
Theory Comput Syst
https://doi.org/10.1007/s00224-018-9852-7

Parameterised Algorithms for Deletion to Classes
of DAGs

Akanksha Agrawal1 ·Saket Saurabh1,2,3 ·
Roohani Sharma2,3 ·Meirav Zehavi4

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract In the DIRECTED FEEDBACK VERTEX SET (DFVS) problem, we are
given a digraph D on n vertices and a positive integer k, and the objective is
to check whether there exists a set of vertices S such that F = D − S is
an acyclic digraph. In a recent paper, Mnich and van Leeuwen [STACS 2016]
studied the kernelization complexity of DFVS with an additional restriction on F—
namely that F must be an out-forest, an out-tree, or a (directed) pumpkin—with
an objective of shedding some light on the kernelization complexity of the DFVS
problem, a well known open problem in the area. The vertex deletion problems
corresponding to obtaining an out-forest, an out-tree, or a (directed) pumpkin are
OUT-FOREST/OUT-TREE/PUMPKIN VERTEX DELETION SET, respectively. They
showed that OUT-FOREST/OUT-TREE/PUMPKIN VERTEX DELETION SET admit
polynomial kernels. Another open problem regarding DFVS is that, does DFVS
admit an algorithm with running time 2O(k)nO(1)? We complement the kernelization

� Roohani Sharma
roohani@imsc.res.in

Akanksha Agrawal
akanksha.agrawal@uib.no

Saket Saurabh
saket@imsc.res.in

Meirav Zehavi
meiravze@bgu.ac.il

1 University of Bergen, Bergen, Norway

2 Institute of Mathematical Sciences, Chennai, HBNI, India

3 UMI ReLax, Chennai, India

4 Ben-Gurion University, Beersheba, Israel

(2018) 62:1880–1909

Published online: 28 February 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-018-9852-7&domain=pdf
http://orcid.org/0000-0003-2212-1359
mailto:roohani@imsc.res.in
mailto:akanksha.agrawal@uib.no
mailto:saket@imsc.res.in
mailto:meiravze@bgu.ac.il

programme of Mnich and van Leeuwen by designing fast FPT algorithms for the
above mentioned problems. In particular, we design an algorithm for OUT-FOREST

VERTEX DELETION SET that runs in time O(2.732knO(1)) and algorithms for
PUMPKIN/OUT-TREE VERTEX DELETION SET that runs in time O(2.562knO(1)).
As a corollary of our FPT algorithms and the recent result of Fomin et al. [STOC
2016] which gives a relation between FPT algorithms and exact algorithms, we get
exact algorithms for OUT-FOREST/OUT-TREE/PUMPKIN VERTEX DELETION SET

that run in time O(1.633nnO(1)), O(1.609nnO(1)) and O(1.609nnO(1)), respectively.

Keywords Out-forest · Out-tree · Pumpkin · Fixed parameter tractability ·
branching · Bounded search trees

1 Introduction

FEEDBACK SET problems are fundamental combinatorial optimisation problems. In
these problems, we are given a graph D (directed or undirected) and a positive inte-
ger k, and the question is whether there exists a set S of vertices (edges/arcs) in V (D)

(E(D)) such that the graph obtained after deleting the vertices (edges/arcs) in S is a
forest (directed acyclic graph). The vertex deletion versions of FEEDBACK SET prob-
lems are called UNDIRECTED FEEDBACK VERTEX SET (UFVS) and DIRECTED

FEEDBACK VERTEX SET (DFVS), based on whether the input is an undirected
graph or a digraph. Similarly, the edge versions of FEEDBACK SET problems are
called UNDIRECTED FEEDBACK EDGE SET (UFES) and DIRECTED FEEDBACK

ARC SET (DFAS). All these problems, except UNDIRECTED FEEDBACK EDGE

SET, are known to be NP-complete. Furthermore, FEEDBACK SET problems are
amongst Karp’s original list of 21 NP-complete problems and have been the topic
of active research from algorithmic [2, 4–10, 12, 13, 19, 21, 22, 24, 26, 30, 35] as
well as structural point of view [18, 23, 25, 29, 32–34]. In particular, such problems
constitute one of the most important topics of research in parameterised algorithms
[6, 8–10, 12, 13, 22, 24, 26, 30, 35], spearheading the development of several new
techniques. In this paper we will focus on restrictions of DFVS in the realm of
parameterised algorithms.

In parameterised complexity each problem instance is accompanied by a param-
eter k, and a problem is FPT if instances (I, k) of the problem are solvable in time
γ (k)|I |O(1), where γ is an arbitrary function of k. Moreover, a parameterised prob-
lem is said to admit a polynomial kernel if there is a polynomial time algorithm, called
a kernelization algorithm, that reduces the input instance to an instance whose size is
bounded by a polynomial function in k, say p(k), whilst preserving the answer. This
reduced instance is called a p(k) kernel for the problem. For more information we
refer the reader to monographs such as [11, 17].

UFVS was amongst the first few problems for which an FPT algorithm was
designed [27]. On the other hand the parameterised complexity of DFVS (equiva-
lently, DFAS) was a well-known open problem in the area until 2008, when Chen
et al. [9] showed that DFVS and DFAS are FPT and admit an algorithm with run-
ning time 2O(k log k)nO(1). Since then, there has been very little progress on DFVS.

Theory Comput Syst (2018) 62:1880–1909 1881

In particular, the following two questions regarding DFVS are considered to be
challenging open problems in the area.

Question 1: Does DFVS admit a polynomial kernel?
Question 2: Does DFVS admit an algorithm with running time 2O(k)nO(1)? That

is, does DFVS admit a single exponential time algorithm?

The lack of progress on these problems led to consideration of various restrictions
on input instances. In particular, we know of polynomial kernels for DFVS on tour-
naments and its various generalisations [1, 3, 15]. However, these problems are open
even for planar digraphs.

Recently, in a very interesting article, to make progress on Question 1, Mnich
and van Leeuwen [28] considered DFVS with an additional restriction on the output
rather than the input. In particular, the basic philosophy of their programme is the
following: what happens to the kernelization complexity of DFVS when we consider
subclasses of directed acyclic graphs. Towards this end, they considered the class of
out-forests, out-trees and (directed) pumpkins. An out-tree is a digraph where each
vertex has in-degree at most 1 and the underlying (undirected) graph is a tree. An
out-forest is a disjoint union of out-trees. On the other hand, a digraph is a pumpkin if
it consists of a source vertex s and a sink vertex t (s �= t), together with a collection
of internally vertex-disjoint induced directed paths from s to t . Furthermore all the
vertices except s and t have in-degree 1 and out-degree 1. All these are subclasses of
directed acyclic graphs. The classes of out-forests and out-trees were motivated by
the corresponding question of UFVS and TREE DELETION SET in the undirected
settings. In particular these classes led to the following problems.

We similarly define OUT-TREE VERTEX DELETION SET (OTVDS) and PUMP-
KIN VERTEX DELETION SET (PVDS). Mnich and van Leeuwen [28] showed that
OFVDS/OTVDS admit kernel of size O(k3) and PVDS admits a kernel of size
O(k18).

1.1 Our Results and Methods

The objective of this article to ask Question 2 in the framework introduced by Mnich
and van Leeuwen [28]. Towards this we obtain the following results.

• OFVDS admits an algorithm with running time O�((1 + √
3)k).

• OTVDS and PVDS admit algorithms with running time O�(2.562k).

An underlying undirected graph for both an out-forest and a out-tree does not con-
tain a cycle and thus they are very close to forest and tree, respectively. Thus, it is
imperative on us to compare the running time of our FPT algorithms for OFVDS

Theory Comput Syst (2018) 62:1880–19091882

and OTVDS with UFVS and TREE DELETION SET (TDS), respectively. The best
known deterministic and randomised algorithms for UFVS run in times O�(3.619k)

and O�(3k), respectively [12, 26]. It is a well-known open problem in the area
whether one can achieve a deterministic algorithm for UFVS matching the running
time of the randomised algorithm. On the other hand the best known algorithm for
TDS runs in time O�(5k) [31]. In contrast to these results, we obtain determin-
istic algorithms for OFVDS and OTVDS with running times O�((1 + √

3)k) =
O�(2.732k) and O�(2.562k) respectively. All these results are summarized in Table 1.
The main observation which enables us to design all our FPT algorithms is the
following:

Every vertex, except one (in the case of PVDS), in an out-tree, an out-forest
or pumpkin has in-degree at most one; in pumpkin every vertex except s and
t has in-degree one and out-degree one. Thus for any vertex v, amongst v and
any two of its in-neighbours, say x and y, one of the vertices must belong to
the deletion set. We will call this 3-hitting set property. This results is a 3 way
branching. When such a structure does not exist, in the case of OUT-FOREST

and OUT-TREE vertex deletion set problems, each vertex has in-degree at most
1, and in the case of the PUMPKIN vertex deletion set problem, each vertex,
except for one, has indegree at most 1. In the former case, observe that, when
each vertex in a digraph has in-degree at most 1, then the digraph is a disjoint
collection of out-trees and directed cycles. In the later case, if the input digraph
is a YES instance, then the resulting digraph is a disjoint collection of a pump-
kin, out-trees and directed cycles. In either case, the corresponding problem on
the resulting digraph can be solved in polynomial time. This already gives us
deterministic algorithms with running time O�(3k) for OFVDS, OTVDS, and
PVDS. We exploit this hitting set property together with the fact that out-forest,
out-tree and pumpkin are all almost acyclic graphs, to design FPT algorithms
faster than O�(3k).

Here we would also like to mention the corresponding extension problems of the
problems considered in the article, which we define as follows.

