
Critical node cut parameterized by treewidth and
solution size is W[1]-hardI

Akanksha Agrawala,∗, Daniel Lokshtanova, Amer E. Mouawada

aUniversity of Bergen, Bergen, Norway.

Abstract

In the Critical Node Cut problem, given an undirected graph G and two
non-negative integers k and µ, the goal is to find a set S of exactly k vertices such
that after deleting S we are left with at most µ connected pairs of vertices. In
2015, Hermelin et al. studied the aforementioned problem under the framework of
parameterized complexity. They considered various natural parameters, namely,
the size k of the desired solution, the upper bound µ on the number of remaining
connected pairs, the lower bound b on the number of connected pairs to be
removed, and the treewidth tw(G) of the input graph G. For all but one
combination of the above parameters, they determined whether Critical Node
Cut is fixed-parameter tractable and whether it admits a polynomial kernel.
The only question they left open is whether the problem remains fixed-parameter
tractable when parameterized by k + tw(G). We answer this question in the
negative via a new problem of independent interest, which we call SumCSP.
We believe that SumCSP can be a useful starting point for showing hardness
results of the same nature, i.e., when the treewidth of the graph is part of the
parameter.

Keywords: parameterized complexity, W[1]-hardness, SumCSP

1. Introduction

Consider the following problem, called Critical Node Cut (or CNC for
short). We are given an undirected graph G and two non-negative integers k
and µ. The goal is to determine whether there exists a subset of the vertices

IA preliminary version of this manuscript has been accepted for publication at the 43rd
International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2017).
The research leading to these results received funding from the BeHard grant under the
recruitment programme of the of Bergen Research Foundation and the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC
Grant Agreements no. 306992 (PARAPPROX).
∗Corresponding author.
Email addresses: akanksha.agrawal@uib.no (Akanksha Agrawal), daniello@ii.uib.no

(Daniel Lokshtanov), a.mouawad@uib.no (Amer E. Mouawad)

Preprint submitted to Elsevier March 16, 2018

of G, say S, of size (exactly) k such that, in the graph G− S, we are left with
at most µ connected pairs of vertices; G− S denotes the graph obtained from
G after deleting vertices in S and the edges incident on them. Alternatively, if
we let C(G− S) = {C1, . . . , C`}, for some integer `, denote the set of connected
components in G − S, the objective is to guarantee that

∑
C∈C(G−S)

(
C
2

)
≤ µ.

The CNC problem, having many real-world applications such as controlling the
spread of viruses in networks [1], has been investigated from various algorithmic
perspectives, e.g., heuristics [2] and approximations algorithms [3]. For µ = 0,
CNC is exactly the same as the Vertex Cover problem, therefore, CNC is
NP-complete. On the positive side, it is known that CNC can be solved in
polynomial time if we restrict the input graph to trees [4]. More generally, for
graphs of bounded treewidth, CNC can be solved in O(|V (G)|tw(G)+1) time [5],
where tw(G) is the treewidth of G. We refer the reader to [1] for a more extensive
survey on CNC and its applications.

Table 1: Summary of results due to Hermelin et al. [1].

Parameter Result
k µ b tw(G) FPT Polynomial kernel
X no no

X no no
X yes no

X no no
X X yes yes
X X yes no
X X open no

X X yes yes
X X yes no

X X yes no
X X X yes yes
X X X yes yes
X X X yes no

X X X yes yes
X X X X yes yes

Hermelin et al. [1] initiated the study of the parameterized complexity of
CNC. In parameterized complexity [6], we are interested in whether the problem
can be solved in f(κ) · |V (G)|O(1) time, for various natural parameters κ and
some function f . Alternatively, one can also ask whether or not CNC admits
a polynomial kernel for parameter κ, i.e., whether there is an algorithm that
reduces any instance of CNC in polynomial time to an equivalent instance of size
κO(1). There are quite a few natural choices for κ in this case and the following
choices were considered by Hermelin et al. [1].

• The size k of the desired solution.

• The upper bound µ on the number of remaining connected pairs.

2

• The lower bound b on the number of connected pairs to be removed.

• The treewidth tw(G) of the input graph G.

For all but one combination of the above parameters, Hermelin et al. deter-
mined whether Critical Node Cut is fixed-parameter tractable (FPT) and
whether it admits a polynomial kernel. These results are summarized in Table 1.

In this work, we complete the table by showing that CNC is W[1]-hard (or
equivalently not likely to be FPT) when parameterized by k + tw(G). We prove
this result via a new problem of independent interest, which we call SumCSP.
We believe that SumCSP can be a useful starting point for showing hardness
results of the same nature, i.e., when the treewidth of the graph is part of the
parameter.

Overview of the reduction. Our starting point is the 4-Regular Partitioned
Subgraph Isomorphism (PSI) problem, which is known to be W[1]-hard [7].
The problem is formally defined below.

4-Regular Partitioned Subgraph Isomorphism (PSI)
Input: A 4-regular pattern graph P with V (P) = {p1, p2, . . . , p`}, a host
graph H, and a coloring function col : V (H)→ [`].
Question: Does there exist an injective function φ : V (P) → V (H) such
that for each i ∈ [`], col(φ(pi)) = i and for each pipj ∈ E(P), we have
φ(pi)φ(pj) ∈ E(H)?
Parameter: |V (P)|.

We reduce PSI to SumCSP, which is formally defined next.

SumCSP
Input: A directed graph D with vertex set V (D) and arc set A(D), vertex
weight function wV : V (D) → N, arc weight function wA : A(D) → N, and
a list function ϕ : A(D) → 2N×N such that for all a ∈ A(D), and for all
(x, y) ∈ ϕ(a) we have x+ y = wA(a).
Question: Does there exists a function ρ : A(D) → N × N such that for
each a ∈ A(D), ρ(a) ∈ ϕ(a) and for each v ∈ V (D),

∑
u∈N+(v) fir(ρ(vu)) +∑

u∈N−(v) sec(ρ(uv)) = wV (v), where fir((x, y)) = x and sec((x, y)) = y?

Parameter: |A(D)|.

An illustration of an input instance to SumCSP and a corresponding solution
is given in Figure 1. Bodlaender et al. [8] introduced a very closely related
problem to show that Planar Capacitated Dominating Set is W[1]-hard.
Planar Capacitated Dominating Set was shown to be W[1]-hard via a
reduction from an intermediate problem called Planar Arc Supply. The
main difference between Planar Arc Supply and SumCSP is the additional
constraint we impose using the arc weight function, i.e., the fact that all pairs in
ϕ(a), a ∈ A(D), must sum to wA(a). This constraint turns out to be crucial for
our reduction. Roughly speaking, the reduction from PSI to SumCSP constructs
a directed graph D whose structure is more or less similar to the pattern graph

3

v1 v2 v3

v4

(2, 3)(1, 4)

(3, 2)

(5, 2)

(2, 5)

(3, 4)

(4, 3)

5
7

10

2 5

7

(2, 3)

(1, 4)

(1, 6)

(3, 4)

5

7

Figure 1: An instance of SumCSP and one corresponding solution. Here, blue and green
numbers are vertex and arc weights, respectively. Moreover, the list in black (and red) is a list
associated with each arc, and the pairs marked in red correspond to a valid solution.

P (and its size is linear in |V (P)|). Edges of H are encoded using the vertex and
arc weight functions as well as the function ϕ. Having established the hardness
of SumCSP, we then reduce SumCSP to Critical Note Cut. Let us first
state a formal definition of the latter problem.

Critical Node Cut (CNC)
Input: An undirected graph G and integers k and µ.
Question: Does there exist a set S ⊆ V (G) of size (exactly) k such that∑
C∈C(G−S)

(
C
2

)
≤ µ, where C(G − S) = {C1, . . . , C`} denotes the set of

connected components in G− S?
Parameter: k + tw(G).

As stated earlier, our reduction from SumCSP to CNC heavily relies on the arc
weight function. Another crucial ingredient is the following proposition (which

follows by the convexity of x(x−1)
2).

Proposition 1. Let x1, . . . , xk be non-negative integers and let x1 + . . .+ xk =
kn. Then,

∑i=k
i=1

(
xi

2

)
is minimized if xi = n, for all i. In other words,

∑i=k
i=1

(
xi

2

)
is minimized if

∑i=k
i=1

(
xi

2

)
= k

(
n
2

)
.

At a very high level, starting from an instance of SumCSP, we create a graph G
(of bounded treewidth) where an optimal solution for CNC must separate the
graph into a fixed number of connected components, all having the same size.

2. Preliminaries

We denote the set of natural numbers by N. For k ∈ N, by [k] we denote the set
{1, 2, . . . , k}. For sets X,Y , by X × Y we denote the set {(x, y) | x ∈ X, y ∈ Y }.
Furthermore, for (x, y) ∈ X × Y , we let fir((x, y)) = x and sec((x, y)) = y, i.e.,
the first and second coordinate of the (ordered) pair (x, y), respectively.

We use standard terminology from the book of Diestel [9] for graph-related
terms that are not explicitly defined here. We consider only finite graphs. For a
graph G, by V (G) and E(G) we denote the vertex and edge sets of G, respectively.

