) If A ∈ I and A′ ⊆ A then
A′ ∈ I, and (iii) If A,B ∈ I and |A| < |B| then there is x ∈ B \ A such that
A ∪ {x} ∈ I.

An inclusion-wise maximal set in I is called as a basis of M. All the bases
of a matroid are of same size. The size of a basis is called as the rank of the
matroid. Linear matroids are an important subclass of matroids that can be
defined using linear independence of vectors over some field. Let A be a matrix
over a field F and E be the set of its columns. We define a matroid M = (E, I)
as follows. A subset X ⊆ E is called an independent set if the set of columns in
X are linearly independent in F. The matrix A is called a representation of M.

Definition 2. Let M1 = (E1, I1),M2 = (E2, I2), . . . ,Mt = (Et, It) be t ma-
troids such that Ei ∩ Ej = ∅, for i 6= j and i, j ∈ [t]. The direct sum M1 ⊕
M2⊕ · · · ⊕Mt of M1,M2, . . . ,Mt is a matroid M = (

⊎
i∈[t]Ei, I), where I is

defined as follows. For X ⊆ E, X ∈ I if and only if X ∩ Ei ∈ Ii for all i ∈ [t].

The following easy proposition is used in later sections.

Proposition 1. Let M1 = (E1, I1),M2 = (E2, I2), . . . ,Mt = (Et, It) be t
matroids such that Ei ∩ Ej = ∅, for i 6= j and i, j ∈ [t]. If a set B is a basis in
M1 ⊕M2 ⊕ · · · ⊕Mt, then B ∩ Ei is a basis in Mi for all i ∈ [t].

Proposition 2 (Proposition 3.4 [20], [23]). Given representations of ma-
troids M1,M2, . . .Mt over a field F then a representation of their direct sum
M1 ⊕M2 ⊕ · · · ⊕Mt over F can be found in polynomial time.

Definition 3. Given an undirected graph G, the graphic matroid of G, denoted
by MG has ground set E(G) and its independent sets are defined as follows. For
any X ⊆ E(G), X is an independent set inM if and only if the graph (V (G), X)
is a forest.

Graphics matroids are representable over any field of size at least 2 [23]. For
a directed graph D, we define the graphic matroid with respect to the underlying
undirected graph of D. The universe is the arc set A(D), and X ⊆ A(D) is an
independent set if and only if they form a forest in the underlying undirected
graph.

Definition 4. A pair M = (E, I), over n element universe E is a uniform
matroid if I = {X | X ⊆ E, |X| ≤ k}, where k is some constant. It is denoted
by Un,k.

The uniform matroid Un,k is representable over all fields with at least n + 1
elements [23]. For the special case of k = 1, it is representable over all fields.

Definition 5. A pair M = (E, I) is a partition matroid if the ground set E
is partitioned into t sets E1, E2, . . . Et for some t ∈ N, and there are t integers
k1, k2, . . . kt such that X ⊆ E is an independent set inM if and only if |X∩Ei| ≤
ki, for all i ∈ [t].

Observe that the partition matroid is the direct sum of a collection of uniform
matroids and hence it is also has a representation over any field where each
of those uniform matroids are representable. In the special case, when all the
partition sizes are one, then the partition matroid can be represented over any
field. Finally, we define representative families and give a result on computing
such families over a linear matroid.

Definition 6 (Min/Max q-Representative Family [20]). Given a matroid
M = (E, I), a p-family B of E and a non-negative weight function w : B → N.

We say that B̂ ⊆ B is a min (max) q-representative for B if for every set Y ⊆ E
of size at most q, if there is a set X ∈ B, such that X ∩ Y = ∅ and X ∪ Y ∈ I,
then there is a set X̂ ∈ B̂ such that X̂ ∩ Y = ∅, X̂ ∪ Y ∈ I and w(X̂) ≤ w(X)

(w(X̂) ≥ w(X)). If B̂ ⊆ B is a min (max) q-representative for B then we denote

it by B̂ ⊆qminrep B (B̂ ⊆qmaxrep B).

We drop the ‘max’/‘min’ from the subscript in the above notation if we are not
concerned with weights.