Table 1 Problems with the best
known deterministic and
randomised FPT running times

Problem Deterministic Randomised

UFVS 3.619k 3k

OFVDS (1 + √
3)k –

TDS 5k –

OTVDS 2.562k –

PVDS 2.562k –

Theory Comput Syst (2018) 62:1880–1909 1883

Observe that if we have FPT algorithms for OUT-FOREST/OUT-TREE/PUMPKIN

VERTEX DELETION SET then to solve instances (D, X, k) of OUT-FOREST/OUT-
TREE/PUMPKIN VERTEX DELETION SET - EXTENSION problems, we can run
the FPT algorithms of OUT-FOREST/OUT-TREE/PUMPKIN VERTEX DELETION

SET problems on the instance (D − X, k − |X|). Thus, FPT algorithms for
OUT-FOREST/OUT-TREE/PUMPKIN VERTEX DELETION SET problems imply FPT
algorithms for OUT-FOREST/OUT-TREE/PUMPKIN VERTEX DELETION SET -
EXTENSION problems. Combining this observation with Theorem 2 of [20] (which
roughly states that if there an FPT algorithm for a vertex-deletion extension prob-
lem with running time cknO(1) then there is an exact algorithm for the corresponding

vertex-deletion problem with running time
(

2 − 1
c

)n

nO(1)), we get exact algo-

rithms with running time 1.634nnO(1), 1.610nnO(1) and 1.610nnO(1) respectively,
for OUT-FOREST/OUT-TREE/ PUMPKIN VERTEX DELETION SET.

2 Preliminaries

We denote the set of natural numbers from 1 to n by [n], and describe running times
of algorithms using the O� notation, which suppresses factors polynomial in the input
size.

Graphs We use standard terminology from the book of Diestel [14] for those graph-
related terms which are not explicitly defined here. A directed graph D is a pair
(V (D), E(D)) such that V (D) is a set of vertices and E(D) is a set of ordered
pairs of vertices. Throughout the paper, we consider simple directed graphs. The
underlying undirected graph G of D is a pair (V (G), E(G)) such that V (G) = V (D)

and E(G) is a set of unordered pairs of vertices such that {u, v} ∈ E(G) if and only
if either (u, v) ∈ E(D) or (v, u) ∈ E(D).

Let D be a directed graph. For any v ∈ V (D), we denote by N−(v) the set of in-
neighbours of v, that is, N−(v) = {u | (u, v) ∈ E(D)}. Similarly, let N+(v) denote
the set of out-neighbours of v, that is, N+(v) = {u | (v, u) ∈ E(D)}. We denote the
in-degree of a vertex v by d−(v) = |N−(v)| and its out-degree by d+(v) = |N+(v)|.
We say that P = (u1, . . . , ul) is a directed path in a directed graph D if u1, . . . , ul ∈
V (D) and for all i ∈ [l −1], (ui, ui+1) ∈ E(D). Let C be an induced subgraph of D.
We say that C is a weakly connected component of D if and only if the underlying
undirected graph of C is connected.

Branching Algorithm For all our purposes, a branching algorithm is an ordered list
of reduction rules and branching rules. A reduction rule takes an instance of a prob-
lem and outputs another equivalent instance of the same problem. Two instances are
equivalent only when one is a YES instance if and only if the other is a YES instance.
Formally, a reduction rule is a polynomial time procedure replacing an instance (I, k)

of a parameterised language L by a new one (I ′, k′). It is safe if (I, k) ∈ L if and
only if (I ′, k′) ∈ L. A branching rule takes an instance (I, k) of a parameterised lan-
guage L and produces several instances, (I1, k1), . . . , (Il, kl) of the same problem.

Theory Comput Syst (2018) 62:1880–19091884

A branching rule is exhaustive if (I, k) is a YES instance if and only if at least one of
(I1, k1), . . . , (Il, kl) is a YES instance.

The branching algorithm applies the reduction rules and branching rules in the fol-
lowing preference. A branching rule can be applied only when none of the reduction
rules are applicable. Reduction rule i can be applied only when none of the reduction
rules from 1 to i − 1 are applicable. Similarly, branching rule i is applicable only
when none of the branching rules from 1 to i − 1 are applicable.

As mentioned before, for all the problems considered in this paper, an O∗(3k)

algorithm is trivial. The non-trivial running times are obtained by choosing an appro-
priate vertex to branch on. The order of the branching rules imposes a lot of structure
in the cases that appear later. This structure is exploited to achieve the target running
time.

Analysing the Running Time of Branching Algorithms—Bounded Search Trees
The running time of a branching algorithm can be analysed as follows (see, e.g., [11,
16]). Suppose that the algorithm executes a branching rule which has � branching
options (each leading to a recursive call with the corresponding parameter value),
such that, in the ith branch option, the current value of the parameter decreases
by bi . Then, (b1, b2, . . . , b�) is called the branching vector of this rule. We say
that α is the root of (b1, b2, . . . , b�) if it is the (unique) positive real root of
xb∗ = xb∗−b1 + xb∗−b2 + · · · + xb∗−b� , where b∗ = max{b1, b2, . . . , b�}. If
r > 0 is the initial value of the parameter, and the algorithm (a) returns a result
when (or before) the parameter is negative, and (b) only executes branching rules
whose roots are bounded by a constant c > 0, then its running time is bounded
by O∗(cr).

In all our algorithms, if there exists a pair of vertices u, v in the input digraph
such that both (u, v) and (v, u) belong to the arc set of the digraph, then observe
that at least one of u and v belong to the solution. Thus, we branch on such vertex
pairs, reducing the budget by one in each branch and stopping whenever the budget is
zero or negative. Henceforth, without loss of generality, we assume that in the input
digraph, for any pair u, v of vertices there is at most of arcs (u, v) or (v, u).

3 FPT Algorithm for PUMPKIN VERTEX DELETION SET

In this section, we give a branching algorithm for PUMPKIN VERTEX DELETION

SET. Let (D, k) be an instance of PVDS. The algorithm starts by guessing the source
vertex s and the sink vertex t in the graph obtained after the deletion of the solution
vertices. There are O(|V (D)|2) choices for s and t . After this guesswork, we want
to solve the problem where we are given a digraph D, a positive integer k and two
vertices s and t , and the question is does there exist a set S of the vertices of D of
size at most k such that D − S is a pumpkin with s as the source vertex and t as the
sink vertex. We call this new problem RESTRICTED PUMPKIN VERTEX DELETION

SET (RPVDS) and in the rest of this section we develop an algorithm for solving it.
This algorithm together with the guessing step will give an FPT algorithm for PVDS.
Formally, RPVDS is defined as follows.

Theory Comput Syst (2018) 62:1880–1909 1885

Broadly speaking, our strategy is to branch on vertices having in-degree at least
2 or out-degree at least 2. The reduction rules and branching rules are so designed
that when none of them is applicable, all vertices in the resulting digraph, except
for s and t , have in-degree exactly 1 and out-degree exactly 1 and, s has in-degree
0 and t has out-degree 0. Such an instance becomes trivial to solve. To achieve this
trivial instance, the algorithm systematically deals with vertices that do not satisfy
the constraints of this trivial instance.

We now give the formal description of the algorithm. The measure μ that will be
used to bound the depth of the search tree of our branching algorithm is the solution
size, that is, μ(D, k, s, t) = k.

With a slight abuse of notation, in the following, during the application of any
reduction/branching rule we will refer to (D, k, s, t) as the instance that is reduced
with respect to the rules in higher preference order. We first list the reduction rules
used by the algorithm.

Reduction Rule 1 If k < 0, return (D, k, s, t) is a NO instance.

Reduction Rule 2 If k = 0 and D is not a pumpkin with source s and sink t , return
(D, k, s, t) is a NO instance.

Reduction Rule 3 If k ≥ 0 and D is a pumpkin with source s and sink t , return
(D, k, s, t) is a YES instance.

Reduction Rule 4 If there exists v ∈ V (D) \ {s} such that d−(v) = 0 then delete v

from D and decrease k by 1. That is, the resulting instance is (D − {v}, k − 1, s, t).

Reduction Rule 5 If there exists v ∈ V (D) \ {t} such that d+(v) = 0 then delete v

from D and decrease k by 1. That is, the resulting instance is (D − {v}, k − 1, s, t).

Reduction Rule 6 If there exists v ∈ V (D) such that s ∈ N+(v) then delete v from
D and decrease k by 1. That is, the resulting instance is (D − {v}, k − 1, s, t).

Reduction Rule 7 If there exists v ∈ V (D) such that t ∈ N−(v) then delete v from
D and decrease k by 1. That is, the resulting instance is (D − {v}, k − 1, s, t).

Reduction Rule 8 If C is a weakly connected component of D such that either s �∈
V (C) or t �∈ V (C), then the resulting instance is (D − V (C), k − |C|, s, t).

Reduction Rule 9 If s /∈ V (D) or t /∈ V (D), return (D, k, s, t) is a NO instance.

Theory Comput Syst (2018) 62:1880–19091886

It is easy to see that reduction rules 1 to 9 are safe and can be applied in polynomial
time.

We now describe the branching rules used by the algorithm. The algorithm
branches on some vertex based on its in-degree and/or out-degree as per one of the
5 branching rules described later. Before giving the details of the branching rules,
we first mention the invariants maintained by the algorithm after the exhaustive
application of each of the branching rules.

More precisely, the invariant maintained at the end of branching rule i is a condi-
tion which always holds when none of the reduction rules and branching rules 1 to i

are applicable.

Branching Rule 1: For all v ∈ V (D) \ {s, t}, if d−(v) ≥ 2, then s �∈ N−(v).
Symmetrically, if d+(v) > 1, then t �∈ N+(v).

Branching Rule 2: For all v ∈ V (D)\{s, t}, d−(v) ≤ 2. Symmetrically, d+(v) ≤ 2.
Branching Rule 3: For all v ∈ V (D) \ {s, t}, if d−(v) = 2, then d+(v) ≤ 1.

Symmetrically, if d+(v) = 2, then d−(v) ≤ 1.
Branching Rule 4: For all v ∈ V (D) \ {s, t}, if d−(v) = 2 and d+(v) = 1, then

N+(v) = {t}. Symmetrically, if d+(v) = 2 and d−(v) = 1, then N−(v) = {s}.
Branching Rule 5: For all v ∈ V (D) \ {s, t}, if d−(v) = 2 then d+(v) = 0.

Symmetrically, if d+(v) = 2, then d−(v) = 0.

We now give the description of the branching rules. The cases under which each of
these branching rules is applied is pictorially depicted in Fig. 1. From the description
of the branching rules it is easy to see that each branching rule is exhaustive.

Fig. 1 The structures in the
branching rules of PVDS

Theory Comput Syst (2018) 62:1880–1909 1887

Branching Rule 1 If there is v ∈ V (D) such that d−(v) ≥ 2 (or d+(v) ≥ 2) and
s ∈ N−(v) (or t ∈ N+(v)), then let u be the other in-neighbour (or out-neighbour)
of v. In this case the algorithm branches as follows.