4

Similarly, for a directed graph or digraph D, by V (D) and A(D) we denote the
vertex and arc sets of D, respectively. For a graph G and v ∈ V (G), by NG(v)
we denote the set {u ∈ V (G) | vu ∈ E(G)}. For a digraph D and v ∈ V (D), by
N+
D (v) we denote the set {u ∈ V (D) | vu ∈ A(D)}, and by N−D (v) we denote

the set {u ∈ V (D) | uv ∈ A(D)}. We drop the subscript G (or D) from NG(v),
N+
D (v), or N−D (v) when the context is clear. For a vertex subset S ⊆ V (G), by

G[S] we denote the subgraph of G induced by S, i.e. the graph with vertex
set S and edge set {vu ∈ E(G) | v, u ∈ S}. By G − S we denote the graph
G[V (G) \ S].

A path in a graph is a sequence of vertices P = v1, v2, . . . , v` such that for
all i ∈ [`− 1], vivi+1 ∈ E(G). We say that such a path is a path between v1 and
v` or a v1 − v` path of length `− 1, and vertices v1, v2, . . . , v` lie on the path P .
Two vertices u, v ∈ V (G) are said to be connected if there exists a u− v path
in G. A graph is connected if there is a path between every pair of vertices. A
maximal connected subgraph of G is called a connected component of G. For a
pair of vertices u, v ∈ V (G), by distG(u, v) we denote the length of the shortest
path between u and v in G. For a graph G, by G2 we denote the graph with
vertex set V (G2) = V (G) and edge set E(G2) = {uv | distG(u, v) ≤ 2}

A tree is a connected graph without any cycles. Note that a tree on n vertices
has exactly n− 1 edges. A tree is said to be a rooted tree if exactly one vertex
in it has been designated as its root. A coloring of a graph G with α ∈ N colors
is a map ϕ : V (G)→ [α]. A coloring ϕ of G is said to be a proper coloring if for
each uv ∈ E(G), ϕ(u) 6= ϕ(v).

A tree decomposition of a graph is a pair (X , T), where an element X ∈ X is
a subset of V (G), called a bag, and T is a rooted tree with vertex set X satisfying
the following properties: (i) ∪X∈XX = V (G); (ii) For every uv ∈ E(G), there
exists X ∈ X such that u, v ∈ X; (iii) For all X,Y, Z ∈ X , if Y lies on the unique
path between X and Z in T , then X ∩ Z ⊆ Y . For a graph G and its tree
decomposition (X , T), the width of the tree decomposition (X , T) is defined to
be maxX∈X (|X| − 1). The treewidth of a graph G, tw(G), is the minimum of the
widths of all its tree decompositions. A path decomposition of a graph is a tree
decomposition (X , T), where T is a path. The width of a path decomposition is
defined to be maxX∈X (|X| − 1). The pathwidth of a graph G, pw(G) ≥ tw(G),
is the minimum of the widths of all its path decompositions.

A parameterized problem Π is a subset of Σ∗×N, where Σ is a finite alphabet.
An instance of a parameterized problem is a tuple (x, κ), where κ is called the
parameter. A parameterized problem is said to be fixed-parameter tractable (FPT)
if, for a given instance (x, κ), we can decide (x, κ) ∈ Π in time f(κ)·|x|O(1), where
f(·) is an arbitrary function depending only on κ. To prove that a problem is
FPT, it is possible to give an explicit algorithm, called a parameterized algorithm
(or FPT algorithm), which runs in time f(κ) · |x|O(1). On the other hand, to
show that a problem is unlikely to be FPT, it is possible to use a parameterized
reduction running in FPT time. In the following, we formally define the notion
of a parameterized reduction.

Definition 1. Let Π,Γ ⊆ Σ∗ × N be two parameterized problems. A parame-

5

H1 H2 H8 P8P2P1

ZZH
1 ZH

2 ZH
�

H 0 P 0

Figure 2: Construction of H′ and P ′.

terized reduction from Π to Γ is an algorithm that, given an instance (x, k) of Π,
outputs an instance (x′, k′) of Γ such that the following conditions are satisfied:

1. (x, k) is a yes-instance of Π if and only if (x′, k′) is a yes-instance of Γ,

2. k′ ≤ g(k), where g(·) is some (non-decreasing) computable function, and

3. the running time of the algorithm is bounded by f(k)|x|O(1), where f(·) is
some (non-decreasing) computable function.

We say that an instance (x, k) of Π and (x′, k′) of Γ are equivalent if (x, k) is a
yes-instance of Π if and only if (x′, k′) is a yes-instance of Γ. We note that, if there
is a parameterized reduction from a parameterized problem Π to a parameterized
problem Γ, and Γ is FPT, then Π is also FPT. The notion of parameterized
reduction is analogous to the concept of reductions in classical complexity theory.
Here, the notion of W[1]-hardness replaces that of NP-hardness. For more details
on parameterized complexity we refer to the books of Downey and Fellows [6],
Flum and Grohe [10], Niedermeier [11], and the recent book by Cygan et al. [12].

3. W[1]-hardness of SumCSP

Let (P,H, col : V (H)→ [`]) be an instance of PSI, where V (P) = {pi | i ∈
[`]} and V (H) = {hi | i ∈ [n]}. For i ∈ [`], we let CHi = {h ∈ V (H) | col(h) = i}.
We make a few assumption and adopt some conventions that will help simplify
the presentation. All numbers that appear in the construction will be represented
in binary. We assume that |V (H)| = n = 2t, for some t ∈ N, i.e., t = log n. This
assumption is justified in the following paragraph.

Ensuring the size constraint on H. Assume that |V (H)| = 2t
′ − δ, for some

0 < δ < 2t
′−1, as otherwise we already have an instance (P,H, col : V (H) →

[`]) of PSI, with |V (H)| = 2t, where t ∈ N. We construct an equivalent
instance (P ′, H ′, col′ : V (H ′) → [`′]) of PSI with |V (H ′)| = 2t

′+3 as follows
(see Figure 2). Initially, we let H ′ and P ′ to be the disjoint union of 8 copies
of H and P , respectively. Here, for each i ∈ [8], we denote the ith copy of
H and P in H ′ and P ′ by Hi and Pi, respectively. For each i ∈ [8], we let

6

{ {

9t
block

{ group

9t
block

2 · 9 · t {
17 · 2 · 9 · t

Figure 3: An illustration of the division of a bitstring into groups and blocks.

V (Pi) = {p`(i−1)+j | j ∈ [`]} and V (Hi) = {h`(i−1)+j | j ∈ [n]}. For each i ∈ [8]
and v ∈ V (Hi), we let col′(v) = `(i−1)+col(v). The intuition behind the partial
construction of P ′ and H ′ so far is to ensure that vertices in Pi get mapped
only to vertices in Hi. In the above partial construction, the sizes of H ′ and P ′

are 8 · 2t′ − 8δ and 8`, respectively. We then add δ graphs each on 8 vertices
to H ′ and a graph on 8 vertices to P ′ as follows. For i ∈ [δ], let ZHi be the
graph with vertex set V (ZHi) = {zij | j ∈ [8]}. Moreover, ZHi [{zij | j ∈ [4]}] and

ZHi [{zij | j ∈ [8] \ [4]}] are cliques on 4 vertices and for each j ∈ [4], we have the

edge zijz
i
j+4 in ZHi . Let Z be a graph with vertex set {p8`+j | j ∈ [8]}. We have

that Z[{p8`+j | j ∈ [4]}] and Z[{p8`+j | j ∈ [8]\ [4]}] are cliques on 4 vertices and
for each j ∈ [4], we have the edge z8`+jz8`+j+4 in Z. For each i ∈ [δ] and j ∈ [8],
we let col′(zij) = 8` + j. This completes the description of the new instance

(P ′, H ′, col′ : V (H ′) → [`′]) of PSI, where `′ = 8(` + 1) and |V (H ′)| = 2t
′+3.

Note that Z is isomorphic to ZHi , for each i ∈ [δ], and, by construction, each
vertex in Z can only be mapped to exactly one vertex of ZHi , where i ∈ [δ]. It
is easy to see that (P,H, col : V (H)→ [`]) and (P ′, H ′, col′ : V (H ′)→ [`′]) are
equivalent instances of PSI.

From the above discussion, we therefore assume that (P,H, col : V (H)→ [`])
is an instance of PSI, such that |V (H)| = n = 2t, where t ∈ N. Note that P
is a 4-regular graph, which implies that it has no isolated vertices. We assume
a fixed cyclic ordering ≺H on the vertices in H and a fixed cyclic ordering
≺P on the vertices in P . Simply put, we have h1 ≺H . . . ≺H hn ≺H h1 and
p1 ≺P . . . ≺P p` ≺P p1. With each vertex hi ∈ V (H), or equivalently integer
i ∈ [n], we assign two binary strings (or bitstrings for short) Bhi

and Bhi
as

follows. We let Bi denote the binary representation of the integer i and Bi denote
the (bitwise) complement of Bi. We use Oz and 1z to denote the bitstrings of
length z consisting of all zeros and all ones, respectively. We let Bhi = O4tBiO4t

and Bhi = O4tBiO4t. Note that Bhi and Bhi are of length 9 log n = 9t. The
purpose of the additional zero bits is to allow us to “correctly” handle overflows
when summing binary numbers. For two bitstrings B and B′, we slightly abuse
notation and sometimes treat the result of B+B′ as another bitstring (obtained
after applying the usual binary addition operator) or as an integer (in base 10).
The context will be clear.