Theorem 6 ([9]). Let M = (E, I) be a linear matroid of rank k = p +
q, and matrix AM be a representation of M over a field F. Also, let B =
{B1, B2, . . . , Bt} be a p-family of independent sets in E and w : B → N be a

non-negative weight function. Then, there exists B̂ ⊆qminrep B (B̂ ⊆qmaxrep B) of

size at most
(
p+q
p

)
. Moreover, B̂ ⊆qminrep B (B̂ ⊆qmaxrep B) can be computed in

at most O(
(
p+q
p

)
tpω + t

(
p+q
p

)ω−1
) operations over F.

The following lemma, which is used in proving the correctness of our algo-
rithms, follows from the definition of representative sets.

Lemma 10 (Lemma 3.3 [9]). LetM = (E, I) be a matroid and B be a family

of subsets of E. If B′ ⊆qrep B and B̂ ⊆qrep B′ then B̂ ⊆qrep B.

Appendix B: Missing Proofs

Proof of Lemma 1. Fix an arbitrary vertex r ∈ V (D). In the forward direction,
by Edmond’s disjoint out-branching theorem [24, Corollary 53.1b], there is a col-
lection of λ arc disjoint out-branching rooted at a vertex r. To find the collection
of in-branchings, we consider the graph D′ which is the “reversed digraph” of
D, i.e. V (D′) = V (D) and the arc set A(D′) = {(v, u)|(u, v) ∈ A(D)}. Note that

the digraph D′ is also λ-connected, and therefore there is a collection of λ arc
disjoint out-branchings O′1, O

′
2, . . . , O

′
λ rooted at r in D′. From this collection,

we construct the λ arc disjoint in-branchings in D as follows. For each j ∈ [λ],
let Ij = {(u, v)|(v, u) ∈ A(O′j)} and note that this is an in-branching rooted at
r. This gives the required collection of in-branchings.

The reverse direction is straightforward, e.g. it follows from [24, Corollary
53.1b and Corollary 53.1d]. ut

Proof of Claim 1 in Lemma 3. Let us consider the first statement. Recall that
Ẑ = (ZD′ \ T ′) ∪ T̂ . As discussed earlier, for any e ∈ AD and i ∈ [λ], both
ZD′ and T ′ contain both the copy in {eiI,1, eiI,2}, or none of the copies from

{eiI,1, eiI,2}. Now T̂ ∈ B6` also satisfies this condition for every e ∈ A(D). Hence

Ẑ satisfies this condition as well. Now let us consider the second statement. By
construction, ZD′ contains eI , eO for every arc e ∈ A(I) ∪ A(O). Similarly, T ′

contains eI , eO for every arc e ∈ T . Finally, T̂ contain both eI , eO for any arc
e ∈ A(D) if and only if it contains ejI,1, e

j
I,2 for some j ∈ [λ]. Hence, for any arc

e, if ejI,1 ∈ Ẑ for some j ∈ [λ], then we have eI ∈ Ẑ as well. We can similarly
show the other two statements. ut

Proof of Claim 2 in Lemma 3. Again let us consider the first statement and
suppose that it is not true. So there are distinct i, j ∈ [λ] such that, {eiI,1, eiI,2}∩
Ẑ 6= ∅ and {ejI,1, e

j
I,2} ∩ Ẑ 6= ∅ for an arc e ∈ A(D). Initially, for any arc f in

the collection of arc disjoint in-branchings I, there is exactly one k ∈ [λ] such
that fkI,1, f

k
I,2 ∈ ZD′ and for any other k′ ∈ [λ], fk

′

I,1, f
k′

I,2 /∈ ZD′ . Further, we
have fI ∈ ZD′ . And for any arc not in A(I), no copies of this arc from EI and
EkI,1, E

k
I,2 for all k ∈ [λ], is present in ZD′ . Such a statement also holds true for

T ′ and T̂ as well, as they are both in B6`. As Ẑ = (ZD′ \ T ′) ∪ T̂ , it must be

the case that {eiI,1, eiI,2} ∩ (ZD′ \ T ′) 6= ∅ and {ejI,1, e
j
I,2} ∩ T̂ 6= ∅. But then,

ZD′ \ T ′ and T̂ have the element eI in common. This contradicts the fact that

T̂ is a representative of T ′ in B̂6`. Hence, no such pair i, j exists. We can show
the second statement in a similar way. ut

Proof of Claim 1 in Lemma 4. Let X ∈ B̂6(i+1) and Y be a set of size n′−6(i+1)
such that X ∪ Y ∈ I and X ∩ Y = ∅. We will prove that there exists some
X̂ ∈ F6(i+1) such that X̂ ∪ Y ∈ I and X̂ ∩ Y = ∅. This will prove the claim.