• When v belongs to the solution, then the resulting instance is (D−{v}, k−1, s, t).
• When v does not belong to the solution, then u must belong to the solution as

otherwise, v, u and s (or t) will belong to the pumpkin obtained after the solution
vertices are deleted, which is not possible. Therefore, the resulting instance is
(D − {u}, k − 1, s, t).

The branching vector for this rule is (1, 1).

Branching Rule 2 If there is v ∈ V (D) such that d−(v) ≥ 3 (or d+(v) ≥ 3),
v �= t (or v �= s), then let u1, u2, u3 be some three distinct in-neighbours (or out-
neighbours) of v. Note that none of u1, u2, u3 is the same as s (or t), as otherwise
branching rule 1 would be applicable. In this case, the algorithm branches as follows.

• When v belongs to the solution, the resulting instance is (D − {v}, k − 1, s, t).
• When v does not belong to the solution, then note that at least 2 of u1, u2 and u3

must belong to the solution. Thus, the algorithm further branches as follows.

– When u1 and u2 belong to the solution, the resulting instance is (D −
{u1, u2}, k − 2, s, t).

– When u2 and u3 belong to the solution, the resulting instance is (D −
{u2, u3}, k − 2, s, t).

– When u1 and u3 belong to the solution, the resulting instance is (D −
{u1, u3}, k − 2, s, t).

The branching vector for this rule is (1, 2, 2, 2).

Branching Rule 3 If there is v ∈ V (D) \ {s, t} such that d−(v) = 2 and d+(v) = 2,
then let u1, u2 be the in-neighbours of v and w1, w2 be the out-neighbours of v.
Observe that neither u1 nor u2 is the same as t , as otherwise branching rule 1 would
be applicable. Similarly, neither w1 nor w2 is the same as s. In this case, the algorithm
branches as follows.

• When v belongs to the solution, the resulting instance is (D − {v}, k − 1, s, t).
• When v does not belong to the solution, then note that at least one of u1 or u2

and, at least one of w1 or w2 must belong to the solution. Thus, the algorithm
further branches as follows.

– When u1 and w1 belong to the solution, the resulting instance is (D −
{u1, w1}, k − 2, s, t).

– When u1 and w2 belong to the solution, the resulting instance is (D −
{u1, w2}, k − 2, s, t).

– When u2 and w1 belong to the solution, the resulting instance is (D −
{u2, w1}, k − 2, s, t).

– When u2 and w2 belong to the solution, the resulting instance is (D −
{u2, w2}, k − 2, s, t).

Theory Comput Syst (2018) 62:1880–19091888

The branching vector for this rule is (1, 2, 2, 2, 2).

Branching Rule 4 If there is v ∈ V (D)\ {s, t} such that d−(v) = 2 (or d+(v) = 2),
d+(v) = 1 (or d−(v) = 1) and the unique out-neighbour (or in-neighbour), say w of
v, is not t (or s), then let u1, u2 be the two in-neighbours (or out-neighbours) of v.
Observe that none of u1 or u2 is the same as s. The algorithm considers the following
cases depending on the in-degree (or out-degree) of w.

Case 4.a If d−(w) = 2 (or d+(w) = 2), then let x be the other in-neighbour (or
out-neighbour) of w different from v. Here x may or may not be equal to u1 or u2.
In this case, the algorithm branches as follows.

• When v belongs to the solution, the resulting instance is (D − {v}, k − 1, s, t).
• When v does not belong to the solution, then note that w does not belong to

the solution (because if it does, then v must be a sink vertex and hence v = t ,
which is not true). Since w �= t , and both v and w do not belong to the solution,
x must belong to the solution. Therefore, the resulting instance is (D − {x}, k −
1, s, t).

The branching vector in this case is (1, 1).

Case 4.b If d−(w) = 1 (or d+(w) = 1), the algorithm branches as follows.

• When v belongs to the solution, then delete v from the graph. In the resulting
graph d−(w) = 0. Since w �= s, reduction rule 4 is applicable. Therefore, the
resulting instance is (D − {v, w}, k − 2, s, t).

• When v does not belong to the solution, then at least one of u1 or u2 must belong
to the solution. Hence, the algorithm branches further into 2 cases. In the first
case, the resulting instance is (D − {u1}, k − 1, s, t) and in the second case the
resulting instance is (D − {u2}, k − 1, s, t).

The branching vector in this case is (2, 1, 1).

Branching Rule 5 If there is v ∈ V (D)\ {s, t} such that d−(v) = 2 (or d+(v) = 2),
d+(v) = 1 (or d−(v) = 1) and t (or s) is the unique out-neighbour (or in-neighbour)
of v, then let u1, u2 be the two in-neighbours (or out-neighbours) of v. Observe that
none of u1 or u2 is same as s (or t), otherwise branching rule 1 would be applicable.
The algorithm considers the following cases based on the out-degree (or in-degree)
of u1 and u2.

Case 5.a If either d+(u1) = 1 or d+(u2) = 1 (d−(u1) = 1 or d−(u2) = 1), then
without loss of generality assume that d+(u1) = 1 (or d−(u1) = 1).

Observe that u1 is distinct from t (or s) because u1 is an in-neighbour (or out-
neighbour) of v and t (or s) is an out-neighbour of v. In this case, the algorithm
branches as follows.

• When u1 belongs to the solution, then delete u1 from the graph. Thus the
resulting instance is (D − {u1}, k − 1, s, t).

Theory Comput Syst (2018) 62:1880–1909 1889

• When u1 does not belong to the solution, since d+(u1) = 1, and N+(u1) = {v},
v does not belong to the solution. Since v �= t , and u2 ∈ N−(v), u2 belongs to
the solution. Thus, the resulting instance is (D − {u2}, k − 1, s, t).

The branching vector for this case is (1, 1).

Case 5.b If d+(u1) = 2 and d+(u2) = 2 (d−(u1) = 2 and d−(u1) = 2), let v′ be
the other out-neighbour (or in-neighbour) of u1. In this case, the algorithm considers
the following sub-cases.

Sub-case 5.b.i If v′ is different from u2 and t , then the algorithm branches as follows.

• When v belongs to the solution, the resulting instance is (D − {v}, k − 1,

s, t).
• When v does not belong to the solution, then observe that at least one of u1 and

u2 must belong to the solution. Thus, the algorithm branches as follows.

– When u1 belongs to the solution, the resulting instance is (D−{u1}, k−
1, s, t).

– When u1 does not belong to the solution, then u2 must belong to
the solution. Also v′ must belong to the solution (because u1 is dis-
tinct from s). Therefore, the resulting instance is (D − {u2, v

′}, k − 2,

s, t).

The branching vector for this case is (1, 1, 2).

Sub-case 5.b.ii If v′ is the same as t , the algorithm branches as follows.

• When v belongs to the solution, the resulting instance is (D − {v}, k − 1, s, t).
• When v does not belong to the solution then u1 must belong to the solu-

tion (because u1 �= s). Therefore, the resulting instance is (D − {u1}, k − 1,

s, t).

The branching vector for this case is (1, 1).

Sub-case 5.b.iii If v′ is the same as u2, then we know that d+(u2) = 2, and therefore,
one of case 5.a.i or case 5.a.ii would be applicable.

This ends the description of the branching rules. In the upcoming lemma, we show
that when all the reduction rules and branching rules have been applied exhaustively,
that is when none of them is no longer applicable, all the vertices of the resulting
instance, possibly except for s and t , have in-degree exactly 1 and out-degree exactly
1. In the later lemma we show that such an instance can be solved in polynomial time.
Thus, after the exhaustive application of the reduction rules and the above mentioned
branching rules, the algorithm uses the procedure described in Lemma 2 to solve the
instance.

Lemma 1 Let (D, k, s, t) be the instance where none of the above-mentioned reduc-
tion rules or branching rules are applicable. Then, for all v ∈ V (D) \ {s, t},
d−(v) = 1, d+(v) = 1, d−(s) = 0 and d+(t) = 0.

Theory Comput Syst (2018) 62:1880–19091890

Proof Since reduction rules 6 and 7 are no longer applicable, we have d−(s) = 0
and d+(t) = 0. Also since reduction rules 4 and 5 are not applicable, d−(v) > 0 and
d+(v) > 0, for all v ∈ V (D) \ {s, t}. To show that for any vertex v ∈ V (D) \ {s, t},
d−(v) = 1 we proceed as follows.

Let v be some vertex in V (D)\{s, t}. For the sake of contradiction, let d−(v) > 1.
If d−(v) > 1 and s ∈ N−(v), then branching rule 1 would be applicable. Thus, we
can safely assume that s �∈ N−(v).

We split the situation that d−(v) > 1, into 2 cases as follows.

• If d−(v) ≥ 3, then branching rule 2 would be applicable.
• Otherwise 1 < d−(v) ≤ 2, that is, d−(v) = 2. We split this situation into the

following 3 exhaustive cases.

– If d+(v) ≥ 2, then branching rule 3 would be applicable.
– If d+(v) = 1, then based on whether the unique out-neighbour of v is t

or not, either branching rule 4 or branching rule 5 would be applicable.
– If d+(v) = 0, then reduction rule 5 would be applicable.

Since, none of the reduction rules or branching rules are applicable, we conclude
that for all v ∈ V (D) \ {s, t}, d−(v) = 1. Using the same case analysis we can show
that for any vertex v ∈ V (D) \ {s, t}, d+(v) = 1.

Lemma 2 Let (D, k, s, t) be an instance of RESTRICTED PUMPKIN VERTEX

DELETION SET such that for all v ∈ V (D) \ {s, t}, d−(v) ≤ 1, d+(v) ≤ 1 and,
d−(s) = 0 and d+(t) = 0. Then the instance (D, k, s, t) can be solved in O(nO(1))

time, where n = |V (D)|.
Proof Since reduction rule 8 and 9 are not applicable, D is weakly connected and
both s and t belong to D. Since, for all v ∈ V (D)\{s, t}, d−(v) = 1, d+(v) = 1 and,
d−(s) = 0 and d+(t) = 0, and observe that (D, k, s, t) is a YES instance if and only
if D is a pumpkin with s as the source vertex, t as the sink vertex and k ≥ 0.

In the next lemma, we formally prove the correctness of our algorithm.