We also assume that, along with instance (P,H, col : V (H) → [`]), we are
given a proper coloring colP 2 : V (P)→ [17] of P 2. Observe that such a coloring

7

exists, and can be computed in time polynomial in the size of the graph P ;
the maximum degree of a vertex in P 2 is bounded by 16 and a graph with
maximum degree d admits a (d+ 1)-proper coloring. For a vertex pi ∈ V (P), we
let idi = colP 2(pi). In what follows, we will always deal with bitstrings of length
17 · 2 · 9 · t. A block consists of 9t consecutive bits. We note that two distinct
blocks do not intersect in any bit position. Blocks will usually be set to bistrings
of the form O4tBiO4t, O4tBiO4t, O4t1tO4t, O9t, or 19t, i ∈ [n]. A group consists
of 2 · 9 · t consecutive bits. Two distinct groups do not intersect in any bit
position and a group consists of two consecutive blocks (see Figure 3). Note
that we have exactly 17 groups, which is equal to the number of colors in colP 2 .
Groups and/or blocks are concatenated consecutively one after the other with
no overlaps. The reason why we need colP 2 will become clear later. Intuitively,
since we will be encoding the possible edges (from H) between a vertex in P
and its four neighbors, we need to make sure that no two of its neighbors get
assigned the same group in a bitstring (regardless of whether these two neighbors
share an edge in P or not). Given a bitstring S of length 17 · 2 · 9 · t, we let
block[i](S) denote the ith block of S, i ∈ [34], and we let group[j](S) denote the
jth group of S, j ∈ [17]. We also use the notation group[i | j](S) to denote the
ith and jth group of S, i, j ∈ [17]. Finally, we note that, since the length of
bitstrings will be bounded by O(log n), all numbers in the construction will be
bounded by nO(1). We are now ready to describe the construction of instance
(D,wV : V (D)→ N, wA : A(D)→ N, ϕ : A(D)→ 2N×N) of SumCSP. We start
with the description of the edge selection gadget.

Edge selection gagdet. For every (unordered) pair of (distinct) numbers i, j ∈ [`]
such that pipj ∈ E(P), we add an edge selection gadget Eij (Eij is a graph
and not an edge set) to D. Note that both Eij and Eji refer to the same edge
selection gadget, which will be responsible for selecting an edge in the host graph
H. Moreover, idi 6= idj , since colP 2 is a proper coloring of P 2. We assume,

without loss of generality, that i < j. We let V (Eij) = {aiji , aijj , biji , bijj , wij}
and we let A(Eij) = {aiji aijj , aijj wij , wija

ij
i , biji b

ij
j , bijj wij , wijb

ij
i } (see Figure 4).

We now describe the construction of ϕ : A(D)→ 2N×N and wA : A(D)→ N.
First, let us consider the construction of ϕ|Eij and wA|Eij , i.e., ϕ and wA
restricted to Eij , respectively. The intuition behind the construction of ϕ|Eij

is to ensure that, in any valid solution, pairs selected for each arc in Eij all
correspond to a pair u ∈ CHi and v ∈ CHj , where uv ∈ E(H). Moreover, the
construction of wA|Eij

ensures that all pairs in an arc in Eij sum to the same
number. We assume that all bitstrings are initialized to O306t. That is, whenever
we do not explicitly specify the value of a group (block) in a bitstring, it is set
to all zeros. For each u ∈ CHi and v ∈ CHj , where uv ∈ E(H), and for each arc e
in Eij , we will add a pair of bitstrings (Suv(e), Tuv(e)) to ϕ(e), the construction
for which is described, shortly. To this end, consider u ∈ CHi and v ∈ CHj such
that uv ∈ E(H). Next, for each arc a ∈ A(Eij), we describe the construction of
the pair (Suv(a), Tuv(a)) and the weight wA(a).

• For aiji a
ij
j ∈ A(Eij), the pair of bitstrings (Suv(aiji a

ij
j), Tuv(aiji aijj)) (which

8

aij
i aij

j bij
jbij

i

wij

CH
i

CH
j

Eij

u v

(BuBu | BvBv, BuBu | BvBv)

O4t tO4tO4t tO4t | O4t tO4tO4t tO4t

(B
u B

u | O
9
t B

v , B
u B

u | O
9
t B

v)

O
4
t

t O
4
t O

4
t

t O
4
t | O

4
t O

t O
4
t O

4
t

t O
4
t

(O
9t

B
u

|B
vB

v,O
9t

B
u

|B
vB

v)

O
4t O

t O
4t O

4t
t O

4t | O
4t

t O
4t O

4t
t O

4t

(BuBu | BvBv, BuBu | BvBv)

O4t tO4tO4t tO4t | O4t tO4tO4t tO4t

(B
uB

u|O
9tB

v,B
uB

u|O
9tB

v)O 4t
t
O 4t

O 4t
t
O 4t

| O
4t
O t

O 4t
O 4t

t
O 4t

(O
9
t
B

u
| B

v
B

v
,O

9
t
B

u
| B

v
B

v
)

O
4
t
O

t
O

4
t
O

4
t

t
O

4
t
| O

4
t

t
O

4
t
O

4
t

t
O

4
t

Figure 4: An illustration of the edge selection gadget Eij , where i < j, and only the ith and
jth block of each bitstring are shown (other bits are set to 0). Red bitstrings represent weights
on the arcs, while black bitstrings represent pairs corresponding to u ∈ CH

i and v ∈ CH
j .

is added to ϕ(aiji a
ij
j)), and the weight wA(aiji a

ij
j) is obtained by setting

the following groups:
group[idi | idj](Suv(a

ij
i a

ij
j)) = BuBu | BvBv;

group[idi | idj](Tuv(a
ij
i a

ij
j)) = BuBu | BvBv;

group[idi | idj](wA(aiji a
ij
j)) = O4t1tO4tO4t1tO4t | O4t1tO4tO4t1tO4t.

• For aijj wij ∈ A(Eij), the pair of bitstrings (Suv(a
ij
j wij), Tuv(a

ij
j wij)) and

wA(aijj wij) is obtained by setting the following groups:

group[idi | idj](Suv(a
ij
j wij)) = BuBu | O9tBv;

group[idi | idj](Tuv(a
ij
j wij)) = BuBu | O9tBv;

group[idi | idj](wA(aijj wij)) = O4t1tO4tO4t1tO4t | O4tOtO4tO4t1tO4t.

• For wija
ij
i ∈ A(Eij), the pair of bitstrings (Suv(wija

ij
i), Tuv(wija

ij
i)) and

wA(wija
ij
i) is obtained by setting the following groups:

group[idi | idj](Suv(wija
ij
i)) = O9tBu | BvBv;

group[idi | idj](Tuv(wija
ij
i)) = O9tBu | BvBv;

group[idi | idj](wA(wija
ij
i)) = O4tOtO4tO4t1tO4t | O4t1tO4tO4t1tO4t.

• For biji b
ij
j ∈ A(Eij), the pair of bitstrings (Suv(b

ij
i b

ij
j), Tuv(b

ij
i b

ij
j)) and

wA(biji b
ij
j) is obtained by setting the following groups:

9

group[idi | idj](Suv(b
ij
i b

ij
j)) = BuBu | BvBv;

group[idi | idj](Tuv(b
ij
i b

ij
j)) = BuBu | BvBv;

group[idi | idj](wA(biji b
ij
j)) = O4t1tO4tO4t1tO4t | O4t1tO4tO4t1tO4t.

• For bijj wij ∈ A(Eij), the pair of bitstrings (Suv(b
ij
j wij), Tuv(b

ij
j wij)) and

wA(biji wij) is obtained by setting the following groups:

group[idi | idj](Suv(b
ij
j wij)) = BuBu | O9tBv;

group[idi | idj](Tuv(b
ij
j wij)) = BuBu | O9tBv;

group[idi | idj](wA(bijj wij)) = O4t1tO4tO4t1tO4t | O4tOtO4tO4t1tO4t.

• For wijb
ij
i ∈ A(Eij), the pair of bitstrings (Suv(wijb

ij
i), Tuv(wij , b

ij
i)) and

wA(wijb
ij
i) is obtained by setting the following groups:

group[idi | idj](Suv(wijb
ij
i)) = O9tBu | BvBv;

group[idi | idj](Tuv(wij , b
ij
i)) = O9tBu | BvBv;

group[idi | idj](wA(wijb
ij
i)) = O4tOtO4tO4t1tO4t | O4t1tO4tO4t1tO4t.

By construction, for each u ∈ CHi and vHj , where uv ∈ E(H), and arc
a ∈ A(Eij), we have Suv(a) + Tuv(a) = wA(a).

Compatibility between edge selection gadgets. We add edges between various
edge selection gadgets to ensure that for each i ∈ [`], the edges selected by the
gadgets are incident on the same vertex in CHi . The selection of an edge by
a gadget will be determined by the pair of numbers selected from ϕ(a), where
a ∈ A(Eij) and pipj ∈ E(P). For each pi ∈ V (P), we have |NP (pi)| = 4, since P
is a 4-regular graph. For i ∈ [`], let NP (pi) = {pj1 , pj2 , pj3 , pj4}, where we have
a (fixed and cyclic) ordering on the vertices in NP (pi) based on the ordering
≺P . That is, we assume pj1 ≺P pj2 ≺P pj3 ≺P pj4 ≺P pj1 . We will describe
the set of arcs added between Eij1 , Eij2 , Eij3 and Eij4 , we will call this set Ai.
Similar to the construction of ϕ(·) for edge selection gadgets, here for each arc
a ∈ Ai, for each u ∈ CHi , we will add a pair of bitstrings (Su(a), Tu(a)) to ϕ(a).
Again, the intuition behind the construction of ϕ|Ai

will be to ensure that, in
any valid solution, pairs selected for each arc in Ai all correspond to a vertex
u ∈ CHi . Moreover, the construction of wA|Ai

will ensure that all pairs in an arc
in Ai sum to the same number.

