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Abstract17

An input to a conflict-free variant of a classical problem Γ, called Conflict-Free Γ, consists of an18

instance I of Γ coupled with a graph H, called the conflict graph. A solution to Conflict-Free19

Γ in (I, H) is a solution to I in Γ, which is also an independent set in H. In this paper, we study20

conflict-free variants of Maximum Matching and Shortest Path, which we call Conflict-Free21

Matching (CF-Matching) and Conflict-Free Shortest Path (CF-SP), respectively. We22

show that both CF-Matching and CF-SP are W[1]-hard, when parameterized by the solution size.23

Moreover, W[1]-hardness for CF-Matching holds even when the input graph where we want to24

find a matching is itself a matching, and W[1]-hardness for CF-SP holds for conflict graph being a25

unit-interval graph. Next, we study these problems with restriction on the conflict graphs. We give26

FPT algorithms for CF-Matching when the conflict graph is chordal. Also, we give FPT algorithms27

for both CF-Matching and CF-SP, when the conflict graph is d-degenerate. Finally, we design28

FPT algorithms for variants of CF-Matching and CF-SP, where the conflicting conditions are29

given by a (representable) matroid.30
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1 Introduction36

In the recent years, conflict-free variant of classical combinatorial optimization problems37

have gained attention from the viewpoint of algorithmic complexity. A typical input to a38

conflict-free variant of a classical problem Γ, which we call Conflict-Free Γ, consists39

of an instance I of Γ coupled with a graph H, called the conflict graph. A solution to40

Conflict-Free Γ in (I,H) is a solution to I in Γ, which is also an independent set in41

H. Notice that conflict-free version of the problem introduces the constraint of “impossible42

pairs” in the solution that we seek for. Such a constraint of “impossible pairs” in a solution43

arises, for example, in the context of program testing and validation [16, 23]. Gabow et44
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53:2 Parameterized Complexity of Conflict-Free Matchings and Paths

al. [16] studied the conflict-free version of finding paths in a graph, which they showed to be45

NP-complete.46

Conflict-free variants of several classical problems such as, Bin Packing [10, 18, 20],47

Knapsack [34, 31], Minimum Spanning Tree [5, 6], Maximum Matching [6], Maximum48

Flow [32, 33], Shortest Path [6] and Set Cover [11] have been studied in the literature49

from the viewpoint of algorithmic complexity, approximation algorithms, and heuristics. It50

is interesting to note that most of these problems are NP-hard even when their classical51

counterparts are polynomial time solvable. Recently, Jain et al. [19] and Agrawal et al. [2, 1]52

initiated the study of conflict-free problems in the realm of parameterized complexity. In53

particular, they studied Conflict-Free F-Deletion problems for various families F , of54

graphs such as, the family of forests, independent sets, bipartite graphs, interval graphs, etc.55

Maximum Matching and Shortest Path are among the classical graph problems56

which are of very high theoretical and practical interest. The Maximum Matching problem57

takes as input a graph G, and the objective is to compute a maximum sized subset Y ⊆ E(G)58

such that no two edges in Y have a common vertex. Maximum Matching is known to be59

solvable in polynomial time [12, 27]. The Shortest Path problem takes as input a graph60

G and vertices s and t, and the objective is to compute a path between s and t in G with61

the minimum number of vertices. The Shortest Path problem, together with its variants62

such as all-pair shortest path, single-source shortest path, weighted shortest path, etc. are63

known to be solvable in polynomial time [7, 3].64

Darmann et al. [6] (among other problems) studied the conflict-free variants of Maximum65

Matching and Shortest Path. They showed that the conflict-free variant of Maximum66

Matching is NP-hard even when the conflict graph is a disjoint union of edges (matching).67

Moreover, for the conflict-free variant of Shortest Path, they showed that the problem is68

APX-hard, even when the conflict graph belongs to the family of 2-ladders.69

In this paper, we study the conflict-free versions of matching and shortest path from70

the viewpoint of parameterized complexity. A parameterized problem Π is a subset of71

Σ∗ × N, where Σ is a fixed, finite alphabet. An instance of a parameterized problem is72

a pair (I, k), where I is a classical problem instance and k is an integer, which is called73

the parameter. One of the central notions in parameterized complexity is fixed-parameter74

tractability, where given an instance (I, k) of a parameterized problem Π, the goal is to75

design an algorithm that runs in time f(k)nO(1), where, n = |I| and f(·) is some computable76

function, whose value depends only on k. An algorithm with running time as described77

above, is called an FPT algorithm. A parameterized problem that admits an FPT algorithm78

is said to be in FPT. Not every parameterized problem admits an FPT algorithm, under79

reasonable complexity-theoretic assumptions. Similar to the notion of NP-hardness and80

NP-hard reductions in classical Complexity Theory, there are notions of W[t]-hardness, where81

t ∈ N and parameterized reductions in parameterized complexity. A parameterized problem82

which is W[t]-hard, for some t ∈ N is believed not to admit an FPT algorithm. For more83

details on parameterized complexity we refer to the books of Downey and Fellows [9], Flum84

and Grohe [13], Niedermeier [29], and Cygan et al. [4].85

Our Results. We study conflict-free (parameterized) variants of Maximum Matching and86

Shortest Path, which we call Conflict Free Maximum Matching (CF-MM, for short)87

and Conflict Free Shortest Path (CF-SP, for short), respectively. These problems are88

formally defined below.89
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Conflict Free Maximum Matching (CF-MM) Parameter: k

Input: A graph G = (V,E), a conflict graph H = (E,E′), and an integer k.
Question: Is there a matching M of size at least k in G, such that M is an independent
set in H?

90

Conflict Free Shortest Path (CF-SP) Parameter: k

Input: A graph G = (V,E), a conflict graph H = (E,E′), two special vertices s and t,
and an integer k.
Question: Is there an st-path P of length at most k in G, such that E(P ) is an
independent set in H?

91

We show that both CF-MM and CF-SP are W[1]-hard, when parameterized by the92

solution size. The W[1]-hardness for CF-MM is obtained by giving an appropriate reduction93

from Independent Set, which is known to be W[1]-hard, when parameterized by the94

solution size [4, 8]. In fact, our W[1]-hardness result for CF-MM holds even when the graph95

where we want to compute a matching is itself a matching. We show the W[1]-hardness of96

CF-SP by giving an appropriate reduction from a multicolored variant of the problem Unit97

2-Track Independent Set (which we prove to be W[1]-hard). We note that Unit 2-Track98

Independent Set is known to be W[1]-hard, which is used to establish W[1]-hardness of its99

multicolored variant. We note that our W[1]-hardness result of CF-SP holds even when the100

conflict graph is a unit interval graph.101

Having shown the W[1]-hardness results, we then restrict our attention to having conflict102

graphs belonging to some families of graphs, where the Independent Set problem is either103

polynomial time solvable or solvable in FPT time. Two of the very well-known graph families104

that we consider are the family of chordal graphs and the family of d-degenerate graphs.105

For the CF-MM problem, we give an FPT algorithm, when the conflict graph belongs to106

the family of chordal graphs. Our algorithm is based on a dynamic programming over107

a “structured” tree decomposition of the conflict graph (which is chordal) together with108

“efficient” computation of representative families at each step of our dynamic programming109

routine. Notice that we cannot obtain an FPT algorithm for the CF-SP problem when the110

conflict graph is a chordal graph. This holds because unit-interval graphs are chordal, and111

the problem CF-SP is W[1]-hard, even when the conflict graph is a unit-interval graph.112

For conflict graphs being d-degenerate, we obtain FPT algorithms for both CF-MM and113

CF-SP. These algorithms are based on the computation of an independence covering family,114

a notion which was recently introduced by Lokshtanov et al. [25]. We note that even for115

nowhere dense graphs, such an independence covering family can be computed efficiently [25].116

Since our algorithms are based on computation of independence covering families, hence, our117

results hold even when the conflict graph is a nowhere dense graph.118

Finally, we study a variant of CF-MM and CF-SP, where instead of conflicting conditions119

being imposed by independent sets in a conflict graph, they are imposed by independence120

constraints in a (representable) matroid. We give FPT algorithms for the above variant of121

both CF-MM and CF-SP.122

2 Preliminaries123

Sets and functions.124

We denote the set of natural numbers and the set of integers by N and Z, respectively. By125

N≥1 we denote the set {x ∈ N | x ≥ 1}. For n ∈ N, by [n] and [0, n], we denote the sets126

{1, 2, · · · , n} and {0, 1, 2, · · · , n}, respectively. For a set U and p ∈ N, a p-family (over U)127

MFCS 2019



53:4 Parameterized Complexity of Conflict-Free Matchings and Paths

is a family of subsets of U of size p. A function f : X → Y is injective if for each x, y ∈ X,128

f(x) = f(y) implies x = y. For a function f : X → Y and a set S ⊆ X, f |S : S → Y is a129

function such that for s ∈ S, we have f |S(s) = f(s). We let ω denote the exponent in the130

running time of algorithm for matrix multiplication, the current best known bound for it is131

ω < 2.373 [35].132

Graphs.133

Consider a graph G. By V (G) and E(G) we denote the set of vertices and edges in G,134

respectively. For X ⊆ V (G), G[X] denotes the subgraph of G with vertex set X and edge135

set {uv ∈ E(G) | u, v ∈ X}. For Y ⊆ E(G), G[Y ] denotes the subgraph of G with vertex set136

∪uv∈Y {u, v} and edge set Y .137

Let G be a graph. An independent set in G is a set X ⊆ V (G) such that for every138

u, v ∈ X, uv /∈ E(G). A matching in G is a set Y ⊆ E(G) such that no two distinct edges in139