Lemma 3 The algorithm presented for RESTRICTED PUMPKIN VERTEX DELE-
TION SET is correct.

Proof Let I = (D, k, s, t) be an instance of RPVDS. We prove the correctness of
the algorithm by induction on μ = μ(I) = k. The base case occurs in one of the
following cases.

• If one of s or t does not belong to V (D), the algorithm correctly concludes that
(D, k, s, t) is a NO instance from reduction rule 8.

• If μ <= 0, the algorithm correctly concludes whether (D, k, s, t) is a yes
instance or not by reduction rules 1 to 3.

• If μ >= 0 and D is a pumpkin, the algorithm correctly concludes that (D, k, s, t)

is a YES instance.
• If μ ≥ 0 and for all v ∈ V (D) \ {s, t}, d−(v) = 1, d+(v) = 1 and, d−(s) = 0,

d+(t) = 0, then from Lemma 1 the algorithm solves the instance correctly.

Theory Comput Syst (2018) 62:1880–1909 1891

By induction hypothesis we assume that for all μ ≤ l, the algorithm is correct.
We will now prove that the algorithm is correct when μ = l + 1. The algorithm
performs one of the following actions. If possible, it applies one of the reduction
rules. By the safeness of the reduction rules we either correctly conclude that I is a
YES/NO instance or produce an equivalent instance I ′ with μ(I ′) ≤ μ(I). If μ(I ′) <

μ(I), then by induction hypothesis and safeness of the reduction rules the algorithm
correctly decides if I is a YES instance or not. Otherwise, μ(I ′) = μ(I). If none
of the reduction rules are applicable then the algorithm applies the first applicable
Branching Rule. If some branching rule is applicable then, since μ decreases in each
branch by at least one, by induction hypothesis the algorithm correctly concludes
that I is a YES / NO instance. If none of the branching rules is applicable, then
from Lemma 2, if I = (D, k, s, t), then for all v ∈ V (D) \ {s, t}, d−(v) = 1,
d+(v) = 1 and, d−(s) = 0, d+(t) = 0. Thus, in this situation we handle a base
case correctly and hence, we conclude that the algorithm always outputs the correct
answer.

Next, we analyse the running time of our algorithm.

Theorem 1 The presented algorithm solves RESTRICTED PUMPKIN VERTEX

DELETION SET in time O�(2.562k).

Proof Observe that reduction rules 1 to 9 can be applied in time polynomial in the
input size and are never applied more than polynomial number of times. Also, at
each of the branches we spend a polynomial amount of time. At each of the recur-
sive calls in a branch, the measure μ decreases by at least by 1. When μ ≤ 0,
then we are able to solve the instance in polynomial time or correctly conclude that
the corresponding branch cannot lead to a solution. At the start of the algorithm
μ = k.

The worst-case branching vector for the algorithm is (1, 2, 2, 2, 2) (see Table 2).
The recurrence for the worst case branching vector is

T (μ) ≤ T (μ − 1) + 4T (μ − 2)

The running time corresponding to the above recurrence relation is O�(2.562k).

Table 2 The branch vectors
and their corresponding running
times for RPVDS

Branching Rule (BR) Case/Sub-Case Branch vector cμ

BR 1 (1, 1) 2μ

BR 2 (1, 2, 2, 2) 2.30278μ

BR 3 (1, 2, 2, 2, 2) 2.56156μ

BR 4 a (1, 2, 1) 2.41422μ

b (2, 1, 1) 2.41422μ

BR 5 a (1, 1) 2μ

b.i (1, 1, 2) 2.41422μ

b.ii (1, 1) 2μ

Theory Comput Syst (2018) 62:1880–19091892

As mentioned at the starting of the section, given an instance (D, k) of PVDS, one
can design an algorithm for PVDS which guesses the source and sink vertices, s and
t respectively, of the resulting pumpkin and for each such guess runs the algorithm
for RPVDS on (D, k, s, t). Note that (D, k) is a YES instance of PVDS if and only if
(D, k, s, t) is a YES instance of RPVDS for some guess of s and t . Since there are at
most |V (D)|2 choices for the pair s and t , Theorem 1 gives us the following theorem.

Theorem 2 PUMPKIN VERTEX DELETION SET can be solved in time O�(2.562k).

4 FPT Algorithm for OUT-TREE VERTEX DELETION SET

In this section, we give a branching algorithm for OUT-TREE VERTEX DELETION

SET (OTVDS). In the broader picture, this algorithm is in the same spirit as the one
for PVDS with a difference only in the details of the reduction rules and branching
rules.

Let (D, k) be an instance of OTVDS. The algorithm starts by guessing the root
vertex r of the out-tree obtained after the deletion of the solution vertices. Note that
there are |V (D)| choices for r . After this guesswork, we would like to solve the
following problem. Given a digraph D, an integer k and a vertex r of the digraph,
does there exist a set of at most k vertices whose deletion results in an out-tree with
root r . We call this new problem RESTRICTED OUT-TREE VERTEX DELETION SET

and give an FPT algorithm for this problem parameterised by the solution size. Note
that the algorithm for this new problem combined with the original guess of the vertex
r gives an FPT algorithm for OTVDS. Formally, RESTRICTED OUT-TREE VERTEX

DELETION SET is defined as follows.

We first give an outline of the algorithm for ROTVDS. Let (D, k, r) be an
instance of OTVDS. The reduction rules and branching rules for this algorithm are
so designed that after the exhaustive application of these rules, all vertices in the
resulting instance, except r , have in-degree exactly 1 and the in-degree of r is 0. Such
an instance becomes trivial to solve. To achieve this trivial instance, the algorithm
systematically deals with vertices that do not satisfy the constraints of this trivial
instance.

We now give the formal description of the algorithm. The measure μ that will be
used to bound the depth of the search tree of our branching algorithm is the solution
size, that is, μ(D, k, s, t) = k. With a slight abuse of notation, in the following,
during the application of any reduction/branching rule we will refer to (D, k, s, t) as
the instance that is reduced with respect to the rules in higher preference order. We
first list the reduction rules used by the algorithm.

Theory Comput Syst (2018) 62:1880–1909 1893

Reduction Rule 1 If k < 0, then (D, k, r) is a NO instance.

Reduction Rule 2 If k = 0 and D is not an out-tree, return (D, k, r) is a NO
instance.

Reduction Rule 3 If k ≥ 0 and D is an out-tree, return (D, k, r) is a YES instance.

Reduction Rule 4 If there exists v ∈ V (D) \ {r} such that d−(v) = 0 then
delete v from D and decrease k by 1. That is, the resulting instance is (D − {v},
k − 1, r).

Reduction Rule 5 If there exists v ∈ V (D) such that r ∈ N+(v) then delete v from
D and decrease k by 1. That is, the resulting instance is (D − {v}, k − 1, r).

Reduction Rule 6 If there exists a weakly connected component C not containing
r , then delete all the vertices in C. That is, the resulting instance is (D − V (C), k −
|V (C)|, r).
Reduction Rule 7 If r /∈ V (D), return (D, k, r) is a NO instance.

The algorithm applies reduction rules 1 to 7 (in order) exhaustively. It is easy to
see that reduction rules 1 to 7 are safe and can be applied in polynomial time.

We now describe the branching rules used by the algorithm. The algorithm
branches on some vertex based on its in-degree and/or out-degree as per one of the
5 branching rules described later. Before giving the details of the branching rules,
we first mention the invariants maintained by the algorithm after the exhaustive
application of each of the branching rules.

Branching Rule 1: For all v ∈ V (D) \ {r}, if d−(v) ≥ 2, then r �∈ N−(v).
Branching Rule 2: For all v ∈ V (D) \ {r}, d−(v) ≤ 2.
Branching Rule 3: For all v ∈ V (D) \ {r}, if d−(v) = 2, then d+(v) = 0.
Branching Rule 4: For all v ∈ V (D) \ {r}, if d−(v) = 2 and d+(v) = 0, then for

all u ∈ V (D), u �= v, if d−(u) = 2 and d+(u) = 0, then v and u have no common
in-neighbour.

Branching Rule 5: For all v ∈ V (D) \ {r}, d−(v) ≤ 1.

We now give the description of the branching rules. The cases under which each
branching rule is applicable is described in Fig. 2. From the description of the
branching rules it is easy to see that each branching rule is exhaustive.

Branching Rule 1 If there exists v ∈ V (D) such that d−(v) ≥ 2 and r ∈ N−(v),
let u be one of the other in-neighbours of v. In this case, the algorithm branches as
follows.
• When v belongs to the solution, the resulting instance is (D − {v}, k − 1, r).
• When v does not belong to the solution, then u must belong to the solution.

Therefore, the resulting instance is (D − {u}, k − 1, r).

The branching vector for this rule is (1, 1).

Theory Comput Syst (2018) 62:1880–19091894

Fig. 2 The structures in the
branching rules of OTVDS

Branching Rule 2 (In-degree at least 3 Rule) If there is v ∈ V (D) such that
d−(v) ≥ 3, let u1, u2, u3 be some distinct in-neighbours of v. Note that none of
u1, u2, u3 is same as r , as otherwise branching rule 1 would be applicable. In this
case, the algorithm branches as follows.

• When v belongs to the solution, the resulting instance is (D − {v}, k − 1, r).
• When v does not belong to the solution then observe that at least 2 of u1, u2, u3

must belong to the solution. Thus, the algorithm branches as follows.

– When u1 and u2 belong to the solution, the resulting instance is (D −
{u1, u2}, k − 2, r).

– When u2 and u3 belong to the solution, the resulting instance is (D −
{u2, u3}, k − 2, r).

– When u1 and u3 belong to the solution, the resulting instance is (D −
{u1, u3}, k − 2, r).

The branching vector for this rule is (1, 2, 2, 2).
After the exhaustive application of reduction rule 1 to 7 and when branching rules

1 and 2 are no more applicable, for all v ∈ V (D) \ {r}, 1 ≤ d−(v) ≤ 2 and
d−(r) = 0.

Theory Comput Syst (2018) 62:1880–1909 1895

Branching Rule 3 If v ∈ V (D) be such that d−(v) = 2 and d+(v) ≥ 1, let u1, u2
be the two in-neighbours and w be one of the out-neighbours of v. The algorithm
considers the following cases depending on the in-degree of w.

Case 3.a If d−(w) = 2, let x be the other in-neighbour of w. The algorithm further
considers the following sub-cases.