We set Ai = {aij1i bij2i , aij2i bij3i , aij3i bij4i , aij4i bij1i }. Consider an arc a ∈ Ai. We
obtain wA(a), and for each u ∈ CHi , the pair (Su(a), Tu(a)) (which is added to
ϕ(a)) by setting the following groups (see Figure 5):
group[idi](Su(a)) = BuO9t;
group[idi](Tu(a)) = BuO9t;
group[idi](wA(a)) = O4t1tO4tO9t.

This completes the description of the vertices and arcs of D, and the functions
wA : A(D) → N and ϕ : A(D) → 2N×N. We now move to description of the
functions wV : V (D)→ N.

10

aij1
iaij1

j1
bij1
j1bij1

i

wij1

wij4

aij4
i aij4

j4
bij4
j4 bij4

i

wij2

bij2
i aij2

i
aij2

j2
bij2
j2

wij3

bij3
j3

aij3
j3aij3

i
bij3
i

CH
i

u

Ai

(BuO9t, BuO9t)

O4t tO4tO9t

(B
u
O

9
t
,B

u
O

9
t
)

O
4
t

t
O

4
t
O

9
t

(BuO9t, BuO9t)
O4t tO4tO9t

(B
u O

9
t ,B

u O
9
t)

O
4
t

t O
4
t O

9
t

Figure 5: An illustration of edge selection gadgets and the additional edges between them.

The vertex weight function. For each i, j ∈ [`], i < j, we set wV (·) as follows.

• For all u ∈ {aiji , aijj , biji , bijj , }, we set wV (u) to be the bitstring Xu of length
306 log n, where group[idi](Xu) = O4t1tO4tO4t1tO4t and group[idj](Xu) =
O4t1tO4tO4t1tO4t.

• For wij , we set wV (wij) to be the bitstring Xwij
of length 306 log n, which

we construct as follows. We let Y be the bitstring of length t corresponding
to the integer 2t − 2, i.e. a bitstring of length t with the last bit set to
zero and all other bits set to one. Let Y ′ to be the bitstring of length 4t
corresponding to the integer 1, i.e. the bitstring of length 4t with the last
bit set to one and all other bits set to zero. We set group[idi](Xwij

) =
O4t1tO4tY

′YO4t and group[idj](Xwij
) = O4t1tO4tY

′YO4t.

This finishes the description of the instance (D,wV : V (D) → N, wA :
A(D) → N, ϕ : A(D) → 2N×N) of SumCSP for a given instance (P,H, col :
V (H)→ [`]) of PSI. Below we state some propositions and lemmata that will
be useful in establishing the equivalence of the two instances.

Proposition 2. Let X,Y be two bitstrings of length log q. Then X+Y = 2q−1
if and only if X = Y .

Proposition 3. Let X and Y be two bitstrings each of length 34 · 9 · t and
consisting of 17 groups, where t = log n. Assume that, for each i ∈ [17], group i

11

in X consists of a bitstring of the form Xi = O4tBxO4t and group i in Y consists
of a bitstring of the form Yi = O4tByO4t, x, y ∈ [n]. Then, X + Y is a bitstring
of length 34 · 9 · t with the ith group is equal to Xi + Yi, i ∈ [17].

Lemma 1. Let (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N) be
a yes-instance of SumCSP and ρ : A(D) → N × N be a solution. Consider

pi, pi′ , pj , pj′ ∈ V (P) such that aiji b
ij′

i , aijj b
i′j
j ∈ A(D). For u ∈ CHi and v ∈

CHj , we have ρ(aiji a
ij
j) = (Suv(a

ij
i a

ij
j), Tuv(a

ij
i a

ij
j)) if and only if ρ(aiji b

ij′

i) =

(Su(aiji b
ij′

i), Tu(aiji b
ij′

i)) and ρ(aijj b
i′j
j) = (Sv(a

ij
j b

i′j
j), Tv(a

ij
j b

i′j
j)).

Proof. Let u ∈ CHi and v ∈ CHj such that ρ(aiji b
ij′

i) = (Su(aiji b
ij′

i), Tu(aiji b
ij′

i))

and ρ(aijj , b
i′j
j) = (Sv(a

ij
j b

i′j
j), Tv(a

ij
j b

i′j
j)). Also, let u′ ∈ CHi and v′ ∈ CHj such

that ρ(aiji , a
ij
j) = (Su′v′(a

ij
i a

ij
j), Tu′v′(a

ij
i a

ij
j)). Observe that it is enough to

show that u = u′ and v = v′. Recall that by construction we have N−D (aiji) =

{wij}, N+
D (aiji) = {aijj , bij

′

i }, and block[1](group[idi](wV (aiji))) = O4t1tO4t, i.e.

the first block of the idith group of wV (aiji) is O4t1tO4t. Moreover, we have

block[1](group[idi](Tuv(wija
ij
i))) = O9t, block[1](group[idi](Su′v′(a

ij
i a

ij
j))) = Bu′ ,

and block[1](group[idi](Suv(a
ij
i b

ij′

i))) = Bu. Combining Propositions 2 and 3
with the fact that O9t, Bu′ , and Bu must sum to O4t1tO4t implies that u = u′.
An analogous argument can be given to show that v = v′. �

Lemma 2. Let (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N) be
a yes-instance of SumCSP and ρ : A(D) → N × N be a solution. Consider

pi, pi′ , pj , pj′ ∈ V (P) such that aij
′

i biji , a
i′j
j bijj ∈ A(D). For u ∈ CHi and v ∈

CHj , we have ρ(biji b
ij
j) = (Suv(b

ij
i b

ij
j), Tuv(b

ij
i b

ij
j)) if and only if ρ(aij

′

i biji) =

(Su(aij
′

i biji), Tu(aij
′

i biji)) and ρ(ai
′j
j bijj) = (Sv(a

i′j
j bijj), Tv(a

i′j
j bijj)).

Proof. Let u ∈ CHi and v ∈ CHj such that ρ(aij
′

i biji) = (Su(aij
′

i biji), Tu(aij
′

i biji))

and ρ(ai
′j
j bijj) = (Sv(a

i′j
j bijj), Tv(a

i′j
j bijj)). Also, let u′ ∈ CHi and v′ ∈ CHj

such that ρ(biji b
ij
j) = (Su′v′(b

ij
i b

ij
j), Tu′v′(b

ij
i b

ij
j)). It is enough to show that

u = u′ and v = v′. Recall that by construction we have N−D (biji) = {wij , aij
′

i },
N+
D (biji) = {bijj }, and block[1](group[idi](wV (aiji))) = O4t1tO4t Moreover, we

have block[1](group[idi](T
(wij ,b

ij
i)

uv)) = O9t, block[1](group[idi](Su′v′(b
ij
i b

ij
j))) =

Bu′ , and block[1](group[idi](Tuv(a
ij′

i biji))) = Bu. Combining Propositions 2
and 3 with the fact that O9t, Bu′ , and Bu must sum to O4t1tO4t implies that
u = u′. An analogous argument can be given to show that v = v′. �

Lemma 3. Let (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N) be a
yes-instance of SumCSP and ρ : A(D) → N × N be a solution. Let i, j ∈ [`],
where i < j and pipj ∈ E(P), and let u ∈ CHi and v ∈ CHj . Then, the following
three statements are equivalent:

12

(1) ρ(aiji a
ij
j) = (Suv(a

ij
i a

ij
j), Tuv(a

ij
i a

ij
j));

(2) ρ(wija
ij
i) = (Suv(wija

ij
i), Tuv(wija

ij
i));

(3) ρ(aijj wij) = (Suv(a
ij
j wij), Tuv(a

ij
j wij)).

Proof. Let u ∈ CHi , v ∈ CHj , and ρ(aiji a
ij
j) = (Suv(a

ij
i a

ij
j), Tuv(a

ij
i a

ij
j)). More-

over, let ρ(wija
ij
i) = (Su′v′(wija

ij
i), Tu′v′(wija

ij
i)), where u′ ∈ CHi and v′ ∈ CHj .

To prove that statement (1) holds if and if only statement (2) holds, it is
enough to show that u = u′ and v = v′. Recall that by construction we

have N−D (aiji) = {wij} and N+
D (aiji) = {aijj , bij

′

i }, for some bij
′

i ∈ V (D) where
pj′ is a neighbor of pi which comes after pj in the fixed cyclic ordering of

the neighbors of pi. Moreover, we have block[2](group[idi](Tu′v′(wija
ij
i))) = Bu′ ,

block[2](group[idi](Suv(aiji a
ij
j))) = Bu, and block[2](group[idi](Tu′′v′′ (aiji b

ij′

i))) =

O9t, where u′′ ∈ CHi , v′′ ∈ CHj , and ρ(biji a
ij′

i) = (Su′′v′′(b
ij
i a

ij′

i), Tu′′v′′(b
ij
i a

ij′

i)).