Y have a common vertex. A matching M in G is a maximum matching if for any matching140

Y in G, |M | ≥ |Y |. A matching M in G saturates a set X ⊆ V (G), if every vertex in X is141

an end point of an edge in M . For v1, v` ∈ V (G), a v1v`-path P = (v1, v2, · · · , v`−1, v`) in142

G is a sequence of (distinct) vertices, such that V (P ) ⊆ V (G) and for each i ∈ [`− 1], we143

have vivi+1 ∈ E(G). Moreover, the edges in {vivi+1 | i ∈ [`− 1]} are called edges in P . The144

length of a path is the number of edges in it. A shortest uv-path is a uv-path with minimum145

number of edges.146

A chordal graph is a graph with no induced cycles of length at least four. An interval147

graph is an intersection graph of line segments (intervals) on the real line, i.e., its vertex set148

is a set of intervals, and two vertices are adjacent if and only if their corresponding intervals149

intersect. A unit-interval graph is an intersection graph of intervals of unit length on the150

real line. For d ∈ N, a graph is d-degenerate if every subgraph of it has a vertex of degree at151

most d. A clique K in G is an (induced) subgraph, such that for any two distinct vertices152

u, v ∈ V (K) we have uv ∈ E(G). A vertex set S ⊆ V (G) is a clique in G if G[S] is a clique.153

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. If V1 ∩ V2 = ∅, then disjoint union of154

G1 and G2 is the graph G = (V1 ∪ V2, E1 ∪ E2). If V1 = V2, then the edge-wise union of G1155

and G2 is the graph G = (V1, E1 ∪ E2).156

In the following we state definitions related to tree decomposition and some results on157

them, that are used in our algorithms.158

I Definition 1. A tree decomposition of a graph H is a pair (T,X), where T is a rooted tree159

and X = {Xt | t ∈ V (T )}. Every node t of T is assigned a subset Xt ⊆ V (H), called a bag,160

such that following conditions are satisfied:161 ⋃
t∈V (T )

Xt = V (H), i.e. each vertex in H is in at least one bag;162

For every edge uv ∈ E(H), there is t ∈ V (T ) such that u, v ∈ Xt;163

For every vertex v ∈ V (H) the graph T [{t ∈ V (T ) | v ∈ Xt}] is a connected subtree of T .164

To distinguish between vertices of a graph H and vertices of its tree decomposition (T,X),165

we refer to the vertices in T as nodes. Since T is a rooted tree, we have a natural parent-child166

and ancestor-descendant relationship among nodes in T . For a node t ∈ V (T ), by desc(t)167

we denote the set descendant of t in T (including t). For a node t ∈ V (T ) by Vt we denote168

the union of all bags in the subtree rooted at t i.e. Vt = ∪d∈desc(t)Xd and by Ht we denote169

the graph H[Vt]. A leaf node of T is a node with degree exactly one in T , which is different170

from the root node. All the nodes of T which are neither the root node nor a leaf node are171

non-leaf nodes.172
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We now define a more structured form of tree decomposition that will be used in the173

algorithm.174

I Definition 2. Let (T,X) be a tree decomposition of a graph H with r as the root node.175

Then, (T,X) is a nice tree decomposition if for each each leaf ` in T and the root r, we have176

that X` = Xr = ∅, and each non-leaf node t ∈ V (T ) is of one of the following types:177

1. Introduce node: t has exactly one child, say t′, and Xt = Xt′ ∪ {v}, where v /∈ Xt′ .178

We say that v is introduced at t;179

2. Forget node: t has exactly one child, say t′, and Xt = Xt′ \ {v}, where v ∈ Xt′ . We180

say that v is forgotten at t;181

3. Join node: t has exactly two children, say t1 and t2, and Xt = Xt1 = Xt2 .182

I Proposition 3 ([4, 22]). Given a tree decomposition (T,X) of a graph H, in polynomial183

time we can compute a nice tree decomposition (T ′, X ′) of H that has at most O(k|V (H)|)184

nodes, where, k is the size of the largest bag in X. Moreover, for each t′ ∈ V (T ′), there is185

t ∈ V (T ) such that X ′t′ ⊆ Xt.186

A tree decomposition (T,X) of a graph H, where for each t ∈ V (T ), the graph H[Xt] is187

a clique, is called a clique-tree. Next, we state a result regarding computation of a clique-tree188

of a chordal graph.189

I Proposition 4 ([17]). Given an n vertex chordal graph H, in polynomial time we can190

construct a clique-tree (T,X) of H with O(n) nodes.191

Using Proposition 3 and 4 we obtain the following result.192

I Proposition 5. Given an n vertex chordal graph H, in polynomial time we can construct a193

nice tree decomposition which is also a clique-tree (nice clique-tree), (T,X) of H with O(n2)194

nodes.195

Matroids and representative sets.196

In the following we state some basic definitions related to matroids. We refer the reader197

to [30] for more details. We also state the definition of representative families and state some198

results related to them.199

I Definition 6. A pairM = (U, I), where U is the ground set and I is a family of subsets200

of U , is a matroid if the following conditions hold:201

∅ ∈ I;202

If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I;203

If I1, I2 ∈ I and |I2| < |I1|, then there exists an element x ∈ I1\I2, such that I2∪{x} ∈ I.204

An inclusion-wise maximal set in I is called a basis ofM. All bases of a matroid are of205

the same size. The size of a basis is called the rank of the matroid. For a matroidM = (U, I)206

and sets P,Q ⊆ U , we say that P fits Q if P ∩Q = ∅ and P ∪Q ∈ I.207

A matroidM = (U, I) is a linear (or representable) matroid if there is a matrix A over a208

field F with E as the set of columns, such that: 1) |E| = |U |; 2) there is an injective function209

ϕ : U → E, such that X ⊆ U is an independent set inM if and only if {ϕ(x) | x ∈ X} is a210

set of linearly independent columns (over F). In the above, we say thatM is representable211

over F, and A is one of its representation.212

In the following, we define some matroids and state results regarding computation of213

their representations.214
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53:6 Parameterized Complexity of Conflict-Free Matchings and Paths

I Definition 7 ([4, 30]). A matroidM = (U, I) is a partition matroid if the ground set U is215

partitioned into sets U1, U2, · · · , Uk, and for each i ∈ [k], there is an integer ai associated216

with Ui. A set S ⊆ U is independent inM if and only if for each i ∈ [k], |S ∩ Ui| ≤ ai.217

I Proposition 8 ([15, 30, 26]). A representation of a partition matroid over Q (the field of218

rationals) can be computed in polynomial time.219

I Definition 9. Let M1 = (U1, I1),M2 = (U2, I2) · · · ,Mt = (Ut, It) be t matroids with220

Ui ∩ Uj = ∅, for all 1 ≤ i 6= j ≤ t. The direct sum M1 ⊕ · · · ⊕Mt, ofM1,M2, · · · ,Mt is221

the matroid with ground set U = ∪i∈[t]Ui and X ⊆ U is independent inM if and only if for222

each i ∈ [t], X ∩ Ui ∈ Ii.223

I Proposition 10 ([26, 30]). Given matrices A1, A2, · · · , At (over F) representing matroids224

M1,M2, · · · ,Mt, respectively, we can compute a representation of their direct sum,M1 ⊕225

· · · ⊕Mt, in polynomial time.226

Next, we state the definition of representative families.227

I Definition 11. Let M = (U, I) be a matroid, and A be a p-family of U . We say that228

A′ ⊆ A is a q-representative for A if for every set Y ⊆ U of size q, if there is a set X ∈ A,229

such that X ∩ Y = ∅ and X ∪ Y ∈ I, then there is a set X ′ ∈ A′ such that X ′ ∩ Y = ∅ and230

X ′ ∪ Y ∈ I. If A′ ⊆ A is a q-representative for A then we denote it by A′ ⊆q
rep A.231

In the following, we state some basic propositions regarding q-representative sets, which232

will be used later.233

I Proposition 12 ([4, 14]). If A1 ⊆q
rep A2 and A2 ⊆q

rep A3, then A1 ⊆q
rep A3.234

I Proposition 13 ([4, 14]). If A1 and A2 are two p-families such that A′1 ⊆q
rep A1 and235

A′2 ⊆q
rep A2, then A′1 ∪ A′2 ⊆q

rep A1 ∪ A2.236

Next, we state a result regarding the computation of a q-representative set.237

I Theorem 14 ([4, 14]). Given a matrix M (over field F) representing a matroidM = (U, I)238

of rank k, a p-family A of independent sets inM, and an integer q such that p+ q = k, there239

is an algorithm which computes a q-representative family A′ ⊆q
rep A of size at most

(
p+q

p

)
240

using at most O
(
|A|
((

p+q
p

)
pω +

(
p+q

p

)ω−1)) operations over F.241

Let A1 and A2 be two families of sets over U andM = (U, I) be a matroid. We define242

their convolution as follows.243

A1 ?A2 = {A1 ∪A2 | A1 ∈ A1, A2 ∈ A2, A1 ∩A2 = ∅ and A1 ∪A2 ∈ I}244
245

I Lemma 15. LetM = (U, I) be a matroid, A1 be a p1-family, and A2 be a p2-family. If246

A′1 ⊆k−p1
rep A1 and A′2 ⊆k−p2

rep A2, then A′1 ?A′2 ⊆k−p1−p2
rep A1 ?A2.247

Proof. The proof of this lemma is similar to the proof of Lemma 12.28 in [4]. Let B be248

a set of size k − p1 − p2. Suppose there exists a set A1 ∪ A2 ∈ A1 ?A2 that fits B. Since,249