Let e ∈ A(D) and i, j ∈ [λ] such that {eI , eO, eiI,1, eiI,2, e
j
O,1, e

j
O,2} ⊆ X. Let

X ′ = X \{eI , eO, eiI,1, eiI,2, e
j
O,1, e

j
O,2} and Y ′ = Y ∪{eI , eO, eiI,1, eiI,2, e

j
O,1, e

j
O,2}.

Note that X ′ ∈ I and Y ′ ∈ I, since X ∪ Y ∈ I. But, X ′ ∈ B6i, X ′ ∪ Y ′ ∈ I and
|Y ′| = n′ − 6i. This implies that there exists X̂ ′ ∈ B̂6i such that, X̂ ′ ∩ Y ′ = ∅
and X̂ ′ ∪ Y ′ ∈ I. Therefore, X̂ ′ ∪ {eI , eO, eiI,1, eiI,2, e

j
O,1, e

j
O,2} ∈ I and also

X̂ ′ ∪ {eI , eO, eiI,1, eiI,2, e
j
O,1, e

j
O,2} ∈ (B̂6i •W). This proves the claim. ut

Proof of Lemma 5. We define a new weight function w′ which gives a weight 0
to any arc which is contained in X and it is same as w for all other arcs. We

now apply an algorithm [24, Theorem 53.10] with the weight function w′, which
returns a minimum weight collection O of λ arc disjoint out-branchings rooted
at r. If X ⊆ A(O), then we return O as the required solution. Otherwise no such
collection exists. ut

Proof of Lemma 8. In the forward direction, let O be a collection of λ out-
branchings rooted at r in DG, such that |Typ(A(O))| ≤ λ(n − 1) − `. For each
i ∈ [λ], let Oi1 and Oi2 be the independent sets in Mi

1 and Mi
2 respectively, cor-

responding to the out-branching Oi ∈ O. Now consider the set I = {aO, ai1, ai2 |
a ∈ A(Oi), i ∈ [λ]} in the matroid M. For each i ∈ [λ], {ai1 | a ∈ A(Oi)} is an
independent set in the graphic matroidMi

1 since Oi corresponds to a tree in the
underlying graph. And similarly {ai2 | a ∈ A(Oi)} is an independent set in the
partition matroid Mi

2, since Oi is an out-branching. Finally {aO | a ∈ A(O)}
is of cardinality λ(n− 1) and therefore a basis in MO. Therefore, I is an inde-
pendent set in the matroid M. Notice that |I| = 3λ(n − 1), which is equal to
the rank of M. Hence, I is a basis in M. Let P ′ = {e ∈ E(G) | ae, a′e ∈ A(O)}
and clearly, |P ′| ≥ `. Fix an arbitrary subset P of P ′ with exactly ` edges.
Let T = {(ae)O, (a′e)O, (ae)i1, (ae)i2, (a′e)i1, (a′e)i2 | e ∈ P, i ∈ [λ]}. Observe that

T ∈ B6`, and therefore there is a T̂ ∈ B̂6` ⊆n′−6`rep B6` such that Î = (I \ T) ∪ T̂
is an independent set in M of size 3λ(n− 1), and note that |Typ(AT̂)| = `.

We will now prove that there is a collection Ô of λ arc disjoint out-branchings,
such that AT̂ ⊆ A(Ô) and |Typ(Ô)| ≤ λ(n− 1)− `.

Claim. 1 For any arc a ∈ A(Dr
G) and i ∈ [λ], either ai1, a

i
2 ∈ Î or ai1, a

i
2 /∈ Î.

Further, if ai1 ∈ Î for some i ∈ [λ], then aO ∈ Î as well.

Proof. Let us consider the first statement. Initially, the statement hold for I by
construction. And since T, T̂ ∈ B6`, the statement holds for them as well. This
implies that for Î = (I \ T) ∪ T̂ also satisfies this statement. Now we consider
the second statement. Initially for any arc a ∈ A(O) we have aO, a

i
1 ∈ I. And

T contains aO for some arc a if and only if it also contains ai1 for some i ∈ [λ],

and a similar statement holds for T̂ . Hence, the second statement also holds for
Î. ut

Claim. 2 For any arc a ∈ Dr
G, and any pair of i 6= j ∈ [λ], either ai1, a

i
2 /∈ Î or

aj1, a
j
2 /∈ Î.