This together with the fact that the second block in the idith group of wV (aiji)
is O4t1tO4t (and Propositions 2 and 3) implies that u = u′. An analogous
argument can be given to show that v = v′. Using a symmetric argument, it can
be shown that statement (1) holds if and only if statement (3) holds. �

Lemma 4. Let (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N) be a
yes-instance of SumCSP and ρ : A(D) → N × N be a solution. Let i, j ∈ [`],
where i < j and pipj ∈ E(P), and let u ∈ CHi and v ∈ CHj . Then, the following
three statements are equivalent:

(1) ρ(biji b
ij
j) = (Suv(b

ij
i b

ij
j), Tuv(b

ij
i b

ij
j))

(2) ρ(wijb
ij
i) = (S

(wij ,b
ij
i)

uv , T
(wij ,b

ij
i)

uv);

(3) ρ(bijj wij) = (Suv(b
ij
j wij), Tuv(b

ij
j wij)).

Proof. For u ∈ CHi and v ∈ CHj , let ρ(biji b
ij
j) = (Suv(b

ij
i b

ij
j), Tuv(b

ij
i b

ij
j)).

Moreover, let ρ(wijb
ij
i) = (Su′v′(wijb

ij
i), Tu′v′(wijb

ij
i)), where u′ ∈ CHi and

v′ ∈ CHj . To prove that statement (1) holds if and only if statement (2) holds,
it is enough to show that u = u′ and v = v′. Recall that by construction we

have N+
D (aiji) = {bijj } and N−D (biji) = {wij , aij

′

i }, for some bij
′

i ∈ V (D) where
pj′ is a neighbor of pi which comes after pj in the fixed cyclic ordering of the

neighbors of pi. Moreover, we have block[2](group[idi](Tu′v′(wija
ij
i))) = Bu′ ,

block[2](group[idi](Suv(b
ij
i b

ij
j))) = Bu, and block[2](group[idi](Tu′′v′′(b

ij
i a

ij′

i))) =

O9t, where u′′ ∈ CHi , v′′ ∈ CHj , and ρ(biji a
ij′

i) = (Su′′v′′(b
ij
i a

ij′

i), Tu′′v′′ (biji a
ij′

i)).

This together with the fact that second block in the idith group of wV (biji)
is O4t1tO4t (and Propositions 2 and 3) implies that u = u′. An analogous
argument can be given to show that v = v′. Using a symmetric argument, it can
be shown that statement (1) holds if and only if statement (3) holds. �

13

Lemma 5. Let (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N)
be a yes-instance of SumCSP and ρ : A(D) → N × N be a solution. Let
i, j ∈ [`], i < j, pipj ∈ E(P), and u ∈ CHi and v ∈ CHj . Then, ρ(aiji a

ij
j) =

(Suv(a
ij
i a

ij
j), Tuv(a

ij
i a

ij
j)) if and only if ρ(biji b

ij
j) = (Suv(b

ij
i b

ij
j), Tuv(b

ij
i b

ij
j)).

Proof. Let i, j ∈ [`], i < j, and let (pi, pj) ∈ E(P). Let u, u′ ∈ CHi and

v, v′ ∈ CHj such that ρ(aiji a
ij
j) = (Suv(a

ij
i a

ij
j), Tuv(a

ij
i a

ij
j)) and ρ(biji b

ij
j) =

(Su′v′(b
ij
i b

ij
j), Tu′v′(b

ij
i b

ij
j)). We need to show that u′ = u and v′ = v. From Lem-

mas 3 and 4, we know that ρ(wija
ij
i) = (Suv(wija

ij
i), Tuv(wija

ij
i)), ρ(aijj wij) =

(Suv(a
ij
j wij), Tuv(a

ij
j wij)), ρ(b

ij
j wij) = (Suv(b

ij
j wij), Tuv(b

ij
j wij)), and ρ(wijb

ij
i)

= (Su′v′(wijb
ij
i), Tu′v′(wijb

ij
i)). Moreover, we have block[1](group[idj](Suv (wija

ij
i)))

= Bv, block[1](group[idj](Su′v′(wijb
ij
i))) = Bv′ , block[1](group[idj] (Tuv(aijj wij)))

= O9t, and block[1](group[idj](Tu′v′(b
ij
j wij))) = O9t. This together with the fact

that first block in the idjth group of wV (wij) is O4t1tO4t (and Propositions 2
and 3) implies that v = v′. An analogous argument shows that u = u′. �

Lemma 6. (P,H, col : V (H) → [`]) is a yes-instance of PSI if and only if
(D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N) is a yes-instance of
SumCSP.

Proof. In the forward direction, let (P,H, col : V (H)→ [`]) be a yes-instance
of PSI and φ : V (P)→ V (H) be an injective function such that for each i ∈ [`],
col(φ(pi)) = i, and, for each (pi, pj) ∈ E(P), we have (φ(pi), φ(pj)) ∈ E(H). For
i ∈ [`], let h∗i = φ(pi). We now define ρ : A(D) → N × N such that for each
e ∈ A(D), we have ρ(e) ∈ ϕ(e) and for each v ∈ V (D),

∑
u∈N+(v) fir(ρ((v, u))) +∑

u∈N−(v) sec(ρ((u, v))) = wV (v). For i ∈ [`] and for each e ∈ Ei, we set

ρ(e) = (Seφ(pi), T
e
φ(pi)

). For i, j ∈ [`], i < j such that (pi, pj) ∈ E(P) and for each

e ∈ A(Eij), we set ρ(e) = (Seφ(pi)φ(pj), T
e
φ(pi)φ(pj)

). Recall that by construction,

ρ satisfies all the desired properties.
In the reverse direction let (D,wV : V (D)→ N, wA : A(D)→ N, ϕ : A(D)→

2N×N) be a yes-instance of SumCSP and ρ : A(D)→ N×N be a solution. From
Lemmas 1 to 5, it follows that for each i, j ∈ [`], i < j with (pi, pj) ∈ E(P), there
exists u ∈ CHi and v ∈ CHj such that for all e ∈ A(Eij), ρ(e) = (Seuv, T

e
uv), for all

e ∈ A(Ei), ρ(e) = (Seu, T
e
e) and, for all e ∈ A(Ej), ρ(e) = (Sev , T

e
v). For i ∈ [`],

let h∗i be the vertex such that for all e ∈ A(Ei), we have ρ(e) = (Seh∗i
, T eh∗i

). We

show that φ : V (P)→ V (H) such that for i ∈ [`], φ(pi) = h∗i , is a solution for
PSI.

For i ∈ [`] and k ∈ [4], let pjk be neighbors of pi in P such that for each

k′ ∈ [3], jk′ < jk′+1. Further, let h∗i be the vertex such that ρ((aij1i , bij2i)) =

(S
(a

ij1
i ,b

ij2
i)

h∗i
, T

(a
ij1
i ,b

ij2
i)

h∗i
). We will show that φ : V (P) → V (H) such that for

i′ ∈ [`], φ(pi) = h∗i is a solution for PSI. From construction it follows that for
each i ∈ [`], col(h∗i) = i. Consider an edge (pi, pj) ∈ E(P), where i < j. From
construction of D we know that we have Eij as sub-digraph of D. Furthermore,

14

we also have (h∗i , h
∗
j) ∈ E(H) since for each e ∈ A(Eij) we have (Seh∗i

, T eh∗j
) ∈ ϕ(e)

and we added such a pair only if h∗i and h∗j are adjacent. �

Theorem 7. SumCSP is W[1]-hard when parameterized by the number of arcs
in the directed graph, even when all numbers appearing in an instance are bounded
by some polynomial.

Proof. Let (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N) be the
constructed instance of SumCSP for the given instance (P,H, col : V (H)→ [`])
of PSI. An easy trace of the construction shows that it can be accomplished in
time polynomial in |V (H)| and that all the numbers appearing in the construction
are bounded by |V (H)|O(1). Moreover, note that P is 4-regular and therefore
|E(P)| = O(|V (P)|). Since (by construction) the number of arcs in D is linear in
the number of edges in P , we have |A(D)| = O(|E(P)|) = O(|V (P)|). Combining
all of the above with Lemma 6 and the W[1]-hardness of PSI (parameterized by
|V (P)|) completes the proof. �

4. W[1]-hardness of CNC

Recall that, in an instance (G, k, µ) of the CNC problem, we are given an
undirected graph G and integers k and µ. The goal is to determine whether
there exists a set S ⊆ V (G) of size (exactly) k such that

∑
C∈C(G−S)

(
C
2

)
≤ µ,

where C(G − S) = {C1, . . . , C`} denotes the set of connected components in
G − S. We let (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N)
be an instance of SumCSP. We let wvmax = maxv∈V (D)(wV (v)) denote the
maximum weight of a vertex in D. We let wamax = maxa∈A(D)(wA(a)) denote
the maximum weight of an arc in D. We let wbig = (wamax · wvmax)100. We
assume, without loss of generality, that the number of arcs in D is greater than
some constant, say |A(D)| ≥ 50, and that wvmax > 2|A(D)| (otherwise we can
increase all numbers in the SumCSP instance appropriately). Moreover, we let
W ? = (k+3)(wbig+wvmax+2), where k = 2|A(D)|. For each vertex v ∈ V (D), we
define a quantity Wv = W ?−(k+3)(wV (v)+2) = (k+3)(wbig+wvmax−wV (v)).
We shall create an instance (G, k, µ) of CNC, where k = 2|A(D)| (note that

k is even), µ = |V (D)| ·
(
W?

2

)
, and tw(G) = kO(1). We now proceed to the

construction of the graph G.