(A1 ∪A2) ∩B = ∅, we have |B ∪A2| = k − p1. This implies that there exists A′1 ∈ A′1 which250

fits B∪A2, i.e., (A′1∪B∪A2) ∈ I and A′1∩ (B∪A2) = ∅ which gives |A′1∪B| = k−p2. This251

means, there exists A′2 ∈ A′2 that fits A′1 ∪B, i.e., (A′2 ∪A′1 ∪B) ∈ I and A′2 ∩ (A′1 ∪B) = ∅.252

Since, A′1 ∩ (B ∪A2) = ∅ and A′2 ∩ (A′1 ∪B) = ∅, we get (A′1 ∪A′2) ∩B = ∅. Hence, A′1 ∪A′2253

fits B and (A′1 ∪A′2) ∈ A′1 ?A′2. J254

Next, we give a result regarding computation of convolution (?).255
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I Proposition 16. Let M be a matrix over a field F representing a matroidM = (U, I) over256

an n-element ground set, A1 be a p1-family, and A2 be a p2-family, where p1 + p2 = k. Then257

A1 ?A2 can be computed in time O(2knO(1)).258

Proof. Consider the standard convolution operation, A1 ◦ A2 = {A1 ∪A2 | A1 ∈ A1, A2 ∈259

A2 and A1 ∩A2 = ∅} defined in [4, Section 12.3.5]. The family A1 ◦ A2 can be computed in260

O(2kn3) time [4, Exercise 12.12]. Since, A1 ?A2 = {A1 ∪A2 | A1 ∈ A1, A2 ∈ A2, A1 ∩A2 =261

∅, and A1∪A2 ∈ I}. Hence, X ∈ A1?A2 if and only if X ∈ A1◦A2 and X is a set of linearly262

independent columns (over F). Testing whether a set of vectors is linearly independent263

over a field can be done in time polynomial in size of the set (using Gaussian elimination).264

Therefore, testing if an X ∈ A1 ◦ A2 is linearly independent, can be done in time O(nO(1)).265

Since |A1 ◦A2| ≤ |A1||A2|, family A1 ?A2 can be computed in O((2k + |A1||A2|)nO(1)) time.266

Since, |A1| ≤ 2p1 and |A2| ≤ 2p2 , the running time is bounded by O(2knO(1)). J267

Universal sets and their computation.268

I Definition 17. An (n, k)-universal set is a family F of subsets of [n] such that for any set269

S ⊆ [n] of size k, the family {A ∩ S | A ∈ F} contains all 2k subsets of S.270

Next, we state a result regarding the computation of a universal set.271

I Proposition 18 ([4, 28]). For any n, k ≥ 1, we can compute an (n, k)-universal set of size272

2kkO(log k) logn in time 2kkO(log k)n logn.273

3 W[1]-hardness Results274

In this section, we show that Conflict Free Maximum Matching and Conflict Free275

Shortest Path are W[1]-hard, when parameterized by the solution size.276

3.1 W[1]-hardness of CF-MM277

We show that CF-MM is W[1]-hard, when parameterized by the solution size, even when278

the graph where we want to find a matching, is itself a matching (disjoint union of edges).279

To prove our result, we give an appropriate reduction from Independent Set to CF-MM.280

In the following, we define the problem Independent Set.281

Independent Set Parameter: k

Input: A graph G and an integer k.
Question: Is there a set X ⊆ V (G) of size at least k such that X is an independent set
in G?

282

It is known that Independent Set is W[1]-hard, when parameterized by the size of an283

independent set [4, 8].284

I Theorem 19. CF-MM is W[1]-hard, when parameterized by the solution size.285

Proof. Given an instance (G?, k) of Independent Set, we construct an equivalent instance286

(G,H, k) of CF-MM as follows. We first describe the construction of G. For each v ∈ V (G?),287

we add an edge vv′ to G. Notice that G is a matching. This completes the description of288

G. Next, we move to the construction of H. We have V (H) = {ev = vv′ | v ∈ V (G?)}.289

Moreover, for eu, ev ∈ V (H), we add the edge euev to E(H) if and only if uv ∈ E(G?).290

We note that H is exactly the same as G?, with vertices being renamed. This completes291
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the construction of (G,H, k) of CF-MM. Next, we show that (G?, k) is a yes instance of292

Independent Set if and only if (G,H, k) is a yes instance of CF-MM.293

In forward direction, let (G?, k) be a yes instance of Independent Set, and S be one of294

its solution. Let S′ = {ev | v ∈ S}. We show that S′ is a solution to CF-MM. Notice that295

by construction, S′ is a matching in G, and |S′| = |S| ≥ k. Moreover, G? is isomorphic to296

H, with the vertex mapping as ϕ : V (G?)→ V (H), where for v ∈ V (G?), ϕ(v) = ev. Hence,297

S′ is an independent set in H.298

In reverse direction, let (G,H, k) be a yes instance of CF-MM, and S′ be one of its299

solution. Let S = {v | ev ∈ S′}. Using an analogous argument as in the forward direction, we300

conclude that S is a solution to Independent Set in (G?, k). This concludes the proof. J301

3.2 W[1]-hardness of CF-SP302

We show that CF-SP is W[1]-hard, when parameterized by the solution size, even when the303

conflict graph is a proper interval graph. We refer to this restricted variant of the problem304

as Unit Interval CF-SP. To prove our result, we give an appropriate reduction from305

a multicolored variant of the problem Unit 2-Track Independent Set, which we call306

Unit 2-Track Multicolored IS. In the following, we define the problems Unit 2-Track307

Independent Set and Unit 2-Track Multicolored IS.308

Unit 2-Track Independent Set (Unit 2-Track IS) Parameter: k

Input: Two unit-interval graphs G1 = (V,E1) and G2 = (V,E2), and an integer k.
Question: Is there a set S ⊆ V of size at least k, such that S is an independent set in
both G1 and G2?

309

Unit 2-Track Multicolored IS (Unit 2-Track MIS) Parameter: k

Input: Two unit-interval graphs G1 = (V,E1) and G2 = (V,E2), and a partition
V1, V2, · · · , Vk of V .
Question: Is there a set S ⊆ V , such that S is an independent set in both G1 and G2,
and for each i ∈ [k], we have |S ∩ Vi| = 1?

310

It is known that Unit 2-Track IS is W[1]-hard, when parameterized by the solution311

size [21]. We show that the problem Unit 2-Track MIS is W[1]-hard, when parameterized312

by the number of sets in the partition. We show this by giving an appropriate (Turing)313

reduction from Unit 2-Track IS. Finally, we give a reduction from Unit 2-Track MIS to314

Unit Interval CF-SP, hence obtaining the desired result.315

3.3 W[1]-hardness of Unit 2-Track MIS.316

We give a (Turing) reduction from Unit 2-Track IS to Unit 2-Track MIS. Moreover,317

since we want to rule out existence of an FPT algorithm, we spend FPT time to obtain FPT318

many instances of Unit 2-Track MIS.319

Before proceeding to the reduction from Unit 2-Track IS to Unit 2-Track MIS, we320

define the notion of perfect hash family, which will be used in the reduction.321

I Definition 20. An (n, k)-perfect hash family F , is a family of functions f : [n]→ [k] such322

that for every set S ⊆ [n] of size k, there is an f ∈ F , such that f |S is injective.323

In the following, we state a result regarding computation of an (n, k)-perfect hash family.324

I Theorem 21. [4, 28] For any n, k ≥ 1, an (n, k)-perfect hash family of size ekkO(log k) logn325

can be constructed in ekkO(log k)n logn time.326
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Now we are ready to give a (Turing) reduction from Unit 2-Track IS to Unit 2-Track327

MIS.328

I Lemma 22. There is a parameterized Turing reduction from Unit 2-Track IS to Unit329

2-Track MIS.330

Proof. Let (G1, G2, k) be an instance of Unit 2-Track IS, where V (G1) = V (G2) = [n]. We331

construct a family C of instances of Unit 2-Track MIS as follows. We start by computing332

an (n, k)-perfect hash family F , of size ekkO(log k) logn, in time ekkO(log k)n logn, using333

Theorem 21. Now, for each f ∈ F , we construct an instance If = (G1, G2, V
f

1 , V
f

2 , · · · , V
f

k )334

of Unit 2-Track MIS as follows. For i ∈ [k], we set V f
i = {v ∈ V (G1) | f(v) = i}. Finally,335

we set C = {If | f ∈ F}.336

We claim that (G1, G2, k) is a yes instance of Unit 2-Track IS if and only if there is337

If ∈ C such that If is a yes instance of Unit 2-Track MIS.338

In the forward direction, let (G1, G2, k) be a yes instance of Unit 2-Track IS, and S be339

one of its solution of size k. Consider f ∈ F such that f |S is injective, which exists since340

F is an (n, k)-perfect hash family. By construction of C, we have If ∈ C. Moreover, by341

construction of f , for each i ∈ [k], we have |S ∩ Vi| = 1. Hence, S is a solution to If .342

In the reverse direction, let If ∈ C be a yes instance of Unit 2-Track MIS, and343

S be one of its solution. Clearly, S is a solution to Unit 2-Track IS in (G1, G2, k) as344

If = (G1, G2, V
f

1 , V
f

2 , · · · , V
f

k ). This concludes the proof. J345

I Theorem 23. Unit 2-Track MIS is W[1]-hard, when parameterized by the solution size.346

Proof. Follows from Lemma 22 and W[1]-hardness of Unit 2-Track IS. J347

3.4 W[1]-hardness of Unit Interval CF-SP348

We give a parameterized reduction from Unit 2-Track MIS to Unit Interval CF-SP.349