Proof. Suppose that there were some i 6= j, i, j ∈ [λ] and an arc a ∈ A(Dr
G)

such that ai1, a
i
2, a

j
1, a

j
2 ∈ Î. Initially, for any arc b in the collection of arc disjoint

out-branchings O, there is exactly one k ∈ [λ] such that bk1 , b
k
2 ∈ I and for any

other k′ ∈ [λ], bk
′

1 , b
k′

2 /∈ I. Further, we have bO ∈ I. And for any arc not in
A(O), no copies of this arc from EO and Ek1 , E

k
2 for all k ∈ [λ], is present in

I. Such a statement also holds true for T ′ and T̂ as well, as they are both in
B6`. As Î = (I \ T ′) ∪ T̂ , it must be the case that {ai1, ai2} ∩ (I \ T ′) 6= ∅ and

{aj1, a
j
2}∩ T̂ 6= ∅. But then, I \T ′ and T̂ have the element aO in common, which

contradicts the fact that T̂ is a representative of T , in B6`. ut

Now since Î is a basis ofM, we have that Xi
j = Î∩Aij is a basis ofMi

j , where

i ∈ [λ] and j ∈ [2]. Now by Claim 1, AXi
1

= AXi
2
, and hence Ôi = AXi

1
is an out-

branching rooted at r in DG. Next, by Claim 2, the collection Ô = {Ôi | i ∈ [λ]}
is pairwise arc disjoint. And finally we bound the value of |Typ(Ô)|. Initially
|Typ(AI)| = λ(n − 1) − `, and |Typ(AT)| = |Typ(AT̂)| = `. Since T ∈ B6`, for
any edge e of G, either both or neither of ae, a

′
e lie in T , and a similar statement

holds for T̂ as well. Therefore we have |Typ(AI\T)| = λ(n − 1) − 2`, and hence

|Typ(AÎ)| = |Typ(Ô)| = λ(n− 1)− `.
The reverse direction follows from Lemma 7. ut

Proof of Lemma 9. We give a dynamic programming based algorithm. Let D
be an array of size ` + 1. For i ∈ [` + 1] the entry D[i] will store the fam-

ily B̂6` ⊆n′rep B6`. We will fill the entries in array D according to the increas-

ing order of index i, where i ∈ {0, 1, . . . `}. For i = 0, we have B̂0 = {∅}.
Let W =

{
{(ae)O, (a′e)O, (ae)i1, (ae)i2, (a′e)

j
1, (a

′
e)
j
2} | i, j ∈ [λ], i 6= j, and e ∈

E(G) is not incident on r
}

, and note that |W| ≤
(
λ
2

)
m. Given that we have

filled all the entries D[i′] for every i′ < i + 1, we fill the entry at D[i + 1] as
described below.

Let F6(i+1) = (B̂6i •W)∩I. Observe that for any X ∈ F6(i+1), |Typ(AX)| =
i+ 1. We now have the following claim.

Claim. 3 F6(i+1) ⊆n
′−6(i+1)
rep B6(i+1), for all i ∈ {0, 1, . . . `− 1}

Proof. Let X ∈ B6(i+1) and Y be a set of size n′ − 6(i+ 1) such that X ∪ Y ∈ I
and X ∩ Y = ∅. We will show that there exists some X ′ ∈ F6(i+1) such that
X ′ ∪ Y ∈ I and X ′ ∩ Y = ∅. This will prove the claim.

Let e ∈ E(G) and i 6= j ∈ [λ] such that {(ae)O, (a′e)O, (ae)i1, (ae)i2, (a′e)
j
1,

(a′e)
j
2} ⊆ X. Let X ′ = X \ {(ae)O, (a′e)O, (ae)i1, (ae)i2, (a′e)

j
1, (a

′
e)
j
2} and Y ′ =

Y ∪ {(ae)O, (a′e)O, (ae)
i
1, (ae)

i
2, (a

′
e)
j
1, (a

′
e)
j
2}. Note that X ′ ∈ I and Y ′ ∈ I,

since X ∪ Y ∈ I. But X ′ ∈ B6i, X ′ ∪ Y ′ ∈ I and |Y ′| = n′ − 6i, which

implies that there exists X̂ ′ ∈ B̂6i such that, X̂ ′ ∪ Y ′ ∈ I. Therefore, X̂ ′ ∪
{(ae)O, (a′e)O, (ae)i1, (ae)i2, (a′e)