Construction. For each vertex v ∈ V (D), we create a clique Kv of size 2(k + 3)
and an independent set Iv of size Wv. We add all edges between vertices in
Kv and vertices in Iv. For each arc a = uv ∈ A(D), we create a chain Huv

(which will connect Ku and Kv) as follows. Huv consists of wA(a) + 1 bridging
pairs of vertices Puv = {p0, . . . , pwA(uv)}, where each pair pi ∈ Puv consists
of two (independent) vertices {p1i , p2i }. Moreover, we have wA(a) border walls
Buv = {b1, . . . , bwA(a)}, each of size k + 1, i.e. each wall consists of k + 1
(independent) vertices. We add all edges between Ku and pair p0 and we add all
edges between Kv and pwA(uv). Next, we add all edges between pi−1 and bi and
all edges between bi and pi, for i ∈ [wA(a)]. We call the pair p0 the first pair

15

Iv

Kv

Iu

Ku
Clique Clique

Independent
set

Independent
set }Huv

p0 =

pi1 = left(Puv) pir
= right(Puv)
= last(Puv)

CliqueClique

first(Puv)

Figure 6: An illustration of parts of the construction of the graph G. Border walls (of size
k + 1) are connected via bridging pairs. Cliques are of size 2(k + 3) and independent sets Iu
and Iv are of size Wu and Wv , respectively.

of Puv and denote it by first(Puv). Similarly, we call the pair pwA(uv) the last
pair of Puv and denote it by last(Puv). Then, we sort all entries (i, j) ∈ ϕ(a) in
increasing order based on the first coordinate. Let {(i1, j1), (i2, j2), . . . , (ir, jr)}
denote the resulting sorted set. We assume, without loss of generality, that the
set contains no duplicate pairs (as they can be safely deleted) and no two pairs
have the same first entry. This assumption is justified by the fact that for all
(i, j), (i′, j′) ∈ ϕ(a) we have i+ j = i′ + j′ = wA(a). We add all edges (if they
do not already exist) between Ku and vertices {p1i1 , p2i1} and all edges between
Kv and vertices {p1ir , p2ir}. We call the pair pi1 the left pair of Puv and denote it
by left(Puv). Similarly, we call the pair pir the right pair of Puv and denote it
by right(Puv). Finally, for each two consecutive entries (i, j) and (i′, j′) we add
all edges between {p1i , p2i } and {p1i′ .p2i′}. This completes the construction of the
graph G (see Figure 6).

We first show that the treewidth of G is bounded by a polynomial in k. To
do so, we need to recall the notion of a mixed search game [13]. In a mixed
search game, a graph G represents a “system of tunnels”. Initially, all edges
are contaminated by a gas. An edge is cleared by placing searchers at both
its endpoints simultaneously or by sliding a searcher along the edge. A cleared
edge is re-contaminated if there is a path from an uncleared edge to the cleared
edge without any searchers on its vertices or edges. A search is a sequence of
operations that can be of the following types:

• placement of a new searcher on a vertex;

• removal of a searcher from a vertex;

• sliding a searcher on a vertex along an incident edge and placing the
searcher on the other end.

A search strategy is winning if after its termination all edges are cleared. The
mixed search number of a graph G, denoted by ms(G), is the minimum number

16

of searchers required for a winning strategy of mixed searching on G. It is
well-known [14] that tw(G) ≤ pw(G) ≤ ms(G) ≤ pw(G) + 1.

Proposition 4. tw(G) = kO(1).

Proof. We give a mixed search strategy to clean the graph G using kO(1)+O(1)
searchers. First, we put 2(k + 3)|V (D)| searchers on all vertices in Kv, for all
v ∈ V (D). Since k = 2|A(D)| and |V (D)| = O(|A(D)|) = O(k), we have
2(k + 3)|V (D)| = kO(1). Those searchers will remain fixed until the end of the
cleaning process. Note that vertices in Iv, for any v ∈ V (D), have no neighbors
outside of Kv. Moreover, vertices in a chain Huv, for each arc a = uv ∈ A(D),
have no neighbors outside of V (Huv) ∪ V (Ku) ∪ V (Kv). Therefore, it remains
to show how to clean each Huv using a constant number of additional searchers;
edges between Iv and Kv can be cleaned using one additional searcher.

We search the rest of the graph in phases, one phase per Huv and reusing
the searchers from the previous phase. For each Huv, we reuse O(1) searchers.
We start the phase by placing searchers on {p1i1 , p2i1 , p1i2 , p2i2}. Since vertices
inside border walls are independent and any two border walls are separated by a
bridging pair, using an additional 5 searchers we can clean the graph induced
by all bridging pairs {pi | 0 ≤ i ≤ i2} and all border walls {bi | 1 ≤ i ≤ i2}. We
now proceed sequentially (from left to right) as follows. We remove the two
searchers on {p1i1 , p2i1}, place them on {p1i3 , p2i3}, and clean the graph induced by
all bridging pairs {pi | i2 ≤ i ≤ i3} and all border walls {bi | i2 ≤ i ≤ i3}. We
repeat until Huv is cleaned. It is not hard to see that after the last round all the
graph is cleaned. Since tw(G) ≤ pw(G) ≤ ms(G) ≤ pw(G) + 1, the proposition
follows. �

Below we prove a series of lemmas that allows us to transform any solution
S to a constructed instance (G, k, µ) of CNC into an “equally good” solution S′

having some “nice” structural properties. We let C(G−S) = {C1, . . . , C`} denote
the set of connected components in G− S. We classify a connected component
C ∈ C(G− S) into one of three types. We say C is a small component whenever
C does not contain any vertices from Kv or Iv, for all v ∈ V (D). We say C is
a large component whenever C intersects with at least two cliques Ku and Kv,
u, v ∈ V (D). We say that C is a medium component otherwise. Note that, for
any v ∈ V (D), any solution of size k cannot separate G[V (Iv)∪ V (Kv)] into two
or more components. Therefore, if C(G−S) consists of only medium components
then |C(G− S)| is exactly |V (D)| and S includes exactly one bridging pair from
each chain Huv, uv ∈ A(D).

Lemma 8. Let S be a solution to (G, k, µ) and let C(G − S) = {C1, . . . , C`}.
If |S ∩⋃u∈V (D)(V (Iu) ∪ V (Ku))| > 0 then there exists a solution S′ such that

|S′| = |S|, ∑C′∈C(G−S′)
(
C′

2

)
≤ ∑C∈C(G−S)

(
C
2

)
, and |S′ ∩ ⋃u∈V (D)(V (Iu) ∪

V (Ku))| = |S ∩⋃u∈V (D)(V (Iu) ∪ V (Ku))| − 1.

Proof. Let w be a vertex in S∩(V (Iu)∪V (Ku)), for some u ∈ V (D). Note that
(by construction) |V (Iu)| > k and |V (Ku)| > k. Moreover, for all w1, w2 ∈ V (Iu)

17

(or V (Ku)), we have NG(w1) = NG(w2). Therefore, since |S| = k, we have
|C(G − S)| = |C((G − S) ∪ {w})|. In other words, if w ∈ V (Iu) or w ∈ V (Ku)
then there exists at least one vertex w′ 6∈ S such that w′ ∈ V (Iu) or w′ ∈ V (Ku),
respectively. Let Cw′ ∈ C(G − S) denote the component in G − S containing
w′. Note that Cw′ is either a medium or a large component, since a small
component (by definition) does not intersect with

⋃
u∈V (D)(V (Iu) ∪ V (Ku)).

If Cw′ is a large component then it must contain a vertex w′′ which belongs
to some chain Huv, for some v ∈ V (D). We let S′ = (S \ {w}) ∪ {w′′}. It is
not hard to see that S′ does in fact satisfy all the required properties (since∑
C′∈C(G−S′)

(
C′

2

)
=
∑
C∈C(G−S)

(
C
2

)
). If Cw′ is a medium component then we

have two cases to consider. If we can find a w′′ (belonging to some chain)
then the same replacement argument as above holds. Otherwise, we know
that the size of V (Cw′) is at most |V (Iu)| + |V (Ku)| = Wu + 2(k + 3) =
(k + 3)(wbig +wvmax −wV (u) + 2) ≤ (k + 3)(wbig +wvmax + 2). However, since
S does not include exactly two vertices from each chain, we know that C(G− S)
must include at least one large component, say C ′′, of size at least 2(k + 3)wbig.
Replacing w with a vertex w′′ ∈ V (C ′′)∩Hu′v′ , for some u′v′ ∈ V (D), produces
the required set S′ (recall that we assume wvmax ≥ 2|A(D)|+ 1 = k + 1 ≥ 101
and therefore (k + 3)wbig > (k + 3)(wvmax + 2)). �

By repeated applications of Lemma 8, we can assume that a solution S does
not intersect with V (Iu) ∪ V (Ku), for all u ∈ V (D). In what follows, we always
assume that S satisfies this property. Using similar arguments, we can show
that S also does not intersect with any border walls.

Lemma 9. Let S be a solution to (G, k, µ) and let C(G − S) = {C1, . . . , C`}.
If |S ∩ ⋃uv∈A(D) Buv| > 0 then there exists a solution S′ such that |S′| =

|S|, ∑C′∈C(G−S′)
(
C′

2

)
≤ ∑

C∈C(G−S)
(
C
2

)
, |S′ ∩ ⋃u∈V (D)(V (Iu) ∪ V (Ku))| =

|S ∩ ⋃u∈V (D)(V (Iu) ∪ V (Ku))|, and |S′ ∩ ⋃uv∈A(D) Buv| is strictly less than

|S ∩⋃uv∈A(D) Buv|.