Let (G1, G2, V1, · · · , Vk) be an instance of Unit 2-Track MIS. We construct an instance350

(G′, H, s, t, k′) of Unit Interval CF-SP as follows. For each v ∈ V (G1), we add a path351

on 3 vertices namely, (v1, v2, v3) in G′. For notational convenience, for v ∈ V (G1), by e12(v)352

and e23(v) we denote the edges v1v2 and v2v3, respectively. Consider i ∈ [k − 1]. For u ∈ Vi353

and v ∈ Vi+1, we add the edge zuv = u3v1 to E(G′) (see Figure 1). Moreover, by Zi, we354

denote the set {zuv | u ∈ Vi, v ∈ Vi+1}. We add two new vertices s and t to V (G′), and355

add all the edges in Z0 = {sv1 | v ∈ V1} and Zk = {v3t | v ∈ Vk} to E(G′). Next, we356

move to the construction of H. Note that H must be a unit-interval graph on the vertex357

set E(G′) = (∪i∈[0,k]Zi) ∪ (∪v∈V (G1){e12(v), e23(v)}). In H, each vertex in ∪i∈[0,k]Zi is an358

isolated vertex. Let E12 = {e12(v) | v ∈ V (G1)} and E23 = {e23(v) | v ∈ V (G1)}. For359

e12(u), e12(v) ∈ E12, we add the edge e12(u)e12(v) to E(H) if and only if uv ∈ E(G1).360

Similarly, for e23(u), e23(v) ∈ E23, we add the edge e23(u)e23(v) to E(H) if and only if361

uv ∈ E(G2). Observe that H[E12] is isomorphic to G1, with bijection φ1 : V (G1) → E12362

with φ1(v) = e12(v). Similarly, H[E23] is isomorphic to G2 with bijection φ2 : V (G2)→ E23363

with φ2(v) = e23(v). By construction, H is disjoint union of unit-interval graphs, and hence364

is a unit-interval graph. Finally, we set k′ = 3k + 1. This completes the description of the365

reduction.366

In the following lemma we show that the instance (G1, G2, V1, · · · , Vk) of Unit 2-Track367

MIS and the instance (G′, H, s, t, k′) of Unit Interval CF-SP are equivalent.368

I Lemma 24. (G1, G2, V1, · · · , Vk) is a yes instance of Unit 2-Track MIS if and only if369

(G′, H, s, t, k′) is a yes instance of Unit Interval CF-SP.370
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s

v1 v2 v3

...

...

... t

......

Figure 1 An illustration of the construction of G′ in W[1]-hardness of Unit Interval CF-SP.

Proof. In the forward direction, let (G1, G2, V1, · · · , Vk) be a yes instance of Unit 2-Track371

MIS, and S = {v1, v2, · · · , vk} be one of its solution, such that vi ∈ Vi. We claim that372

P = (s, v1
1 , v

1
2 , v

1
3 , · · · , vk

1 , v
k
2 , v

k
3 , t) is a conflict-free path (on 3k + 1 edges) in G′. By373

the construction of G′, it follows that P is a path in G′. Next, we show that E(P ) is374

an independent set in H. Let v0
3 = s and vk+1

1 = t. By construction, each edge in375

{vi
3v

i+1
1 | i ∈ [0, k]} ⊆ ∪[0,k]Zi is an isolated vertex in H. Also, for each i ∈ [k], we have376

that {e12(vi), e23(vi)} is an independent set in H. Next, consider i, j ∈ [k], where i 6= j. By377

construction e12(vi)e23(vj), e23(vi)e12(vj) /∈ E(H). Moreover, e12(vi)e12(vj) /∈ E(H) since378

S in an independent set in G1. Similarly, e23(vi)e23(vj) /∈ E(H) as S is an independent set379

in G2. In the above, we have considered every pair of edges in E(P ), and argued that no380

two of them are adjacent to each other in H. Hence, it follows that P is a solution to Unit381

Interval CF-SP in (G′, H, s, t, k′).382

In the reverse direction, let P be a solution to Unit Interval CF-SP in (G′, H, s, t, k′).383

By the construction of G′, the path P must be of the form (s, v1
1 , v

1
2 , v

1
3 , · · · , vk

1 , v
k
2 , v

k
3 , t). We384

claim that S = {v1, v2, · · · , vk} is an independent set in both G1 and G2. Suppose not, then385

there is an edge vivj , i 6= j and i, j ∈ [k] say, in G1 (the case when it is in G2 is symmetric).386

But then e12(vi)e12(vj) is an edge in H, contradicting that E(P ) is an independent set in387

H. Hence, we have that S is an independent set both in G1 and G2. Moreover, since P is a388

path of length at most 3k + 1, it must hold that for each i ∈ [k], we have vi ∈ Vi. Hence, S389

is a solution to Unit 2-Track MIS in (G1, G2, V1, · · · , Vk). J390

I Theorem 25. Unit Interval CF-SP is W[1]-hard, when parameterized by the solution391

size.392

Proof. Follows from the construction of instance (G′, H, s, t, k′) of Unit Interval CF-SP,393

for the given instance (G1, G2, V1, · · · , Vk) of Unit 2-Track MIS, Lemma 24, and Theorem394

23. J395

4 FPT Algorithm for CF-MM with Chordal Conflict396

In this section, we show that CF-MM is FPT, when the conflict graph belongs to the397

family of chordal graphs. We call this restricted version of CF-MM as Chordal Conflict398

Matching. Towards designing an algorithm for Chordal Conflict Matching, we first399

give an FPT algorithm for a restricted version of Chordal Conflict Matching, where400

we want to compute a matching for a bipartite graph. We call this variant of Chordal401

Conflict Matching as Chordal Conflict Bipartite Matching (CCBM). We then402

employ the algorithm for CCBM to design an FPT algorithm for Chordal Conflict403

Matching.404
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4.1 FPT algorithm for CCBM405

We design an FPT algorithm for the problem CCBM, where the conflict graph is chordal406

and the graph where we want to compute a matching is a bipartite graph. The problem407

CCBM is formally defined below.408

Chordal Conflict Bipartite Matching (CCBM) Parameter: k

Input: A bipartite graph G = (V,E) with vertex bipartition L,R, a conflict graph
H = (E,E′), and an integer k.
Question: Is there a matching M ⊆ E of size k in G, such that M is an independent
set in H?

409

The FPT algorithm for CCBM is based on a dynamic programming routine over a410

tree decomposition of the conflict graph H and representative sets on the graph G. Let411

(G,L,R,H, k) be an instance of CF-MM, where G is a bipartite graph on n vertices, with412

vertex bipartition L,R, and H is a chordal graph with V (H) = E(G).413

In the following, we construct three matroids ML = (E, IL),MR = (Ec, IR), and414

M = (E ∪ Ec, I). MatroidsML andMR are partition matroids and the matroidM is the415

direct sum ofML andMR. The ground set ofML is E = E(G). The set Ec contains a416

copy of edges in E, i.e., Ec = {ec | e ∈ E}. We create two (disjoint) sets E and Ec, because417

M is the direct sum ofML andMR, and we want their ground sets to be disjoint. Next, we418

describe the partition E of E into |L| sets and |L| integers, one for each set in the partition,419

for the partition matroidML. For u ∈ L, let Eu = {uv | uv ∈ E}. Notice that for u, v ∈ L,420

where u 6= v, we have Eu ∩Ev = ∅. Moreover, ∪u∈EEu = E. We let E = {Eu | u ∈ L}, and421

for each u ∈ L, we set au = 1. Similarly, we define the partition Ec of Ec with respect to set422

R. That is, we let Ec = {Ec
u = {(uv)c | uv ∈ E(G)} | u ∈ R}. Furthermore, for u ∈ R, we423

let auc = 1. We define the following notation, which will be used later. For Z ⊆ E, we let424

Zc = {ec | e ∈ Z} ⊆ Ec.425

I Proposition 26. Q ⊆ E(G) is a matching in G with vertex bipartition L and R if and426

only if Q ∪Qc is an independent set in the matroidM =ML ⊕MR.427

Proof. In the forward direction, let Q be a matching in the bipartite graph G = (V,E), where428

V = L ∪ R. Since, ML = (E, IL) is a partition matroid with partition E = {Eu | u ∈ L}429

and au = 1, for each u ∈ L, Q ∩ L is an independent set in ML. Similarly, Qc ∩ R is an430

independent inMR. Since,M =ML ⊕MR, it follows that Q∪Qc is an independent set in431

M.432

In the reverse direction, consider Q ⊆ E such that Q ∪Qc is an independent set inM.433

Since, M = ML ⊕MR, Q is independent in ML and Qc is independent in MR. Since,434

Q and Qc both have copies of the same edge, no two edges in Q share an end point in G.435

Hence, Q forms a matching in G. J436

To capture the independence property on the conflict graph, we rely on the fact that437

a chordal graph admits a nice clique-tree (Proposition 5). This allows us to do dynamic438

programming over a nice clique-tree. At each step of our dynamic programming routine,439

using representative sets, we ensure that we store a family of sets which are enough to recover440

(some) independent set inM, if a solution exists.441

We now move to the formal description of the algorithm. The algorithm starts by442

computing a nice clique-tree (T,X) of H in polynomial time, using Proposition 5. Let443

r ∈ V (T ) be the root of the (rooted) tree T . For Xt ∈ X, we let Xt = {∅} ∪ {{v} | v ∈ Xt}.444