Sub-case 3.a.i If x is the same as u1 (symmetrically u2), then the algorithm branches
as follows.

• When v belongs to the solution, the resulting instance is (D − {v}, k − 1, r).
• When v does not belong to the solution, the algorithm branches on u1 as

follows.

– When u1 belongs to the solution, the resulting instance is (D−{u1}, k−
1, r).

– When u1 does not belong to the solution, then observe that both u2
and w must belong to the solution. Thus, the resulting instance is (D −
{u2, w}, k − 2, r).

The branching vector for this case is (1, 1, 2).

Sub-case 3.a.ii Otherwise, x is distinct from u1 and u2. In this case, the algorithm
branches as follows.

• When v belongs to the solution, the resulting instance is (D − {v}, k − 1, r).
• When v does not belong to the solution then observe that at least one of u1, u2

and at least one of w, x must belong to the solution. Thus, the algorithm branches
as follows.

– When u1 and w belongs to the solution, the resulting instance is (D −
{u1, w}, k − 2, r).

– When u1 and x belongs to the solution, the resulting instance is (D −
{u1, x}, k − 2, r).

– When u2 and w belongs to the solution, the resulting instance is (D −
{u2, w}, k − 2, r).

– When u2 and x belongs to the solution, the resulting instance is (D −
{u2, x}, k − 2, r).

The branching vector for this case is (1, 2, 2, 2, 2).

Case 3.b If d−(w) = 1, then observe that w are r are distinct because d−(r) = 0
(as reduction rule 5 is no longer applicable). In this case, the algorithm branches as
follows.

• When v belongs to the solution, then delete v from the graph. Observe
that in the resulting graph d−(w) = 0 and hence, reduction rule 4 would
be applicable. Therefore, the resulting instance in this case is (D − {v, w},
k − 2, r).

Theory Comput Syst (2018) 62:1880–19091896

• When v does not belong to the solution then branch on u1 as follows.

– When u1 belongs to the solution, the resulting instance is (D−{u1}, k−
1, r).

– When u1 does not belong to the solution, then u2 must belong to the
solution. Thus the resulting instance is (D − {u2}, k − 1, r).

The branching vector in this case is (2, 1, 1).
We now consider the case when there are two vertices of in-degree 2 that have a

common in-neighbour.

Branching Rule 4 If v1, v2 ∈ V (D) such that d−(v1) = d−(v2) = 2, d+(v1) =
d+(v2) = 0 and there exists at least one common in-neighbour of v1 and v2, then the
algorithm considers the following sub-cases.

Case 4.a If v1 and v2 have two common in-neighbours, say u1, u2, then the
algorithm branches as follows.

• When u1 belongs to the solution, then the resulting instance is (D − {u1},
k − 1, r).

• When u1 does not belong to the solution, then the algorithm further branches as
follows.

– When u2 belongs to the solution, then the resulting instance is (D −
{u2}, k − 1, r).

– When u2 does not belong to the solution, then observe that both v1
and v2 must belong to the solution. Thus the resulting instance is
(D − {v1, v2}, k − 2, r).

The branching vector for this case is (1, 1, 2).

Case 4.b Otherwise, v1, v2 have exactly one common in-neighbour, say u, and
x1, x2 are the other in-neighbours of v1, v2 respectively (x1 �= x2). In this case, the
algorithm branches as follows.

• When u belongs to the solution, the resulting instance is (D − {u}, k − 1, r).
• When u does not belong to the solution, then observe that at least one of v1 or x1,

and at least one of v2 or x2 must belong to the solution. Therefore, the algorithm
branches as follows.

– When v1, v2 belong to the solution, the resulting instance is (D −
{v1, v2}, k − 2, r).

– When v1, x2 belong to the solution, the resulting instance is (D −
{v1, x2}, k − 2, r).

– When x1, v2 belong to the solution, the resulting instance is (D −
{x1, v2}, k − 2, r).

– When x1, x2 belong to the solution, the resulting instance is (D −
{x1, x2}, k − 2, r).

The branching vector for this case is (1, 2, 2, 2, 2).

Theory Comput Syst (2018) 62:1880–1909 1897

Hereafter, we assume that no two vertices of in-degree 2 have a common in-
neighbour. We consider the following cases based on the degree of the in-neighbours
of vertices with in-degree 2.

Branching Rule 5 If v ∈ V (D) such that d−(v) = 2 and d+(v) = 0, let u1, u2
be the two in-neighbours of v. In this case, the algorithm considers the following
sub-cases based on the out-degrees of u1 and u2.

Case 5.a If at least one of u1, u2 has out-degree at least 2 (without loss of generality,
let d+(u1) ≥ 2), let x be the other out-neighbour of u1.

Observe that d−(x) = 1, as otherwise x and v are two vertices of in-degree 2 and
u1 is a common in-neighbour of x and v, and hence, case 4 would be applicable. Also
x �= r because d−(r) = 0 otherwise reduction rule 5 would be applicable. In this
case, the algorithm branches as follows.

• When u1 belongs to the solution, then delete u1 from the graph. In the resulting
graph d−(x) = 0 and hence reduction rule 4 is applicable. Thus the resulting
instance is (D − {u1, x}, k − 2, r).

• When u1 does not belong to the solution, then either u2 belongs to the solution
or v belongs to the solution. Therefore, the algorithm branches as follows. In the
first branch the resulting instance is (D−{u2}, k−1, r) and in the second branch
the resulting instance is (D − {v}, k − 1, r).

The branching vector for this case is (2, 1, 1).

Case 5.b Otherwise, both u1 and u2 have out-degree 1. In this case, we first prove
that if there is an out-tree deletion set in D, say S, of size at most k such that v ∈ S

and u1, u2 �∈ S, then S′ = (S \ {v}) ∪ {u1} is also an out-tree deletion set in D. Let
F = D − S. Note that u1 and u2 are leaves in the out-tree F . Let F ′ be the out-
tree obtained from F after deleting u1 and adding the vertex v and the edge (u2, v).
Clearly F ′ is an out-tree and F ′ = D − S′. Therefore, S′ is an out-tree deletion set
of D.

Thus, it is enough to branch as follows.

• When u1 belongs to the solution, the resulting instance is (D − {u1}, k − 1, r).
• When u2 belongs to the solution, the resulting instance is (D − {u2}, k − 1, r).

The branching vector for this case is (1, 1).
In the upcoming lemma, we show that when all the reduction rules and branch-

ing rules have been considered exhaustively, all the vertices of the resulting instance,
except r , have in-degree exactly 1 and in-degree of r is 0. In the later lemma we
show that such an instance can be solved in polynomial time. Thus, after the exhaus-
tive application of the reduction rules and the above mentioned branching rules, the
algorithm uses the procedure described in Lemma 5 to solve the instance.

Lemma 4 Let (D, k, r) be the instance where none of the above-mentioned reduction
rules or branching rules are applicable. Then, for all v ∈ V (D) \ {r}, d−(v) = 1
and d−(r) = 0.

Theory Comput Syst (2018) 62:1880–19091898

Proof Since reduction rule 5 is no longer applicable, we have d−(r) = 0. Also since
reduction rules 4 is not applicable, d−(v) > 0, for all v ∈ V (D) \ {r}. To show that
for any vertex v ∈ V (D) \ {r}, d−(v) = 1 we proceed as follows.

Let v be some vertex in V (D) \ {r}. For the sake of contradiction, let d−(v) > 1.
If d−(v) > 1 and r ∈ N−(v), then branching rule 1 would be applicable. Thus, we
can safely assume that r �∈ N−(v).

We split the situation that d−(v) > 1, into the following cases.

• If d−(v) ≥ 3, then branching rule 2 would be applicable.
• Otherwise 1 < d−(v) ≤ 2, that is, d−(v) = 2. We split this situation into the

following 3 exhaustive cases.

– If d+(v) ≥ 1, then branching rule 3 would be applicable.
– Otherwise, d+(v) = 0. In this situation, if the graph has some 2 vertices

of in-degree 2 with a common in-neighbour then branching rule 4 is
applicable, otherwise branching rule 5 would be applicable.

Since, none of the reduction rules or branching rules are applicable, we conclude
that for all v ∈ V (D) \ {r}, d−(v) = 1.

Lemma 5 Let (D, k, r) be an instance of RESTRICTED PUMPKIN VERTEX DELE-
TION SET such that for all v ∈ V (D) \ {r}, d−(v) = 1, and d−(r) = 0. Then the
instance (D, k, s, t) can be solved in O(nO(1)) time, where n = |V (D)|.

Proof Since, for all v ∈ V (D) \ {r}, d−(v) = 1 and d−(r) = 0, and observe that
(D, k, r) is a YES instance if and only if D is an out-tree with r as the root vertex
and k ≥ 0.

In the next lemma, we formally prove the correctness of our algorithm.

Lemma 6 The algorithm for RESTRICTED OUT-TREE VERTEX DELETION SET

described above is correct.

Proof Let I = (D, k, r) be an instance of ROTVDS. We prove the correctness of
the algorithm by induction on μ = μ(I) = k. The base case occurs in one of the
following cases.

• If μ ≤ 0, the algorithm correctly concludes whether (D, k, r) is a YES / NO
instance from reduction rules 1 to 3.

• If μ ≥ 0 and D is an out-tree, the algorithm correctly concludes that (D, k, s, t)

is a YES instance from reduction rule 3.
• If for all v ∈ V (D) \ {r}, d−(v) = 1 and d−(r) = 0, then from Lemma 5,

(D, k, r) is a YES instance if and only if k ≥ 0 and D is an out-tree with r as its
root vertex.

• If r does not belong to V (D), the algorithm correctly concludes that (D, k, r) is
a NO instance from reduction rule 7.

By induction hypothesis we assume that for all μ ≤ l, the algorithm is correct.
We will now prove that the algorithm is correct when μ = l + 1. The algorithm

Theory Comput Syst (2018) 62:1880–1909 1899

does one of the following. Either applies one of the reduction rules if applicable.
By the safeness of the reduction rules we either correctly conclude that I is a YES/
NO instance or produces an equivalent instance I ′ with μ(I ′) ≤ μ(I). If μ(I ′) <

μ(I), then by induction hypothesis and safeness of the reduction rules the algorithm
correctly decides if I is a YES instance or not. Otherwise, μ(I ′) = μ(I). If none
of the reduction rules are applicable then the algorithm applies the first applicable
Branching Rules. If some branching rule is applicable then, since μ decreases in
each of the branch by at least one, by induction hypothesis the algorithm correctly
concludes that I is a YES / NO instance. If none of the branching rules are applicable,
then from Lemma 5, if I = (D, k, s, t), then for all v ∈ V (D) \ {r}, d−(v) = 1 and
d−(r) = 0. Thus, in this case the base case appears and hence, we conclude that the
algorithm always outputs the correct answer.