Proof. Let w be a vertex in S ∩ b, where b ∈ Buv for some uv ∈ A(D). Recall
that (by construction) |b| = k + 1 and, for all w1, w2 ∈ b, we have NG(w1) =
NG(w2). Therefore, since |S| = k, we have |C(G − S)| = |C((G − S) ∪ {w})|.
In other words, there exists at least one vertex w′ 6∈ S such that w′ ∈ b. Let
Cw′ ∈ C(G − S) denote the component in G − S containing w′. If Cw′ is a
medium or large component then we can always find a vertex w′′ from some
bridging pair, i.e. w′′ ∈ Puv, to replace w and obtain S′. If Cw′ is a small
component then either |V (Cw′)| = 1, in which case we can replace w by any
bridging pair vertex, or Cw′ contains some vertex w′′ ∈ Puv, as needed. �

Lemmas 8 and 9 imply that we can always assume that S includes vertices
from bridging pairs only. We say that a solution S splits a bridging pair {p1, p2}
if |S ∩ {p1, p2}| = 1. We now proceed to showing that S does not split any
bridging pair. We use split(G,S) to denote the number of bridging pairs split by
S in G.

18

Lemma 10. Let S be a solution to (G, k, µ) such that S ⊆ ⋃uv∈A(D) Puv and

let C(G − S) = {C1, . . . , C`}. If split(G,S) > 0 then there exists a solution S′

such that |S′| = |S|, ∑C′∈C(G−S′)
(
C′

2

)
≤ ∑C∈C(G−S)

(
C
2

)
, S′ ⊆ ⋃uv∈A(D) Puv,

and split(G,S′) < split(G,S).

Proof. Given that k is even, we know that split(G,S) must also be even.
Assume that S splits two bridging pairs {p1, p2} and {q1, q2}. Without loss of
generality, we assume that p1, q1 ∈ S, p2, q2 6∈ S, p2 ∈ V (Cp), q2 ∈ V (Cq), and
|V (Cp)| ≤ |V (Cq)|, where Cp, Cq ∈ C(G−S). We let S′ = (S \{p1})∪{q2}. It is

not hard to see that regardless of whether Cp = Cq or not,
∑
C′∈C(G−S′)

(
C′

2

)
≤∑

C∈C(G−S)
(
C
2

)
, as needed. �

Lemma 11. Let S be a solution to (G, k, µ) such that S ⊆ ⋃uv∈A(D) Puv and

split(G,S) = 0. Let C(G−S) = {C1, . . . , C`}. Assume that |S ∩Puv| = 2x ≥ 10,
for some uv ∈ A(D), and hence there exists u1v1, . . . , ux−1vx−1 ∈ A(D) such
that |S ∩ Puivi | = 0, for i ∈ [x − 1]. Then, there exists S′ such that |S′| =

|S|, ∑C′∈C(G−S′)
(
C′

2

)
≤ ∑

C∈C(G−S)
(
C
2

)
, S′ ⊆ ⋃

uv∈A(D) Puv, split(G,S′) =

0, left(Puv) ∪ right(Puv) ∪ first(Puv) ∪ last(Puv) ⊆ S′, |S′ ∩ Puv| = 8, and
|S′ ∩ Puivi | = 2, for i ∈ [x− 1].

Proof. Recall the construction of Puv = {p0, . . . , pwA(uv)}. We add all edges
between Ku and pair p0 = first(Puv) and we add all edges between Kv and
pwA(uv) = last(Puv). Next, we sort all entries (i, j) ∈ ϕ(uv) in increasing order
based on the first coordinate. Let {(i1, j1), (i2, j2), . . ., (ir, jr)} denote the
resulting sorted set. We add all edges between Ku and pair pi1 = left(Puv) and
all edges between Kv and pair pir = right(Puv). Finally, for each two consecutive
entries (i, j) and (i′, j′), we add all edges between pi and pi′ . Let us assume
that 0 6= i1 6= ir 6= wA(uv), as the same arguments hold when that is not case.
Since |S ∩ Puv| ≥ 10, we know that S includes at least 5 pairs from Puv. Let
S′ = (S\Puv)∪ left(Puv) ∪ right(Puv) ∪ first(Puv) ∪ last(Puv) ∪ left(Pu1v1) ∪ . . .
∪ left(Pux−1vx−1

). It remains to show that
∑
C′∈C(G−S′)

(
C′

2

)
≤∑C∈C(G−S)

(
C
2

)
.

Note that in the graph G[V (Ku) ∪ V (Kv) ∪Huv]− S′ we have five connected
components, where two of those components are exactly Ku and Kv. Hence, the
total number of connected pairs that are introduced by removing some of the
pairs in S ∩ Puv is at most

(
(k+3)wamax

2

)
. However, for each pair left(Puivi) that

we add to S′ the number of connected pairs decreases by at least (k + 3)wbig >(
(k+3)wamax

2

)
(recall that wvmax ≥ k + 1 and k ≥ 100). �

Since k is even, and S includes vertices from bridging pairs only, and S does
not split any bridging pair, we know (from Lemma 11 and the fact that split(G,S)
= 0) that, for all uv ∈ A(D), |S ∩ Puv| ∈ {0, 2, 4, 6, 8} (as otherwise S would
have to split at least one bridging pair). The next lemma shows that we can in
fact guarantee that |S ∩ Puv| = 2, for all uv ∈ A(D).

Lemma 12. Let S be a solution satisfying the following properties: (1) S
⊆ ⋃

uv∈A(D) Puv; (2) split(G,S) = 0; (3) |S ∩ Puv| ∈ {0, 2, 4, 6, 8}, for all

19

uv ∈ A(D); (4) If |S ∩ Puv| = 8, for uv ∈ A(D), then left(Puv) ∪ right(Puv)
∪ first(Puv) ∪ last(Puv) ⊆ S. Then, there exists a solution S′ satisfying the
following properties: (i) S′ ⊆ ⋃uv∈A(D) Puv; (ii) split(G,S′) = 0; (iii) |S′ ∩
Puv| = 2, for all uv ∈ A(D).

Proof. Let s0, s1, s2, s3, and s4 denote the cardinality of {uv ∈ A(D) |
|S ∩ Puv| = 0}, {uv ∈ A(D) | |S ∩ Puv| = 2}, {uv ∈ A(D) | |S ∩ Puv| = 4},
{uv ∈ A(D) | |S ∩ Puv| = 6}, and {uv ∈ A(D) | |S ∩ Puv| = 8}, respectively.
Note that s0 + s1 + s2 + s3 + s4 = |A(D)| and 2s1 + 4s2 + 6s3 + 8s4 = k. Hence,
2(s0 + s1 + s2 + s3 + s4) = 2s1 + 4s2 + 6s3 + 8s4 and s0 = s2 + 2s3 + 3s4. In
what follows, we assume that s0 = s2 + 2s3 + 3s4 > 0; as otherwise we are done.

We define su0 , su1 , su2 , su3 , and su4 as follows:

• su0 = |{vw ∈ A(D) | (u = v ∨ u = w) ∧ |S ∩ Pvw| = 0}|;

• su1 = |{vw ∈ A(D) | (u = v ∨ u = w) ∧ |S ∩ Pvw| = 2}|;

• su2 = |{vw ∈ A(D) | (u = v ∨ u = w) ∧ |S ∩ Pvw| = 4}|;

• su3 = |{vw ∈ A(D) | (u = v ∨ u = w) ∧ |S ∩ Pvw| = 6}|;

• su4 = |{vw ∈ A(D) | (u = v ∨ u = w) ∧ |S ∩ Pvw| = 8}|.
Since s0 > 0 and

∑
u∈V (D) s

u
0 = 2s0, we know that there exists at least one

vertex u ∈ V (D) such that su0 > 0. We claim that there exists a vertex u ∈ V (D)
such that 0 < su0 ≤ su2 + 2su3 + 3su4 . Assume otherwise. That is, assume
that for all u ∈ V (D) for which su0 > 0 we have su2 + 2su3 + 3su4 > su0 . Since∑
u∈V (D) s

u
i = 2si, i ∈ {0, 1, 2, 3, 4}, we have

∑
u∈V (D) s

u
2 +

∑
u∈V (D) 2su3 +∑

u∈V (D) 3su4 >
∑
u∈V (D) s

u
0 , which is equivalent to 2s2 + 4s3 + 6s4 > 2s0, a

contradiction to the fact that s0 = s2 + 2s3 + 3s4. Hence, the claim follows.
Now, we let u ∈ V (D) such that su0 ≤ su2 + 2su3 + 3su4 . We create a new

solution S′ as follows. We let S′ = S \⋃vw∈A(D)∧(u=v∨u=w) Pvw. Then, for each

vw ∈ A(D), if u = v we add right(Puw) to S′ and if u = w we add left(Pvu) to
S′. If we are left with |S′| < k then we pick the remaining pairs from chains
whose intersection with S′ is empty. Note that, after this replacement, we reduce

the number of large components by at least one. Therefore,
∑
C′∈C(G−S′)

(
C′

2

)
≤∑

C∈C(G−S)
(
C
2

)
. In other words, the number of connected pairs increases by at

most
(
(k+3)(wbig+wvmax+2)+k(k+3)wamax

2

)
. However, since we reduce the number of

large components, the number of connected pairs decreases by at least
(
2(k+3)wbig

2

)
.