Recall that for t ∈ V (T ), Ht is the graph H[Vt], where Vt = ∪d∈desc(t)Xd.445
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In the following, we state some notations, which will be used in the algorithm. For each446

t ∈ V (T ), Y ∈ Xt, and an integer p ∈ [0, k] we define a family Pp
t,Y as follows.447

Pp
t,Y ={Z ∪ Zc | Z ⊆ V (Ht)(⊆ E), |Z| = p, Z ∩Xt = Y, Z ∪ Zc ∈ I and Ht[Z] is

edgeless}448

For a family F of subsets of E ∪ Ec, F is called a paired-family if for each F ∈ F , there449

is Z ⊆ E, such that F = Z ∪ Zc.450

In the following definition, we state the entries in our dynamic programming routine.451

I Definition 27. For each t ∈ V (T ), Y ∈ Xt and p ∈ [0, k], we have an entry c[t, Y, p],452

which stores a paired-family F(t, Y, p) of subsets of E ∪ Ec of size 2p, such that for each453

F = Z ∪ Zc ∈ F , the following conditions are satisfied.454

1. |Z| = p;455

2. Z ∩Xt = Y ;456

3. Z is a matching in G, i.e., Z and Zc are independent sets inML andMR, respectively;457

4. Z is an independent set in Ht.458

Moreover, F 6= ∅ if and only if Pp
t,Y 6= ∅.459

Consider t ∈ V (T ), Y ∈ Xt and p ∈ [0, k]. Observe that Pp
t,Y is a valid candidate460

for c[t, Y, p], which also implies that (G,H, k) is a yes instance of CCBM if and only if461

c[r, ∅, k] 6= ∅. However, we cannot set c[t, Y, p] = Pp
t,Y as the size of Pp

t,Y could be exponential462

in n, and the goal here is to obtain an FPT algorithm. Hence, we will store a much463

smaller subfamily (of size at most
(2k

2p

)
) of Pp

t,Y in c[t, Y, p], which will be computed using464

representative sets. Moreover, as we have a structured form of a tree decomposition (nice465

clique-tree) of H, we compute the entries of the table based on the entries of its children,466

which will be given by recursive formulae. For leaf nodes, which form base cases for recursive467

formulae, we compute all entries directly.468

Next, we give (recursive) formulae for the computation of the table entries. Consider469

t ∈ V (T ), Y ∈ Xt and p ∈ [0, k]. We compute the entry c[t, Y, k] based on the following cases.470

471

Leaf node: t is a leaf node. In this case, we have Xt = ∅, and hence Xt = {∅}. If p = 0,472

then Pp
t,∅ = {∅}, and Pp

t,∅ = ∅, otherwise. Since, Pp
t,∅ is a valid candidate for c[t, Y, p], we set473

c[t, Y, p] = Pp
t,∅. Note that c[t, Y, p] has size at most 1 ≤

(2k
2p

)
, and we can compute c[t, Y, p]474

in polynomial time.475

Introduce node: Suppose t is an introduce node with child t′ such that Xt = Xt′ ∪ {e},476

where e /∈ Xt′ . If Y 6= ∅ and p < 1, then we set c[t, Y, p] = ∅. Otherwise, we compute the477

entry as described below. Before computing the entry c[t, Y, p], we first compute a set P̃p
t,Y478

as follows.479

P̃p
t,Y =

{
c[t′, Y, p] if Y 6= {e};
c[t′, ∅, p− 1] ? {{e, ec}} otherwise.

(1)480

Next, we compute P̂p
t,Y ⊆2k−2p

rep P̃p
t,Y of size

(2k
2p

)
, using Theorem 14. Finally, we set481

c[t, Y, p] = P̂p
t,Y .482

Correctness: To show the correctness, it is enough to show that c[t, Y, p] ⊆2k−2p
rep Pp

t,Y . If483

Y 6= ∅ and p < 1, then we correctly set c[t, Y, p] = ∅. Hereafter, we assume that Y 6= ∅484
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then p ≥ 1. If Y 6= {e}, then the claim follows from the fact that c[t, Y, p] = c[t′, Y, p] and485

Pp
t,Y = Pp

t′,Y . Therefore, we consider the case when Y = {e}. In this case, we observe the486

following towards proving the claim.487

1. Pp
t,Y = Pp−1

t′,∅ ? {{e, e
c}}.488

2. c[t′, ∅, p− 1] ⊆2k−2(p−1)
rep Pp−1

t′,∅ .489

From item 1 and 2, and Lemma 15, it follows that c[t′, ∅, p− 1] ? {{e, ec}} ⊆2k−2p
rep Pp

t,Y .490

This together with Proposition 12, and the fact that P̂p
t,Y ⊆2k−2p

rep c[t′, ∅, p − 1] ? {{e, ec}}491

implies that c[t, Y, p] = P̂p
t,Y ⊆2k−2p

rep Pp
t,Y .492

Forget node: Suppose t is a forget node with child t′ such that Xt = Xt′ \ {e}, where493

e ∈ Xt′ . Before computing the entry c[t, Y, p], we first compute a set P̃p
t,Y as follows.494

P̃p
t,Y =

{
c[t′, Y, p] if Y 6= ∅;
c[t′, ∅, p] ∪ c[t′, {e}, p] otherwise.

(2)495

Next, we compute P̂p
t,Y ⊆2k−2p

rep P̃p
t,Y of size

(2k
2p

)
, using Theorem 14. Finally, we set496

c[t, Y, p] = P̂p
t,Y .497

Correctness: To show the correctness, it is enough to show that c[t, Y, p] ⊆2k−2p
rep Pp

t,Y . If498

Y 6= ∅, then the claim follows from the fact that c[t, Y, p] = c[t′, Y, p], and Pp
t,Y = Pp

t′,Y .499

Therefore, we consider the case when Y = ∅. In this case, we observe the following towards500

proving the claim.501

1. c[t′, ∅, p] ⊆2k−2p
rep Pp

t′,∅.502

2. c[t′, {e}, p] ⊆2k−2p
rep Pp

t′,{e}.503

3. Pp
t,Y = Pp

t′,∅ ∪ P
p
t′,{e}.504

From item 1 to 3, and Proposition 13, it follows that c[t′, ∅, p] ∪ c[t′, {e}, p] ⊆2k−2p
rep Pp

t,Y .505

This together with Proposition 12, and the fact that P̂p
t,Y ⊆2k−2p

rep c[t′, ∅, p] ∪ c[t′, {e}, p]506

implies that c[t, Y, p] = P̂p
t,Y ⊆2k−2p

rep Pp
t,Y .507

Join node: Suppose t is a join node with children t1 and t2, such that Xt = Xt1 = Xt2 . If508

Y 6= ∅ and p < 1, then we set c[t, Y, p] = ∅. Otherwise, we compute the entry as described509

below. Before computing the entry c[t, Y, p], we first compute a set P̃p
t,Y as follows.510

P̃p
t,Y =


⋃

i∈[0,p]
(c[t1, ∅, i] ? c[t2, ∅, p− i]) if Y = ∅;⋃

i∈[p]
(c[t1, Y, i] ? c[t2, ∅, p− i]) otherwise.

(3)511

Next, we compute P̂p
t,Y ⊆2k−2p

rep P̃p
t,Y of size

(2k
2p

)
, using Theorem 14. Finally, we set512

c[t, Y, p] = P̂p
t,Y .513

Correctness: To show the correctness, it is enough to show that c[t, Y, p] ⊆2k−2p
rep Pp

t,Y . If514

Y 6= ∅ and p < 1, then we correctly set c[t, Y, p] = ∅. Hereafter, we assume that whenever515

Y 6= ∅, we have p ≥ 1. Next, we consider the following cases depending on whether or not516

Y = ∅.517
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Y = ∅. In this case, we have Pp
t,Y = ∪i∈[0,p](Pi

t1,∅ ? P
p−i
t1,∅). Moreover, for i ∈ [0, p], we518

have that c[t1, ∅, i] ⊆2k−2i
rep Pi

t1,∅ and c[t2, ∅, p − i] ⊆2k−2(p−i)
rep Pp−i

t1,∅ . Above arguments519

together with Proposition 13 and Lemma 15 implies that c[t, Y, p] ⊆2k−2p
rep Pp

t,Y .520

Y 6= ∅. In this case, we start by arguing that P̂p
t,Y = ∪i∈[p](c[t1, Y, i]?c[t2, ∅, p−i]) ⊆2k−2p

rep521

Pp
t,Y . To this end, consider a set A ∈ Pp

t,Y of size 2p and a set B ⊆ E ∪Ec of size 2k− 2p522

such that A ∪ B ∈ I and A ∩ B = ∅. Observe that by construction of Pp
t,Y , A ⊆523

V (Ht)∪ (V (Ht))c, A∩Xt = Y . Let A1 = A∩V (Ht1), A2 = A \A1, and i∗ = |A1|. Since524