j
1, (a

′
e)
j
2} ∈ I and observe that X̂ ′ ∪{(ae)O, (a′e)O,

(ae)
i
1, (ae)

i
2, (a

′
e)
j
1, (a

′
e)
j
2} ∈ (B̂6i •W). ut

We fill the entry for D[i + 1] as the following. By Theorem 6 we know

that |B̂6i| ≤
(
n′

6i

)
, and hence it follows that |F6(i+1)| ≤

(
λ
2

)
m
(
n′

6i

)
. Moreover,

we can compute F6(i+1) in time O(
(
λ
2

)
mn
(
n′

6i

)
). We use Theorem 6 to com-

pute F̂6(i+1) ⊆n
′−6(i+1)
rep F6(i+1) of size at most

(
n′

6(i+1)

)
in time O(

(
n′

6(i+1)

)
tiω +

t
(

n′

6(i+1)

)ω−1
), where t = |F6(i+1)|. We know from Claim 1 that F6(i+1) ⊆n

′−6(i+1)
rep

B6(i+1), and therefore B̂6(i+1) = F̂6(i+1) ⊆n
′−6(i+1)
rep B6(i+1). And finally, we as-

sign the family B̂6(i+1) to D[i+1]. This completes the description of the algorithm
and its correctness. Using the fact that ` < n′/6, the total running time of the

algorithm can bounded as follows.

O
(∑̀
i=1

((
n′

6(i+ 1)

)
tiω + t

(
n′

6(i+ 1)

)ω−1)
λ2m

(
n′

6i

))
≤ 2O(λn)

This completes the proof of this lemma. ut

Proof of Lemma 6. In the forward direction, observe that since G is λ-connected,
DG is also λ-connected. By Lemma 1, for any r ∈ V (DG), there are λ arc disjoint
out-branchings rooted at r in DG.

In the reverse direction, suppose there are λ arc disjoint out-branchings
rooted at r in DG. Therefore for any vertex v ∈ V (G), there is a collection
of λ arc disjoint paths from r to v in DG. If G is not λ connected, then there is
a cut (X,X) such that |δG(X)| ≤ λ − 1, and we may assume that r ∈ X. But
then in DG, there are at most λ− 1 arcs which go from X to X. Therefore, for
any vertex v ∈ X, there are at most λ− 1 arc disjoint paths from r to v in DG.
This is a contradiction. This completes the proof of this lemma. ut

Proof of Lemma 7. In the forward direction let G′ be a λ connected subgraph
of G with at most λ(n − 1) − ` edges. By Lemma 6, for any r ∈ V (DG′), DG′

has λ arc disjoint out-branchings rooted at r. Observe that there are at most
λ(n−1)−` edges in G′, therefore the number of different types of edges possible
in DG′ is at most λ(n− 1)− `.

In the reverse direction, consider a vertex r ∈ V (D) with λ arc disjoint out-
branchings O = {O1, O2, . . . , Oλ} such that |Typ(A(O))| ≤ λ(n−1)−`. Consider
the graph G′ = (V (D),Typ(A(O))). Observe that G′ has at most λ(n − 1) − `
edges and is a λ-connected subgraph of G (from Lemma 6). This concludes the
proof. ut

Proof of Theorem 5. Let n′ = 3λ(n − 1). By Lemma 7 we know that finding
a minimum λ-connected spanning subgraph G′ of G is equivalent to finding a
collection O of λ arc disjoint out-branchings in DG rooted at a fixed vertex

r ∈ V (D) such that Typ(O) is minimized. For each choice of ` ∈ [bλ(n−2)2 c],
by Lemma 6 and Lemma 7, we know that there exists a λ-connected spanning
subgraph G′ of G with at most λ(n − 1) − ` arcs if and only if there exists

T̂ ∈ B̂6` ⊆n′−6`rep B6`, such that DG has a collection O = {O1, O2, . . . , Oλ} of
out-branchings rooted at r and AT̂ ⊆ A(O). So we apply Lemma 9 to compute

B̂6` in time 2O(λn), and for every F ∈ B̂6` we check if AF can be extended to λ
out-branchings rooted at r in DG by using Lemma 5. We return the graph G′

with the least number of edges, among all the graphs computed above, as our
solution. Since ` ≤ λ(n− 2)/2, the running time of the algorithm is bounded by
2O(λn). This completes the proof. ut