Next, we analyse the running of the algorithm presented.

Theorem 3 The algorithm described above solves RESTRICTED OUT-TREE VER-
TEX DELETION SET in time O�(2.562k).

Proof The reduction rules 1 to 7 can be applied in time polynomial in the input size.
Also, at each of the branch we spend a polynomial amount of time. At each of the
recursive calls in a branch, the measure μ decreases at least by 1. When μ ≤ 0, then
we are able to solve the remaining instance in polynomial time or correctly conclude
that the corresponding branch cannot lead to a solution. At the start of the algorithm
μ = k.

The worst-case branching vector for the algorithm is (1, 2, 2, 2, 2) (see Table 3).
The recurrence for the worst case branching vector is:

T (μ) ≤ T (μ − 1) + 4T (μ − 2)

The running time corresponding to the above recurrence relation is O�(2.562k).

Theorem 3 together with the guessing step of r described in the beginning of the
section gives us the following theorem.

Table 3 The branch vectors
and their corresponding running
times for ROTVDS

Branching Rule (BR) Case/Sub-Case Branch vector cμ

BR 1 (1, 1) 2μ

BR 2 (1, 2, 2, 2) 2.303μ

BR 3 a.i (1, 1, 2) 2.41422μ

a.ii (1, 2, 2, 2, 2) 2.562μ

b (2, 1, 1) 2.41422μ

BR 4 a (1, 1, 2) 2.41422μ

b (1, 2, 2, 2, 2) 2.562μ

BR 5 a (2, 1, 1) 2.41422μ

b (1, 1) 2μ

Theory Comput Syst (2018) 62:1880–19091900

Theorem 4 OUT-TREE VERTEX DELETION SET can be solved in timeO�(2.562k).

5 FPT Algorithm for OUT-FOREST VERTEX DELETION SET

In this section, we give a branching algorithm for OUT-FOREST VERTEX DELE-
TION SET (OFVDS). We start with a small description of our algorithm. Let
(D, k) be an instance of OTVDS. Unlike our algorithm for PVDS or OTVDS,
this algorithm does not require the initial guessing step. Also, the reduction rules
and branching rules are designed so that when they are not applicable, the graph
is empty. In other words, at any point of time, there always exists a vertex for
which some reduction rule or branching rule is applicable. To achieve this trivial
base case, the algorithm first eliminates (by branching over them) all vertices with
in-degree at least 3, followed by the elimination of vertices with in-degree 0, then
in-degree 1 vertices and finally vertices with in-degree 2. In the intermediate cases,
it branches on vertices based on other factors like their out-degree and common-
neighbours. These intermediate cases help the algorithm to branch in the main cases
efficiently.

Next, we proceed to the details of the algorithm. The measure μ that is used to
bound the depth of the search tree is the solution size, that is μ(D, k) = k.

With a slight abuse of notation, in the following, during the application of any
reduction/branching rule we will refer to (D, k, s, t) as the instance that is reduced
with respect to the rules in higher preference order. The algorithm first applies the
following reduction rules exhaustively.

Reduction Rule 1 If k < 0, or k = 0 and D is not an out-forest, then return (D, k)

is a NO instance.

Reduction Rule 2 If k ≥ 0 and D is an out-forest, then return (D, k) is a YES
instance.

The safeness of reduction rule 1 and 2 is easy to see. Next we give some of the
reduction rules which will eliminate certain irrelevant vertices in the digraph.

Reduction Rule 3 For any v ∈ V (D), if d+(v) = 0 and d−(v) ≤ 1 then delete v.
That is, the resulting instance is (D − {v}, k).

Reduction Rule 4 Let (u, v) ∈ E(D) such that d−(v) = 1, d+(u) = 1 and
all the out-neighbours of v have in-degree exactly 1. Let {w1, . . . , wl} be the out-
neighbours of v. Delete v from the graph and add the edges {(u, wi) | i ∈
[l]} to the graph. Let D′ be the resulting graph. That is, the resulting instance
is (D′, k).

Reduction Rule 5 Let v ∈ V (D) such that d−(v) = 0 and all out-neighbours of v

have in-degree exactly 1. Then delete v from the graph. That is, the resulting instance
is (D − {v}, k).

Theory Comput Syst (2018) 62:1880–1909 1901

Observe that each of the above-mentioned reduction rules can be applied in
polynomial time. The safeness of reduction rules 3 to 5 is given by Lemma 7 to
Lemma 9.

Lemma 7 Reduction rule 3 is safe.

Proof Let v ∈ V (D) be a vertex such that d+(v) = 0 and d−(v) ≤ 1. Let D′ =
D − {v}. We need to prove that (D, k) is a YES instance if and only if (D′, k) is a
YES instance. For the forward direction, let S be an out-forest deletion set in D of
size at most k. Since D′ − (S \ {v}) is a sub-graph of D − S, therefore, it follows that
S \ {v} is an out-forest deletion set in D′.

For the backward direction, let S be an out-forest deletion set in D′ of size at most
k. If d−(v) = 0, then clearly, S is also an out-forest deletion set in D. Otherwise, let
u be the unique in-neighbour of v in D. If u ∈ S, then (D′ − S) ∪ {v} is an out-forest
with v as an isolated vertex. Otherwise, u �∈ S, then (D′ − S) ∪ {v} is an out-forest
where v is in the out-tree of D′ − S that contains u. Therefore, S is an out-forest
deletion set in D.

Lemma 8 Reduction rule 4 is safe.

Proof Let (u, v) ∈ E(D) such that d−(v) = 1 and all the out-neighbours of v have
in-degree exactly 1. Let {w1, . . . , wl} be the out-neighbours of v. Also, D′ be the
graph obtained after deleting v from D and adding the edges {(u, wi) | i ∈ [l]} to
D. We need to prove that (D, k) is a YES instance if and only if (D′, k) is a YES
instance. For the forward direction, let S be an out-forest deletion set in D of size at
most k, F = D − S and W = {w1, . . . , wl} \ S. If u ∈ S, then F − {v} = D′ − S.
Thus, S is an out-forest of D′. If u �∈ S and v ∈ S, then let S′ = (S \ {v}) ∪ {u}.
Then F − {u} = D′ − S′. Hence, S′ is an out-forest deletion set in D′ of size at
most k. Otherwise, u, v �∈ S. Let F ′ be a digraph where V (F ′) = V (F) \ {v} and
E(F ′) = (E(F) \ (u, v)) ∪ {(u, wi) | wi ∈ W }. Observe that F ′ is obtained after
contracting the edge (u, v) and out-forests are closed under contraction. Therefore,
F ′ is an out-forest and F ′ = D′ − S. Hence S is an out-forest deletion set of D′.

For the backward direction, let S be an out-forest deletion set in D′ of size at most
k, F = D′ − S and W = {w1, . . . , wl} \ S. Suppose u �∈ S. Let F ′ be a digraph
where V (F ′) = V (F) ∪ {v} and E(F ′) = (E(F) \ {(u, wi) | wi ∈ W }) ∪ {(v, wi) |
wi ∈ W } ∪ (u, v). Clearly F ′ is an out-forest and F ′ = D − S. Therefore, S is an
out-forest deletion set in D. On the other hand, if u ∈ S then, since each wi ∈ W

has in-degree exactly 1 in D′, each wi ∈ W is a root in F . Let F ′ be a digraph where
V (F ′) = V (F) ∪ {v} and E(F ′) = E(F) ∪ {(v, wi) | wi ∈ W }. Clearly F ′ is an
out-forest and F ′ = D − S. Hence S is an out-forest deletion set of D.

Lemma 9 Reduction rule 5 is safe.

Proof Let v ∈ V (D) such that d−(v) = 0, w1, . . . , wl are the out-neighbours of
v such that for all i ∈ [l], d−(wi) = 1. Let D′ = D − v. We need to prove that
(D, k) is a YES instance if and only if (D′, k) is a YES instance. For the forward

Theory Comput Syst (2018) 62:1880–19091902

direction, let S be an out-forest deletion set in D of size at most k. Then S \ {v}
is an out-forest deletion set of D − v. For the backward direction, let S be an out-
forest deletion set in D′ of size at most k, F = D − S and W = {w1, . . . , wl} \ S.
Note that for all i ∈ [l], wi has in-degree 0 in D′. For all wi ∈ W , let Ti be the
out-tree of F containing wi . Note that there is a unique Ti for each wi and wi is
the root of Ti . Consider another out-tree T where V (T) = ∪wi∈WV (Ti) ∪ {v} and
E(Ti) = ∪wi∈WV (Ti) ∪ {(v, wi) | wi ∈ W }. Clearly (F − ∪wi∈WV (Ti)) ∪ T is an
out-forest of D − S. Hence S is an out-forest deletion set of D.

We now describe the branching rules used by the algorithm. Our algorithm applies
5 branching rules in order. Before giving the details of the branching rules, we first
mention the invariants maintained by the algorithm after the exhaustive application
of each of the branching rules.

Branching Rule 1 For all v ∈ V (D), d−(v) ≤ 2. Also, if for any v1, v2 ∈ V (D)

such that d−(v1) = d+(v2) = 2, then v1 and v2 have no common in-neighbour.
Branching Rule 2 For all v ∈ V (D), d+(v) ≥ 1.
Branching Rule 3 For all v ∈ V (D), d−(v) ≥ 1.
Branching Rule 4 For all v ∈ V (D), if d−(v) = 1, then d+(v) ≥ 2.
Branching Rule 5 D is an empty graph.

Since after the exhaustive application of branching rules 1–5, the graph is empty,
either reduction rule 1 or 2 would be applicable. In other words, when none of the
branching rules are applicable, the input instance will be trivial to solve.

We now give the description of the branching rules. The cases under which each
branching rule is applied is described pictorially in Fig. 3. From the description of
the branching rules it is easy to see that each branching rule is exhaustive.