A ∈ Pp
t,Y , and Pp

t,Y is a paired-family, it holds that Ac
1∪Ac

2 ⊆ A. Let B2 = B∪A1∪Ac
1, and525

note that |B2| = 2k−2(p− i∗). Moreover, c[t2, ∅, p− i∗] ⊆2k−2(p−i∗)
rep Pp−i∗

t2,∅ , and therefore,526

there is Ã2∪Ãc
2 ∈ c[t2, ∅, p−i∗] such that (Ã2∪Ãc

2)∪B2 ∈ I and (Ã2∪Ãc
2)∩B2 = ∅. Next,527

consider B1 = B ∪ (Ã2 ∪ Ãc
2), and note that |B1| = 2k− 2p+ 2(p− i∗) = 2k− 2i∗. Since,528

c[t1, Y, i∗] ⊆2k−2i∗

rep Pi∗

t1,Y , therefore, there is Ã1∪Ãc
1 ∈ c[t1, T, i∗] such that B1∪(Ã1∪Ãc

1) ∈529

I and B1∩ (Ã1∪ Ãc
1) = ∅. The above arguments imply that (Ã1∪ Ãc

1)∪ (Ã2∪ Ãc
2) ∈ I and530

(Ã1 ∪ Ãc
1)∩ (Ã2 ∪ Ãc

2) = ∅. Hence, by definition of the convolution operation (?), we have531

(Ã1∪ Ãc
1)∪ (Ã2∪ Ãc

2) ∈ c[t1, Y, i∗]?c[t2, ∅, p− i∗]. Moreover, B∪ (Ã1∪ Ãc
1)∪ (Ã2∪ Ãc

2) ∈ I532

and B∩ (Ã1∪ Ãc
1)∪ (Ã2∪ Ãc

2) = ∅. Therefore, ∪i∈[p](c[t1, Y, i]?c[t2, ∅, p− i]) ⊆2k−2p
rep Pp

t,Y .533

This together with Proposition 12 implies that c[t, Y, p] ⊆2k−2p
rep Pp

t,Y .534

This completes the description of the (recursive) formulae and their correctness for535

computing all entries of the table. The correctness of the algorithm follows from the536

correctness of the (recursive) formulae, and the fact that (G,H, k) is a yes instance of CCBM537

if and only if c[r, ∅, k] 6= ∅. Next, we move to the running time analysis of the algorithm.538

I Lemma 28. The algorithm presented for CCBM runs in time O(2O(ωk)nO(1)), where n539

is the number of vertices in G.540

Proof. We do the running time analysis based on time required to compute an entry c[t, Y, k],541

for t ∈ V (T ), Y ∈ Xt and p ∈ [0, k]. We consider the following cases.542

Leaf node: For leaf nodes the entries c[t, Y, k] can be computed in polynomial time.543

Introduce node: The algorithm first computes a family P̃p
Y,t from Equation 1, which544

takes 22knO(1) time (using Proposition 16). Moreover, |P̃p
Y,t| ≤ max{

(2k
2p

)
,
( 2k

2(p−1)
)
}. The545

algorithm then computes P̂p
Y,t ⊆2k−2p

rep P̃p
Y,t using Theorem 14, which takes time bounded by546

O(2O(ωk)nO(1)).547

Forget node: The algorithm first computes a family P̃p
Y,t from Equation 1, which takes at548

most
(2k

2p

)
time by standard set union operation. Moreover, |P̃p

Y,t| ≤ 2
(2k

2p

)
. The algorithm then549

computes P̂p
Y,t ⊆2k−2p

rep P̃p
Y,t. This takes time |P̃p

Y,t|
(2k

2p

)ω−1
nO(1) ≤

(2k
2p

)ω
nO(1) ≤ 4ωknO(1).550

Therefore, the time required to compute an entry at forget node is at most O(2O(ωk)nO(1)).551

Join node: The algorithm first computes a family P̃p
Y,t from Equation 3, which takes at most552

22knO(1) time by Proposition 16 and standard set union operation. Moreover, |P̃p
Y,t| ≤ 2O(ωk).553

Now the algorithm applies Theorem 14 on P̃p
Y,t and computes P̂p

Y,t ⊆2k−2p
rep P̃p

Y,t. This takes554

time bounded by O(2O(ωk)nO(1)). Therefore, the time required to compute an entry at join555

node is at most O(2O(ωk)nO(1)).556

The time to compute an entry c[t, Y, k] is at most O(2O(ωk)nO(1)). Moreover, the number557

of entries is bounded by |V (T )| · k · n ∈ nO(1). Thus, the running time of the algorithm is558

bounded by O(2O(ωk)nO(1)). J559

I Theorem 29. CCBM admits an FPT algorithm running in time O(2O(ωk)nO(1)).560
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4.2 FPT algorithm for Chordal Conflict Matching.561

We design an FPT algorithm for Chordal Conflict Matching, using the algorithm for562

CCBM (Theorem 29). Let (G,H, k) be an instance of CF-MM, where H is a chordal graph563

and G is a graph on n vertices. We assume that G is a graph on vertex set [n], which can564

easily be achieved by renaming vertices.565

The algorithm starts by computing an (n, 2k)-universal set F , using Proposition 18. For566

each set A ∈ F , the algorithm constructs an instance IA = (GA, LA, RA, HA, k) of CCBM567

as follows. We have V (GA) = V (G), LA = A, R = V (G) \ A, E(GA) = {uv ∈ E(G) | u ∈568

LA, v ∈ RA}, and HA = H[E(GA)]. Note that HA is a chordal graph because chordal graphs569

are closed under induced subgraphs and disjoint unions. The algorithm decides the instance570

IA using Theorem 29, for each A ∈ F . The algorithm outputs yes if and only if there is571

A ∈ F , such that IA is a yes instance of CCBM.572

I Theorem 30. The algorithm presented for CF-MM is correct, Moreover, it runs in time573

2O(ωk)kO(log k)nO(1), where ω < 2.373 is the exponent of matrix multiplication and n is the574

number of vertices in the input graph.575

Proof. Let (G,H, k) be an instance of CF-MM, where H is a chordal graph and G is a576

graph on vertex set [n]. Clearly, if the algorithm outputs yes, then indeed (G,H, k) is a yes577

instance of CF-MM. Next, we argue that if (G,H, k) is a yes instance of CF-MM then the578

algorithm returns yes. Suppose there is a solution M ⊆ E(G) to CF-MM in (G,H, k). Let579

S = {i, j | ij ∈M}, and L = {i | there is j ∈ [n] such that ij ∈M and i < j}. Observe that580

|S| = 2k. Since F is an (n, 2k)-universal set, there is A ∈ F such that A ∩ S = L. Note that581

S is a solution to CCBM in IA. This together with Theorem 29 implies that the algorithm582

will return yes as output.583

Next, we prove the claimed running time of the algorithm. The algorithm computes (n, 2k)-584

universal set of size O(22kkO(log k) logn), in time O(22kkO(log k) n logn), using Proposition 18.585

Then for each A ∈ F , the algorithm creates an instance IA of CCBM in polynomial time.586

Furthermore, it resolves the IA of CCBM in time O(2O(ωk)nO(1)) using Theorem 29. Hence,587

the running time of the algorithm is bounded by 2O(ωk)kO(log k)nO(1). J588

5 FPT algorithms for CF-MM and CF-SP with matroid constraints589

In this section, we study the problems CF-MM and CF-SP, where the conflicting condition590

is being an independent set in a (representable) matroid. Due to technical reasons (which591

will be clear later) for the above variant of CF-MM, we will only consider the case when the592

matroid is repsesentable over Q (the field of rationals).593

5.1 FPT algorithm for Matroid CF-MM594

We study a variant of the problem CF-MM, where the conflicting condition is being an595

independent set in a matroid representable over Q. We call this variant of CF-MM as596

Rational Matroid CF-MM (Rat Mat CF-MM, for short), which is formally defined597

below.598

Rational Matroid CF-MM (Rat Mat CF-MM) Parameter: k

Input: A graph G, a matrix AM (representing a matroid M over Q) with columns
indexed by E(G), and an integer k.
Question: Is there a matching M ⊆ E(G) of size at most k, such that the set of columns
in M are linearly independent (over Q)?

599
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We design an FPT algorithm for Rat Mat CF-MM. Towards designing an algorithm for600

Rat Mat CF-MM, we first give an FPT algorithm for a restricted version of Rat Mat601

CF-MM, where the graph in which we want to compute a matching is a bipartite graph. We602

call this variant of Rat Mat CF-MM as Rat Mat CF-Bipartite Matching (Rat Mat603

CF-BM). We then employ the algorithm for Rat Mat CF-BM to design an FPT algorithm604

for Rat Mat CF-MM.605

5.1.1 FPT algorithm for Rat Mat CF-BM606

We design an FPT algorithm for the problem Rat Mat CF-BM, where the conflicting607

condition is being an independent set in a matroid (representable over Q) and the graph608

where we want to compute a matching is a bipartite graph. This problem is formally defined609

below.610

Rat Mat CF-Bipartite Matching (Rat Mat CF-BM) Parameter: k

Input: A bipartite graph G = (V,E) with vertex bipartition L,R, a matrix AM
(representing a matroidM over Q) with columns indexed by E, and an integer k.
Question: Is there a matching M ⊆ E of size k in G, such that the set of columns in
M are linearly independent (over Q)?

611

Our algorithm takes an instance of Rat Mat CF-BM and generates an instance612

of 3-Matroid Intersection, and then employs the known algorithm for 3-Matroid613

Intersection to resolve the instance. In the following, we formally define the problem614

3-Matroid Intersection.615

3-Matroid Intersection Parameter: k

Input: Matrices AM1 , AM2 , and AM3 over F (representing matroidsM1,M2, andM3,
respectively, on the same ground set E) with columns indexed by E, and an integer k.
Question: Is there a set M ⊆ E of size k, such that M is independent in eachMi, for
i ∈ [3]?