The lemma follows by repeating the replacement procedure as long as we can
find a vertex u with 0 < su0 ≤ su2 + 2su3 + 3su4 . When no such vertex exists, it
must be the case that |S′ ∩ Puv| = 2, for all uv ∈ A(D). �

We are now ready to prove the correctness of the reduction, which is implied
by Lemmas 13 and 14 below.

Lemma 13. If (D,wV : V (D) → N, wA : A(D) → N, ϕ : A(D) → 2N×N) is a
yes-instance of SumCSP then (G, k, µ) is a yes-instance of CNC.

20

Proof. Let ρ : A(D) → N × N be a solution to the SumCSP instance. We
construct a solution S to the CNC instance by picking one bridging pair from
each chain as follows. Initially, we set S = ∅. For each uv ∈ A(D), we let
Puv = {p0, . . . , pwA(uv)}, we let ρ(uv) = (xuv, yuv), and we set S = S ∪ pxuv

.
It is not hard to see that G − S consists of exactly |V (D)| components (as
we pick one bridging pair from each chain). We associate each component
with some vertex u ∈ V (D). The size of each component is exactly |V (Ku)| +
|V (Iu)| +

∑
v∈N+(u)(k + 3)xuv +

∑
v∈N−(u)(k + 3)yvu = |V (Ku)| + |V (Iu)| +

(k + 3)wV (u) = 2(k + 3) + (k + 3)(wbig + wvmax − wV (v)) + (k + 3)wV (u) =
(k + 3)(wbig + wvmax + 2) = W ?. �

Lemma 14. If (G, k, µ) is a yes-instance of CNC then (D,wV : V (D) →
N, wA : A(D)→ N, ϕ : A(D)→ 2N×N) is a yes-instance of SumCSP.

Proof. Let S be a solution to (G, k, µ). From Lemmas 8 to 12, we know that
C(G−S) consists of only medium components. In other words, S ⊆⋃uv∈A(D) Puv,

split(G,S) = 0, and |S ∩ Puv| = 2, for all uv ∈ A(D). Hence, the number of
components in G − S is exactly |V (D)|. Let C(G − S) = {C1, . . . , C|V (D)|}.
Recall that W ? = (k + 3)(wbig + wvmax + 2) and µ = |V (D)| ·

(
W?

2

)
. Therefore,

we have
∑
C∈C(G−S)

(
C
2

)
≤ |V (D)| ·

(
W?

2

)
. Applying Proposition 1, we know

that each component in C(G − S) must have W ? vertices. We associate each
component with some vertex u ∈ V (D). Note that Ku contains 2(k + 3)
vertices and Iu contains (k + 3)(wbig + wvmax − wV (v)) vertices. Therefore,
W ? − |V (Ku)| − |V (Iu)| = (k + 3)wV (u). Since each chain Huv or Hvu, v is
a neighbor of u, contributes (k + 3)x vertices, for some x, to the component
associated with u, the sum of those contributions must equal (k + 3)wV (u).

We claim that this implies that there exists ρ : A(D)→ N× N such that for
each uv, vu ∈ A(D), ρ(uv) ∈ ϕ(uv), ρ(vu) ∈ ϕ(vu) and

∑
v∈N+(u) fir(ρ(uv)) +∑

v∈N−(u) sec(ρ(vu)) = wV (u). Let us recall the relevant parts of the construc-

tion. Huv consists of wA(a)+1 bridging pairs of vertices Puv = {p0, . . . , pwA(uv)},
where each pair pi ∈ Puv consists of two (independent) vertices {p1i , p2i }. More-
over, we have wA(a) border walls Buv = {b1, . . . , bwA(a)}, each consisting of
k + 1 (independent) vertices. We add all edges between Ku and pair p0 and
we add all edges between Kv and pwA(uv). Next, we add all edges between
pi−1 and bi and all edges between bi and pi, for i ∈ [wA(a)]. Then, we sort
all entries (i, j) ∈ ϕ(a) in increasing order based on the first coordinate. Let
{(i1, j1), (i2, j2), . . . , (ir, jr)} denote the resulting sorted set. We add all edges
(if they do not already exist) between Ku and vertices {p1i1 , p2i1} and all edges
between Kv and vertices {p1ir , p2ir}. Finally, for each two consecutive entries (i, j)
and (i′, j′) we add all edges between {p1i , p2i } and {p1i′ .p2i′}.

Consider a component in C(G− S) associated with some clique Ku. Since
Ku and Kv belong to different component in C(G − S), split(G,S) = 0, and
|S ∩ Puv| = 2, for all uv ∈ A(D), it must be the case that for the bridging
pair pi? = S ∩ Puv we have i? ∈ {i1, i2, . . . , ir}; as otherwise Ku and Kv

would belong to the same component in G − S. This implies that, with each

21

uv, vu ∈ A(D), we can associate a pair (i?, j?) ∈ {(i1, j1), (i2, j2), . . . , (ir, jr)}.
Equivalently, we have ρ(uv) ∈ ϕ(uv) and ρ(vu) ∈ ϕ(vu). It remains to show
that

∑
v∈N+(u) fir(ρ(uv)) +

∑
v∈N−(u) sec(ρ(vu)) = wV (u). We know that each

outgoing edge uv contributes (k+ 3)iv? vertices to the component associated with
u and each incoming edge vu contributes (k + 3)jv? vertices to the component
associated with u; each border wall contributes k + 1 vertices and each bridging
pair contributes 2 vertices. The total sum of those contributions must equal
(k+3)wV (u). Therefore,

∑
v∈N+(u)(k+3)iv?+

∑
v∈N−(u)(k+3)jv? = (k+3)wV (u).

Dividing both sides by k + 3 completes the proof. �

Theorem 15. CNC is W[1]-hard when parameterized by solution size and the
treewidth of the input graph.

Proof. Let (G, k, µ) be the constructed instance of CNC for the given instance
(D,wV : V (D)→ N, wA : A(D)→ N, ϕ : A(D)→ 2N×N) of SumCSP. An easy
trace of the construction shows that it can be accomplished in time polynomial
in |V (D)|, |A(D)|, wvmax, and wamax. Recall that wvmax = maxv∈V (D)(wV (v))
denotes the maximum weight of a vertex in D and wamax = maxa∈A(D)(wA(a))
denotes the maximum weight of an arc in D. Since k = 2|A(D)| and tw(G) =
kO(1), combining all of the above with Lemmas 13 and 14 and the W[1]-hardness
of SumCSP (parameterized by |A(D)|) completes the proof. �

5. Conclusion

We have showed that the Critical Node Cut problem is W[1]-hard when
parameterized by solution size and the treewidth of the input graph, answering
the remaining question left open by Hermelin et al.[1]. In doing so, we introduced
the SumCSP problem, which we believe can be a useful starting point for showing
hardness results of the same nature, i.e., when the treewidth of the graph is part
of the parameter. Although we have not yet been able to find further applications
of the SumCSP problem, it would be interesting to see whether known hardness
results can have “simpler” proofs if SumCSP is used as a starting point.

References

[1] D. Hermelin, M. Kaspi, C. Komusiewicz, B. Navon, Parameterized com-
plexity of critical node cuts, Theoretical Computer Science 651 (2016)
62–75.

[2] M. Ventresca, Global search algorithms using a combinatorial unranking-
based problem representation for the critical node detection problem, Com-
puters & Operations Research 39 (2012) 2763–2775.

[3] M. Ventresca, D. Aleman, A derandomized approximation algorithm for
the critical node detection problem, Computers & Operations Research 43
(2014) 261–270.

22

[4] M. Di Summa, A. Grosso, M. Locatelli, Complexity of the critical node
problem over trees, Computers & Operations Research 38 (2011) 1766–1774.

[5] B. Addis, M. D. Summa, A. Grosso, Removing critical nodes from a graph:
complexity results and polynomial algorithms for the case of bounded
treewidth, Optimization online (www.optimization-online.org) (2011).

[6] R. G. Downey, M. R. Fellows, Parameterized complexity, Springer-Verlag,
1997.

[7] D. Marx, Can you beat treewidth?, Theory of Computing 6 (2010) 85–112.

[8] H. L. Bodlaender, D. Lokshtanov, E. Penninkx, Planar capacitated dom-
inating set is W [1]-hard, in: IWPEC, volume 5917 of Lecture Notes in
Computer Science, Springer, 2009, pp. 50–60.

[9] R. Diestel, Graph Theory, 4th Edition, volume 173 of Graduate texts in
mathematics, Springer, 2012.

[10] J. Flum, M. Grohe, Parameterized Complexity Theory, Texts in Theoretical
Computer Science. An EATCS Series, Springer, 2006.

[11] R. Niedermeier, Invitation to fixed-parameter algorithms, Oxford Lecture
Series in Mathematics and Its Applications, Oxford University Press, 2006.

[12] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, 2015.

[13] D. Lokshtanov, D. Marx, S. Saurabh, Known algorithms on
graphs of bounded treewidth are probably optimal, in: Proceed-
ings of the Twenty-second Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’11, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2011, pp. 777–789. URL:
http://dl.acm.org/citation.cfm?id=2133036.2133097.

[14] A. Takahashi, S. Ueno, Y. Kajitani, Mixed searching and proper-path-width,
Theoretical Computer Science 137 (1995) 253–268.

23