We first define a hitting triplet. For any v1, v2, v3 ∈ V (D), (v1, v2, v3) is called
a hitting triplet in D if there exists i ∈ [3] such that vi has in-degree at least 2 and
vj , v�, j, � ∈ [3] \ {i}, are some in-neighbours of vi . Observe that if (v1, v2, v3) is
a hitting triplet in D, then any out-forest deletion set of D contains at least one of
v1, v2 or v3.

Branching Rule 1 If (v1, v2, x) and (v3, v4, x) are two distinct hitting triplets in D

then branch as follows.

• When x belongs to the solution, the resulting instance is (D − {x}, k − 1).
• When x does not belong to the solution, at least one of v1, v2 and one of v3, v4

belongs to the solution. When v1, v2, v3, v4 are distinct, the resulting instances
in the respective branches are as follows.

– When v1, v3 belongs to the solution, the resulting instance is (D −
{v1, v3}, k − 2).

– When v1, v4 belongs to the solution, the resulting instance is (D −
{v1, v4}, k − 2).

– When v2, v3 belongs to the solution, the resulting instance is (D −
{v2, v3}, k − 2).

– When v2, v4 belongs to the solution, the resulting instance is (D −
{v2, v4}, k − 2).

Theory Comput Syst (2018) 62:1880–1909 1903

Fig. 3 The structures in the branching rules of OFVDS

We are now in the case when v1, v2, v3, v4 are not all distinct. Since (v1, v2, x)

and (v3, v4, x) are hitting triplets, v1 �= v2 and v3 �= v4. Without loss of general-
ity, let v1 = v3 (the other cases are symmetric). Since (v1, v2, x) and (v3, v4, x)

are distinct hitting triplets and v1 = v3, v2 �= v4. In this case, the resulting
instances in the respective branches are as follows.

– When v1 belongs to the solution, the resulting instance is (D − {v1},
k − 1).

– When v1 does not belong to the solution (and x does not belong to the
solution), both v2 and v4 belong to the solution. In this case, the resulting
instance is (D − {v2, v4}, k − 2).

The branching vector for this rule is either (1, 2, 2, 2, 2) or (1, 1, 2) depending on
the case we are in.

Observe that after the application of Branching Rule 1, for each v ∈ V (D),
d−(v) ≤ 2. Suppose not. Let x, y, z be some three in-neighbours of v, then (v, x, y)

and (v, x, z) form hitting triplets in D and hence Branching Rule 1 is applicable.
Also, after the application of this branching rule, for any v1, v2 ∈ V (D) such that
d−(v1), d

−(v2) = 2, v1 and v2 have no common in-neighbour.

Branching Rule 2 If v ∈ V (D) is such that d+(v) = 0, then since reduction rule 3
and branching rule 1 are not applicable, d−(v) = 2.

Let u1, u2 be the in-neighbours of v. Note that one of v, u1, u2 must belong to the
solution. Now observe that if there is an out-forest deletion set of D, say S, such that

Theory Comput Syst (2018) 62:1880–19091904

v ∈ S then (S \ {v}) ∪ {ui}, for any i ∈ [2], is also an out-forest deletion set of D.
Thus in this case it is enough to branch as follows.

• When u1 belongs to the solution, the resulting instance is (D − {u1}, k − 1).
• When u2 belongs to the solution, the resulting instance is (D − {u2}, k − 1).

The branching vector for this rule is (1, 1).
The next rule handles vertices that have in-degree 0. Note that if there is a vertex

with in-degree 0 and its out-degree is 0 then reduction rule 3 would be applicable.
If its in-degree is 0 and all its out-neighbours have in-degree exactly 1 then reduc-
tion rule 5 would be applicable. If two of its out-neighbours have in-degree 2 then
Branching Rule 1 would be applicable. Thus, if none of the reduction rules and the
above-mentioned branching rules are applicable, then any vertex which has in-degree
0 has at least one out-neighbour and exactly one of its out-neighbours has in-degree
exactly two.

Branching Rule 3 If v ∈ V (D) such that d−(v) = 0, {w1, . . . , wl} are the out-
neighbours of v (l ≥ 1), for all i ∈ {2, . . . , l}, d−(wi) = 1 and d−(w1) = 2, then let
x be the other in-neighbour of w1 (x may be one of wi).

In this case, we claim that if S is an out-forest deletion set of D that contains v

then (S \ {v}) ∪ {w1} is also an out-forest deletion set of D. For the proof of this,
observe that each wi ∈ {w1, . . . , wl}\S is a root in D−S(= F , say), except probably
w1. Also d−(v) = 0. Therefore (F ∪ {v}) \ {w1} is also an out-forest. Thus, S′ is an
out-forest deletion set of D. Therefore, it is enough to branch as follows.

• When x belongs to the solution, the resulting instance is (D − {x}, k − 1).
• When w1 belongs to the solution, the resulting instance is (D − {w1}, k − 1).

The branching vector in this branching rule is (1, 1). Again, note that hereafter,
every vertex in the digraph has in-degree either 1 or 2. The upcoming branching rules
4 and 5, deal with vertices that have in-degree 1.

If v ∈ V (D) such that d−(v) = 1 and d+(v) = 1, then if the unique out-
neighbour, say w, of v has out-degree 0, then either reduction rule 3 or branching rule
2 would be applicable. If d−(w) = 1 then, if d+(w) = 1 then reduction rule 4 would
be applicable, and if d+(w) ≥ 2 then reduction rule 4 would be applicable. Thus the
case when in-degree of w is 1, is handled.

Branching rule 4 deals with the situation when there is a vertex v with in-degree 1
and out-degree 1 and its unique out-neighbour has in-degree 2. Thus, when none of
the reduction rules and branching rules 1 to 4 are applicable, for any vertex v, either
d−(v) = 2 and d+(v) ≥ 1, or if d−(v) = 1 then d+(v) ≥ 2.

Branching Rule 4 If v ∈ V (D) such that d−(v) = 1 and d+(v) = 1, then if the
unique out-neighbour, say w, has in-degree 2, then let x be the other in-neighbour
of w.

We first make the following claim. If S is an out-forest deletion set in D such that
v ∈ S, then (S \ {v})∪{w} is also an out-forest deletion set in D. This is true because
if F = D − S is an out-forest then so is (F − {w}) ∪ {v}. Thus, in this case, the
algorithm branches on x as follows.

Theory Comput Syst (2018) 62:1880–1909 1905

• When x belongs to the solution, the resulting instance is (D − {x}, k − 1).
• When w belongs to the solution, the resulting instance is (D − {w}, k − 1).

The branching vector for this rule is (1, 1). Recall that, when none of the reduction
rules and branching rules 1 to 4 are applicable, for any vertex v, either d−(v) = 2
and d+(v) ≥ 1, or if d−(v) = 1 then d+(v) ≥ 2.

Let v be a vertex with in-degree 1 and out-degree at least 2. Let {w1, . . . , wl} be
the out-neighbours of v. Then if all the out-neighbours of v have in-degree exactly
1, reduction rule 4 would be applicable. Also, if two of the in-neighbours have in-
degree 2, then branching rule 1 would be applicable. Thus, without loss of generality
assume that d−(w1) = 2 and for all i ∈ {2, . . . , l}d−(wi) = 1. Let x be the other
in-neighbour of w1. The case when x = w2 will be handled in case 5.a. Otherwise,
x, v, w1, w2 are all distinct. Now observe that d+(w2) ≥ 2, otherwise branching rule
4 was applicable on w2. Also, all the out-neighbours of w2 except 1 have in-degree 1,
otherwise either reduction rule 4 was applicable or branching rule 1 was applicable on
w2. Let z1 be the out-neighbour of w2 of in-degree 2. Let y be the other in-neighbour
of z1. Observe that (v, w1, x) and (w2, z1, y) are hitting triplets in D. If (v, w1, x)

and (w2, z1, y) are not distinct hitting triplets, then x = w2 and we are in Case 5.a.
Otherwise, since Branching Rule 1 is not applicable, all of v, w1, x, w2, z1, y are
distinct. This case is handled in Case 5.b.

After presenting the Cases 5.a and 5.b, we will discuss why after the exhaustive
application of all the described reduction and branching rules, there is no vertex v

such that either d−(v) = 2 and d+(v) ≥ 1. This will show that after the exhaus-
tive application of all the described reduction and branching rules, the graph is
empty.

Branching Rule 5 Let v ∈ V (D) be such that d−(v) = 1 and d+(v) = l ≥ 2. Let
{w1, . . . , wl} be the set of out neighbours of v and let d−(w1) = 2 and d−(wi) = 1
for all i ∈ {2, . . . , l}. Let x be the other in-neighbour of w1. Let d+(w2) = p ≥ 2.
Let {z1, . . . , zp} be the out-neighbours of w2 and let d−(z1) = 2 and for all i ∈
{2, . . . , p}, d−(zi) = 1. Let y be the other in-neighbour of z1.

In this case, the algorithm considers the following sub-cases.

Case 5.a If x = w2, then observe that (w2, w1) ∈ E(D). In this case, the algorithm
proceeds as follows.

We first claim the following. If S is an out-forest deletion set of D such that w2 ∈
S, then S′ = (S \ {w2}) ∪ {v} is an out-forest deletion set of D. To prove this, let
F = D − S. Note that each out-neighbour of w2 in F except possibly w1, is a root
of some out-tree in F . This is because for all the out-neighbours of w2, except w1,
w2 is their unique in-neighbour. In fact, in D − (S ∪ {v}), every neighbour of w2
in D − (S ∪ {v}) is an out-neighbour of w2 in D and is a root of some out-tree in
D − (S ∪ {v}). Therefore, D \ ((S ∪ {v}) \ {w2}) is an out-forest. In other words,
(S ∪ {v}) \ {w2} is a solution of size at most k in D. This finishes the proof of the
claim.

Thus, the algorithm branches as follows.

• When w1 belongs to the solution, the resulting instance is (D − {w1}, k − 1).

Theory Comput Syst (2018) 62:1880–19091906

• When w1 does not belong to the solution and (D, k) is a YES instance, then there
is a solution that contains v. Therefore the resulting instance is (D − {v}, k − 1).

The branching vector in this case is (1, 1).

Case 5.b Let v, w1, x, w2, z1, y be all distinct vertices. In this case, the algorithm
branches as follows.