616

Before moving further, we briefly explain why we needed an additional constraint that617

the input matrix is representable over Q. Firstly, we will be using partition matroids which618

are representable only on fields of large enough size, and we want all the matroids, i.e. the619

one which is part of the input and the ones that we create, to be representable over the same620

field. Secondly, the algorithmic result (with the desired running time) we use for 3-Matroid621

Intersection works only for certain types of fields.622

Next, we state an algorithmic result regarding 3-Matroid Intersection [24], which is623

be used by the algorithm. We note that we only state a restricted form of the algorithmic624

result for 3-Matroid Intersection in [24], which is enough for our purpose.625

I Proposition 31 (Proposition 4.8 [24] (partial)). 3-Matroid Intersection can be solved626

in O(23ωk‖AM‖O(1)) time, when the matroids are represented over Q.627

We are now ready to prove the desired result.628

I Theorem 32. Rat Mat CF-BM can be solved in O(23ωk‖AM‖O(1)) time.629

Proof. Let (G = (V,E), L,R,AM, k) be an instance of Rat Mat CF-BM, where the matrix630

AM represents a matroid M = (E, I) over Q. Let ML = (E, IL),MR = (E, IR) be the631

partition matroids as defined in Section 4. Next we compute matrix representations AML
and632

AMR
of matroidsML,MR, respectively, using Proposition 8. Now, we solve 3-Matroid633

Intersection on the instance (M, AML
, AMR

, k) (over Q) using Proposition 31, and return634

the same answer, as returned by the algorithm in it. The correctness follows directly from the635
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following. S ⊆ E is a matching in G if and only if S is an independent set inML andMR,636

that is S ∈ IL ∩ IR. The claimed running time follows from Proposition 8 and Proposition637

31. J638

5.1.2 FPT algorithm for Rat Mat CF-MM639

We design an FPT algorithm for Rat Mat CF-MM, using the algorithm for Rat Mat640

CF-BM (Theorem 29). Let (G,AM, k) be an instance of Rat Mat CF-MM, where the641

matrix AM represents a matroidM = (E, I) over Q. We assume that G is a graph with the642

vertex set [n], which can easily be achieved by renaming vertices.643

The algorithm starts by computing an (n, 2k)-universal set F , using Proposition 18.644

For each set X ∈ F , the algorithm constructs an instance IX = (GX , LX , RX , AM, k)645

of Rat Mat CF-BM as follows. We have V (GX) = V (G), LX = X, R = V (G) \ X,646

E(GX) = {uv ∈ E(G) | u ∈ LX , v ∈ RX}. The algorithm decides the instance IX using647

Theorem 32, for each X ∈ F . The algorithm outputs yes if and only if there is X ∈ F , such648

that IX is a yes instance of Rat Mat CF-BM.649

I Theorem 33. The algorithm presented for Rat Mat CF-MM is correct. Moreover, it650

runs in time O(2(3ω+2)kkO(log k)‖AM‖O(1)
nO(1)).651

Proof. Let (G,AM, k) be an instance of Rat Mat CF-MM, where matrix AM represent652

a matroid M = (E, I) over field F. Clearly, if the algorithm outputs yes, then indeed653

(G,AM, k) is a yes instance of Rat Mat CF-MM. Next, we argue that if (G,AM, k) is654

a yes instance of Rat Mat CF-MM then the algorithm returns yes. Suppose there is a655

solution M ⊆ E(G) to Rat Mat CF-MM in (G,AM, k). Let S = {i, j | ij ∈ M}, and656

L = {i | there is j ∈ [n] such that ij ∈M and i < j}. Observe that |S| = 2k. Since F is an657

(n, 2k)-universal set, there is X ∈ F such that X ∩ S = L. Note that S is a solution to Rat658

Mat CF-BM in IX . This together with Theorem 32 implies that the algorithm will return659

yes as the output.660

Next, we prove the claimed running time of the algorithm. The algorithm computes661

(n, 2k)-universal set of size O(22kkO(log k) logn), in time O(22kkO(log k) n logn), using Pro-662

position 18. Then for each X ∈ F , the algorithm creates an instance IX of Rat Mat663

CF-BM in polynomial time. Furthermore, it resolves the IX of Rat Mat CF-BM in time664

O(23ωk‖AM‖O(1)) using Theorem 32. Hence, the running time of the algorithm is bounded665

by O(2(3ω+2)kkO(log k)‖AM‖O(1)
nO(1)). J666

5.2 FPT algorithm for Matroid CF-SP667

In this section, we design an FPT algorithm for Matroid CF-SP. In the following, we668

formally define the problem Matroid CF-SP.669

Matroid CF-SP Parameter: k

Input: A graph G, (distinct) vertices s, t ∈ V (G), a matrix AM (representing a matroid
M, over a field F) with columns indexed by E(G), and an integer k.
Question: Is there a set M ⊆ E(G) of size at most k, such that there is an st-path in
G[M ] and the set of columns in M are linearly independent (over F)?

670

Our algorithm is based on a dynamic programming over representative families. Let671

(G, s, t, AM, k) be an instance of Matroid CF-SP. Before moving to the description of the672

algorithm, we need to define some notations.673
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Algorithm 1: Alg-Mat-CF-SP
Input: A graph G, (distinct) vertices s, t ∈ V (G), a matrix AM (over F), and an

integer k.
Output: If there is M ⊆ E(G) of size at most k, such that there is an s− t path in

G[M ] and the set of columns in M are linearly independent (over F) then
yes. Otherwise, no.

1 for each v ∈ V (G) \ {s} do
2 if sv ∈ E(G) then P1

sv = {sv};
3 else P1

sv = ∅;
4 for q = 0 to k − 1 do
5 Set P̂1q

sv = P1
sv;

6 end
7 end
8 for p = 2 to k do
9 for q = 0 to k − p do

10 for each v ∈ V (G) \ {s} do
11 Let P̃pq

sv = ∪wv∈E(G)P̂
(p−1)(q+1)
sw ? {{wv}};

12 Compute P̂pq
sv ⊆k−p

rep P̃pq
sv using Theorem 14;

13 end
14 end
15 end
16 for p = 1 to k do
17 for q = 0 to k − p do
18 if P̂pq

st 6= ∅ then
19 return yes;
20 end
21 end
22 return no;

For distinct vertices u, v ∈ V (G) and an integer p, we define the following.674

Pp
uv ={X ⊆ E(G) | |X| = p, there is a uv-path in G[X] containing all edges

in X, and X ∈ I} (4)675

By the definition of convolution of sets, it is easy to see that

Pp
uv =

⋃
wv∈E(G)

Pp−1
uw ? {{wv}}

Now we are ready to describe our algorithm Alg-Mat-CF-SP for Matroid CF-SP. We676

aim to store, for each v ∈ V (G) \ {s}, p ≤ k, and q ≤ k − p, a q-representative set P̂pq
sv , of677

Pp
sv, of size

(
p+q

q

)
. Notice that for each v ∈ V (G) \ {s}, we can compute P1

sv in polynomial678

time, since P1
sv = {sv} if sv ∈ E(G), and is empty otherwise. Moreover, since |P1

sv| ≤ 1,679

therefore, we can set P̂1q
sv = P1

sv, for each q ≤ k − 1. Next, we iteratively compute, for each680

p ∈ {2, 3, · · · , k}, in increasing order, for each q ≤ k − p, a q-representative P̂pq
sv , of Pp

sv. The681

algorithm Alg-Mat-CF-SP is given in Algorithm 1.682

Next, we prove a lemma which will be useful in establishing the correctness of Alg-Mat-683

CF-SP.684
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I Lemma 34. For each p ∈ [k], q ∈ [0, k− p], and v ∈ V (G) \ {s}, the family P̂pq
sv computed685

by Alg-Mat-CF-SP is a q-representative of Pp
sv, and is of size at most

(
p+q

q

)
. Moreover,686

the algorithm computes all sets in {P̂pq
sv | p ∈ [k], q ∈ [0, k − p], v ∈ V (G) \ {s}} in time687

O(2O(ωk)nO(1)).688

Proof. We prove the claim by induction on p. Consider v ∈ V (G) \ {s}. For p = 1, the set689

P1
sv = {sv} if sv ∈ E(G), and is empty otherwise. Moreover, for each q ∈ [0, k − 1], Alg-Mat-690

CF-SP sets P̂1q
sv = P1

sv. Hence, for each q ∈ [0, k − 1], we have P̂1q
sv ⊆q

rep P1
sv. Moreover, the691

set P̂1q
sv is computed by the algorithm in polynomial time.692

For induction hypothesis, we assume that for t ∈ N≥1, for each p ≤ t, q ∈ [0, k − p],693

and v ∈ V (G) \ {s}, we have P̂pq
sv ⊆q

rep Pp
sv. Next, consider p = t + 1, q ∈ [0, k − (t + 1)],694

and v ∈ V (G) \ {s}. The step of the algorithm, where it computes P̂(t+1)q
sv , it has already695

computed (correctly), for each p ≤ t, q ∈ [0, k− p], and u ∈ V (G) \ {s}, the set P̂pq
su ⊆q

rep Pp
su.696

This follows from the iteration of the algorithm over p from 1 to k in increasing order at697

Step 6 (and Step 1). The algorithm sets P̃(t+1)q
sv = ∪wv∈E(G)P̂

(t)(q+1)
sw ? {{wv}}, and then698

sets P̂(t+1)q
sv to be the q-representative set of P̃(t+1)q

sv returned by Theorem 14, which is of699

size at most
(

t+1+q
t+1

)
. If we show that P̃(t+1)q

sv ⊆q
rep Pt+1

sv , then by Proposition 12 it will follow700

that P̂(t+1)q
sv ⊆q

rep Pt+1
sv . But P̃(t+1)q

sv ⊆q
rep Pt+1

sv follows from Lemma 15 and Proposition 13.701

Also, note that each entry can be computed in time O(2O(ωk)nO(1)). J702

Using Lemma 34, we obtain the following theorem.703

I Theorem 35. The algorithm Alg-Mat-CF-SP is correct. Moreover, it runs in time704

O(2O(ωk)nO(1)).705

Proof. Let (G, s, t, AM, k) be an instance of Matroid CF-SP. We claim that (G, s, t, AM, k)706

is a yes instance of Matroid CF-SP if and only if Alg-Mat-CF-SP outputs yes. In the707

forward direction, let (G, s, t, AM, k) be a yes instance of Matroid CF-SP. Since, using708

Lemma 34, Alg-Mat-CF-SP computes a q-representative of Pp
sv of size at most

(
p+q

q

)
, for709

each p ∈ [k], q ∈ [0, k − p], and v ∈ V (G) \ {s}, therefore, the algorithm also computes a710

q-representative family for Pk
st. By the definition of representative set and construction of711

our family Pk
st, P̂k

st also contains a s− t path and hence, the algorithm outputs yes. In the712

reverse direction, if the algorithm outputs yes then by construction of family P̂k
st, if P ∈ P̂k

st,713

then it is a conflict-free s− t path in G. This completes the correctness of our algorithm.714

Moreover, the running time bound of the algorithm follows from Lemma 34. J715

Theorem 35 will also result into an FPT algorithm for CF-SP when the conflict graph is716

a cluster graph.717

I Corollary 36. Conflict Free Shortest Path parameterized by the solution size is718

FPT, when the conflict graph is a cluster graph.719

Proof. Let (G,H, k) be an instance of CF-SP, where H is a cluster graph. We construct a720

partition matroid,MH = (U, I), corresponding to graph H as follows. We define ground721

set as U = V (H). Now, partition U as Ui = V (Ci), for each clique Ci in H and ai = 1, for722

Ui ∈ U . By the construction ofMH , we have for S ⊆ V (H), S is an independent set in H723

if and only if S is independent inMH . Next, we compute a matrix M representingMH ,724

using Proposition 8 in polynomial time.Now we use Alg-Mat-CF-SP with input (G,M, k),725

and return the same output. The correctness of our algorithm follows from correctness of the726

algorithm Alg-Mat-CF-SP (Theorem 35), and by construction of the instance (G,M, k). Note727

that the matrix M representingMH can be computed in polynomial time. This together728

with Theorem 35 implies the claimed running time bound, This concludes the proof. J729
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6 FPT Algorithm for d-degenerate Conflict Graphs730

In this section, we show that CF-MM and CF-SP both are in FPT, when the conflict graph731

H is a d-degenerate graphs. These algorithms are based on the notion of independence732

covering family, which was introduced in [25].733

Before moving onto description of our algorithms, we define the notion of independence734

covering family.735

I Definition 37 ([25]). For a graph H? and an integer k, a k-independence covering family,736

I (H?, k), is a family of independent sets in H? such that for any independent set I ′ in H?
737

of size at most k, there is a set I ∈ I (H?, k) such that I ′ ⊆ I.738

Our algorithms rely on the construction of k-independence covering family, for a family of739

graphs. But before dwelling into these details, we first design an algorithm for an annotated740

version of the CF-MM and CF-SP problems, which we call Annotated CF-MM and741

Annotated CF-SP, respectively. In the Annotated CF-MM (Annotated CF-SP)742

problem, the input to CF-MM (CF-SP) is annotated with a k-independence covering family.743

6.1 Algorithms for Annotated CF-MM and Annotated CF-SP744

In this section, we study the problems Annotated CF-MM and Annotated CF-SP,745

which are formally defined below.746

Annotated CF-MM Parameter: k + |F|
Input: A graph G = (V,E), a conflict graph H = (E,E′), an integer k, and a k-
independence covering family F of H.
Question: Is there a matching M ⊆ E of size k in G such that M is an independent set
in H?

747

Annotated CF-SP Parameter: k + |F|
Input: A graph G = (V,E), (distinct) vertices s, t ∈ V , a conflict graph H = (E,E′),
an integer k, and a k-independence covering family F of H.
Question: Is there a set M ⊆ E of size at most k, such that there is an s− t path in
G[M ] and M is an independent set in H?

748

The algorithm that we design for Annotated CF-MM runs in time polynomial in749

the size of the input. We give the algorithm Alg-CF-MM (Alg-CF-SP) (Algorithm 2) for750

Annotated CF-MM (Annotated CF-SP).751

In the following lemma we prove the correctness of Alg-CF-MM (Alg-CF-SP).752

I Lemma 38. The algorithm Alg-CF-MM (Alg-CF-SP) is correct. Moreover, the algorithm753

runs in time polynomial in the size of the input.754

Proof. Let (G, (s, t), H, k,F) be an instance of Annotated CF-MM (Annotated CF-SP).755

We show that (G, (s, t), H, k,F) is a yes instance of Annotated CF-MM (Annotated756

CF-SP) if and only if Alg-CF-MM (Alg-CF-SP) outputs yes.757

Note that the reverse direction easily follows from the fact that F is a family of independent758

sets in H. Therefore, we only need to prove the forward direction. In the forward direction,759

let (G, (s, t), H, k,F) be a yes instance of Annotated CF-MM (Annotated CF-SP) and760

S be one of its solution. Since F is a k-independence covering family, there is I ∈ F such761

that S ⊆ I (see Definition 37). Hence, in the iteration where the algorithm considers I in its762

for loop, the graph GI has S as a matching (there is an s− t path in GI [S]). Therefore, the763

algorithm outputs yes at this iteration.764
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Algorithm 2: Alg-CF-MM (Alg-CF-SP)
Input: A graph G,((distinct) vertices s, t ∈ V (G)), a conflict graph H, an integer k,

and a k-independence covering family F of H.
Output: If there a set M ⊆ E of size k in G such that M is a matching in G (there

is an s− t path in G[M ]) and M is an independent set in H, then yes, and
no otherwise.

1 for each I ∈ F do
2 Let GI be the graph with V (GI) = V (G) and E(GI) = I ;
3 if GI has a matching (path) of size k then
4 return yes;
5 end
6 return no ;

The running time analysis follows from the fact that maximum matching (shortest path)765

can be computed in polynomial time [12, 27]( [7, 3]). J766

Next, we use Alg-CF-MM (Alg-CF-SP) together with Independence Covering Lemma767

of [25] to obtain algorithms for CF-MM (CF-SP) when the conflict graph is d-degenerate768

or nowhere dense graph. Towards this we state some lemmata from [25] that we use in our769

algorithms.770

I Proposition 39. [25, Lemma 1.1] There is a randomized algorithm running in polynomial771

time, that given a d-degenerate graph H? and an integer k as input, outputs an independent772

set I, such that for every independent set I ′ of size at most k in graph H?, the probability773

that I ′ ⊆ I is at least (
(

k(d+1)
k

)
· k(d+ 1))−1.774

I Proposition 40. [25, Lemmas 3.2 and 3.3] There are two deterministic algorithms A1 and775

A2, which given a d-degenerate graph H? and an integer k, output independence covering776

families I1(H?, k) and I2(H?, k), respectively, such that the following conditions are satisfied.777

A1 runs in time O(|I1(H?, k)| · (n+m)), where |I1(H?, k)| =
(

k(d+1)
k

)
· 2o(k(d+1)) · logn.778

A2 runs in time O(|I2(H?, k)| · (n+m)), where |I2(H?, k)| =
(

k2(d+1)2

k

)
· (k(d+ 1))O(1) ·779

logn.780

Next, using Proposition 39 and 40, together with Alg-CF-MM (Alg-CF-SP), we obtain781

randomized and deterministic algorithms, respectively for CF-MM (CF-SP), when the782

conflict graph is a d-degenerate graph.783

I Theorem 41. There is a randomized algorithm, which given an instance (G,H, k) of784

CF-MM(CF-SP), where H is a d-degenerate graph, in time
(

k(d+1)
k

)
· k(d+ 1) · nO(1), either785

reports a failure or correctly outputs that the input is a yes instance of CF-MM(CF-SP).786

Moreover, if the input is a yes instance of CF-MM(CF-SP), then the algorithm outputs787

correct answer with a constant probability.788

Proof. Let (G, (s, t), H, k) be an instance CF-MM (CF-SP), where H is a d-degenerate789

graph.790

We repeat the following procedure (
(

k(1+d)
k

)
· k(d+ 1)) many times.791

1. The algorithm computes an independent set I in (H, k) using Proposition 39.792

2. The algorithm calls Alg-CF-MM (Alg-CF-SP) with input (G, (s, t)H, k, {I}).793
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The algorithm outputs yes, if in one of the calls to Alg-CF-MM (Alg-CF-SP), it receives a794

yes. Otherwise, the algorithm outputs no. The running time analysis of the above procedure795

follows from Proposition 39 and Lemma 38. Also, given a yes instance, the guarantee on796

success probability follows from Proposition 39, the number of repetitions, and Lemma 38.797

Moreover, from Lemma 38 the yes output returned by the algorithm is indeed the correct798

output to CF-MM(CF-SP)for the given instance. This concludes the proof.799

J800

I Theorem 42. CF-MM (CF-SP) admits a deterministic algorithm running in time min801 {(
k(d+1)

k

)
· 2o(k(d+1)) · logn,

(
k2(d+1)2

k

)
· (k(d+ 1))O(1) · logn

}
· nO(1), when the conflict graph802

is a d-degenerate graph.803

Proof. Let (G, (s, t), H, k) be an instance CF-MM (CF-SP), where H is a d-degenerate804

graph. The algorithm starts by computing a k-independence covering family I (H, k) of H,805

using Proposition 40. Next, we call Alg-CF-MM (Alg-CF-SP) with the input (G, (s, t), H, k,806

I (H, k)). The correctness and running time analysis of the above procedure follows from807

Proposition 40 and Lemma 38. This completes the proof. J808
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