• When x belongs to the solution, the resulting instance is (D − {x}, k − 1).
• When x does not belong to the solution, the algorithm branches on w1 as follows.

– Whenw1 belongs to the solution, the resulting instance is (D−{w1}, k−1).
– When w1 does not belong to the solution, then v must belong to the

solution. Therefore delete v. Note that after deleting v from the graph
w2 becomes an in-degree 0 vertex and all its out-neighbours have in-
degree exactly 1 except for z1. Therefore as argued before, if there is a
solution that contains w2 then there is another solution that avoids w2
and contains z1. Thus, the algorithm branches as follows.

When y belongs to the solution, the resulting instance is (D −
{v, y}, k − 2).
When y does not belong to the solution, delete z1 from the graph,
that is, the resulting instance is (D − {v, z1}, k − 2).

The branching vector in this case is (1, 1, 2, 2).
Let v ∈ V (D) be such that d−(v) = 2 and d+(v) ≥ 1. Let w be some out-

neighbour of v. If in-degree of w is 1, then reduction rule 3, branching rule 4 or
branching rule 5 would have applied on w. Otherwise, in-degree of w is 2. Let x be
the other in-neighbour of w and u1, u2 be the in-neighbours of v. In this case, observe
that (x, w, v) and (v, u1, u2) are hitting triplets in D and hence Branching Rule 1 is
applicable.

Observe that when none of the above-mentioned reduction rules and cases are
applicable, the graph is empty, that is there are no-vertices in the graph.

The following theorem proves the correctness of the algorithm presented.

Theorem 5 The presented algorithm for OUT-FOREST VERTEX DELETION SET is
correct.

Proof Let I = (D, k) be an instance of OUT-FOREST VERTEX DELETION SET. We
prove the correctness of the algorithm by induction on μ = μ(I) = k. The base case
occurs in one of the following cases.

• μ <= 0 we correctly conclude whether (D, k) is a yes instance or not by
reduction rule 1 or reduction rule 2.

• μ > 0 and D is an out-forest then we correctly conclude that (D, k) is a YES
instance by reduction rule 2.

By induction hypothesis we assume that for all μ ≤ l, the algorithm is correct.
We will now prove that the algorithm is correct when μ = l + 1. The algorithm

Theory Comput Syst (2018) 62:1880–1909 1907

Table 4 The branch vectors
and their corresponding running
times for OFVDS

Branching Rule (BR) Case/Sub-Case Branch vector cμ

BR 1 (1, 2, 2, 2) 2.303μ

(1, 1, 2) 2.41422μ

BR 2 (1, 1) 2μ

BR 3 (1, 1) 2μ

BR 4 (1, 1) 2μ

BR 5 a (1, 1) 2μ

b (1, 1, 2, 2) 2.7321μ

does the following. It applies one of the reduction rules if applicable. By the safeness
of the reduction rules the algorithm either correctly concludes that I is a YES/ NO
instance or produce an equivalent instance I ′ with μ(I ′) ≤ μ(I). If μ(I ′) < μ(I),
then by induction hypothesis and safeness of the reduction rules the algorithm cor-
rectly decides if I is a yes instance or not. Otherwise, μ(I ′) = μ(I). If none
of the reduction rules are applicable then the algorithm applies the first applica-
ble Branching Rules. Branching Rules are exhaustive and covers all possible cases.
Furthermore, μ decreases in each of the branch by at least one. Therefore, by the
induction hypothesis, the algorithm correctly decides whether I is a yes instance
or not.

Theorem 6 OUT-FOREST VERTEX DELETION SET can be solved inO∗((1+√
3)k).

Proof The reduction rules 1 to 5 can be applied in time polynomial in the input size.
Also, at each of the branch we spend a polynomial amount of time. At each of the
recursive calls in a branch, the measure μ decreases by at least 1. When μ ≤ 0,
then reduction rule 1 or 2 is applicable and hence the algorithm correctly returns the
answer and terminate. At the start of the algorithm μ = k.

The worst-case branching vector for the algorithm is (1, 1, 2, 2) (see Table 4). The
recurrence for the worst case branching vector is:

T (μ) ≤ 2T (μ − 1) + 2T (μ − 2)

The running time corresponding to the above recurrence relation is O�((1 + √
3)k).

Acknowledgements We thank the anonymous reviewers for their useful comments on improving the
presentation of this article.

References

1. Abu-Khzam, F.N.: A kernelization algorithm for d-Hitting Set. JCSS 76(7), 524–531 (2010)
2. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set

problem. SIDMA 12(3), 289–297 (1999)
3. Bang-Jensen, J., Maddaloni, A., Saurabh, S.: Algorithms and kernels for feedback set problems in

generalizations of tournaments. Algorithmica 76(2), 320–343 (2016)

Theory Comput Syst (2018) 62:1880–19091908

4. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for the feedback vertex
set problem with applications to constraint satisfaction and Bayesian inference. SICOMP 27(4), 942–
959 (1998)

5. Becker, A., Geiger, D.: Optimization of pearl’s method of conditioning and greedy-like approximation
algorithms for the vertex feedback set problem. Artif. Intell 83(1), 167–188 (1996)

6. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures. In: SWAT, pp.
93–104 (2010)

7. Chekuri, C., Madan, V.: Constant factor approximation for subset feedback problems via a new LP
relaxation. In: SODA, pp. 808–820 (2016)

8. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set
problems. JCSS 74(7), 1188–1198 (2008)

9. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm for the directed
feedback vertex set problem. Journal of the ACM (JACM) 55(5), 21 (2008)

10. Chitnis, R.H., Cygan, M., Hajiaghayi, M.T., Marx, D.: Directed subset feedback vertex set is fixed-
parameter tractable. TALG 11(4), 28 (2015)

11. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M.,
Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

12. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., Rooij, J.M.M., Wojtaszczyk, J.O.: Solving con-
nectivity problems parameterized by treewidth in single exponential time. In: FOCS, pp. 150–159 (2011)

13. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex set is fixed-
parameter tractable. SIDMA 27(1), 290–309 (2013)

14. Diestel, R.: Graph Theory, 4th edn. Springer, Berlin (2012)
15. Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truß, A.: Fixed-parameter tractability results for

feedback set problems in tournaments. JDA 8(1), 76–86 (2010)
16. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, Berlin (1997)
17. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Berlin (2013)
18. Erdős, P., Pósa, L.: On independent circuits contained in a graph. Canad. J. Math. 17, 347–352 (1965)
19. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in

directed graphs. Algorithmica 20(2), 151–174 (1998)
20. Fomin, F.V., Gaspers, S., Lokshtanov, D., Saurabh, S.: Exact algorithms via monotone local search.

In: STOC, pp. 764–775 (2016)
21. Guruswami, V., Lee, E.: Inapproximability of H-transversal/packing. In: APPROX/RANDOM,

pp. 284–304 (2015)
22. Kakimura, N., Kawarabayashi, K., Kobayashi, Y.: Erdös-Pósa property and its algorithmic applica-

tions: parity constraints, subset feedback set, and subset packing. In: SODA, pp. 1726–1736 (2012)
23. Kakimura, N., Kawarabayashi, K., Marx, D.: Packing cycles through prescribed vertices. J. Comb.

Theory, Ser. B 101(5), 378–381 (2011)
24. Kawarabayashi, K., Kobayashi, Y.: Fixed-parameter tractability for the subset feedback set problem

and the S-cycle packing problem. J. Comb. Theory, Ser. B 102(4), 1020–1034 (2012)
25. Kawarabayashi, K., Král, D., Krcál, M., Kreutzer, S.: Packing directed cycles through a specified

vertex set. In: SODA, pp. 365–377 (2013)
26. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. IPL 114(10), 556–560 (2014)
27. Mehlhorn, K.: Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness, EATCS

Monographs on Theoretical Computer Science, vol. 2. Springer, Berlin (1984)
28. Mnich, M., van Leeuwen, E.J.: Polynomial kernels for deletion to classes of acyclic digraphs. In:

STACS, pp. 1–13 (2016)
29. Pontecorvi, M., Wollan, P.: Disjoint cycles intersecting a set of vertices. J. Comb. Theory, Ser. B

102(5), 1134–1141 (2012)
30. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for finding

feedback vertex sets. TALG 2(3), 403–415 (2006)
31. Raman, V., Saurabh, S., Suchẏ, O.: An FPT algorithm for tree deletion set. J. Graph Algorithms Appl.

17(6), 615–628 (2013)
32. Reed, B.A., Robertson, N., Seymour, P.D., Thomas, R.: Packing directed circuits. Combinatorica

16(4), 535–554 (1996)
33. Seymour, P.D.: Packing directed circuits fractionally. Combinatorica 15(2), 281–288 (1995)
34. Seymour, P.D.: Packing circuits in eulerian digraphs. Combinatorica 16(2), 223–231 (1996)
35. Wahlström, M.: Half-integrality, LP-branching and FPT Algorithms. In: SODA, pp. 1762–1781 (2014)

Theory Comput Syst (2018) 62:1880–1909 1909

	Parameterised Algorithms for Deletion to Classes of DAGs
	Abstract
	Introduction
	Our Results and Methods

	Preliminaries
	Graphs
	Branching Algorithm
	Analysing the Running Time of Branching Algorithms—Bounded Search Trees

	FPT Algorithm for Pumpkin Vertex Deletion Set
	Branching Rule 1
	Branching Rule 2
	Branching Rule 3
	Branching Rule 4
	Case 4.a
	Case 4.b
	Branching Rule 5
	Case 5.a
	Case 5.b
	Sub-case 5.b.i
	Sub-case 5.b.ii
	Sub-case 5.b.iii

	FPT Algorithm for Out-Tree Vertex Deletion Set
	Branching Rule 1
	Branching Rule 2
	Branching Rule 3
	Case 3.a
	Sub-case 3.a.i
	Sub-case 3.a.ii
	Case 3.b
	Branching Rule 4
	Case 4.a
	Case 4.b
	Branching Rule 5
	Case 5.a
	Case 5.b

	FPT Algorithm for Out-Forest Vertex Deletion Set
	Branching Rule 1
	Branching Rule 2
	Branching Rule 3
	Branching Rule 4
	Branching Rule 5
	Case 5.a
	Case 5.b

	Acknowledgements
	References

