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Abstract
A generalization of classical cycle hitting problems, called conflict version of the problem, is
defined as follows. An input is undirected graphs G and H on the same vertex set, and a positive
integer k, and the objective is to decide whether there exists a vertex subset X ⊆ V (G) such
that it intersects all desired “cycles” (all cycles or all odd cycles or all even cycles) and X is
an independent set in H. In this paper we study the conflict version of classical Feedback
Vertex Set, Odd Cycle Transversal and Even Cycle Transversal problems, from the
view point of kernelization complexity. In particular, we obtain the following results, when the
conflict graph H belongs to the family of d-degenerate graphs.
1. CF-FVS admits a O(kO(d)) kernel.
2. CF-ECT admits a O(kO(d2)) kernel.
3. CF-OCT does not admit polynomial kernel (even when H is 1-degenrate), unless NP ⊆ coNP

poly .
For our kernelization algorithms we exploit ideas developed for designing polynomial kernels for
classical cycle hitting set problems, as well as, devise new reduction rules that exploit degeneracy
crucially. Thus, in a broader sense, these kernelization algorithms generalize the known results
for classical cycle hitting set problems (take H to be the edgeless graphs).
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1 Introduction

Reducing the input data, in polynomial time, without altering the answer is one of the
popular ways in dealing with intractable problems in practice. While such polynomial
time heuristics can not solve NP-hard problems exactly, they work well on input instances
arising in real-life. It is a challenging task to assess the effectiveness of such heuristics
theoretically. Parameterized complexity, via kernelization, provides a natural way to quantify
the performance of such algorithms. In parameterized complexity each problem instance
comes with a parameter k and the parameterized problem is said to admit a polynomial
kernel if there is a polynomial time algorithm, called a kernelization algorithm, that reduces
the input instance down to an instance with size bounded by a polynomial p(k) in k, while
preserving the answer. The reduced instance is called a p(k) kernel for the problem.

The quest for designing polynomial kernels for “hitting cycles” in undirected graphs has
played significant role in advancing the field of polynomial time pre-processing – kernelization.
Hitting all cycles, odd cycles and even cycles correspond to well studied problems of Feedback
Vertex Set (FVS), Odd Cycle Transversal (OCT) and Even Cycle Transversal
(ECT), respectively. Alternatively, FVS, OCT and ECT correspond to deleting vertices such
that the resulting graph is a forest, a bipartite graph and an odd cactus graph, respectively.
All these problems, FVS, OCT, and ECT, have been extensively studied in parameterized
algorithms and kernelization. The earliest known FPT algorithms for FVS go back to the
late 80’s and the early 90’s [5, 13] and used the seminal Graph Minor Theory of Robertson
and Seymour. On the other hand the parameterized complexity of OCT was open for long
time. Only, in 2003, Reed et al. [27] gave a 3knO(1) time algorithm for OCT. This is also
the paper which introduced the method of iterative compression to the field of parameterized
complexity. However, the existence of polynomial kernel, for FVS and OCT were open
questions for long time. For FVS, Burrage et al. [8] resolved the question in the affirmative
by designing a kernel of size O(k11). Later, Bodlaender [6] reduced the kernel size to O(k3),
and finally Thomassé [28] designed a kernel of size O(k2). The kernel of Thomassé [28] is
best possible under a well known complexity theory hypothesis. It is important to emphasize
that [28] popularized the method of expansion lemma, one of the most prominent approach
in designing polynomial kernels. While, the kernelization complexity of FVS was settled
in 2006, it took another 6 years and a completely new methodology to design polynomial
kernel for OCT. Kratsch and Wahlström [19] resolved the question of existence of polynomial
kernel for OCT by designing a randomized kernel of size O(k4.5) using matroid theory.2 As
a counterpart to OCT, Misra et al. [23] studied ECT and designed an O(k3) kernel.

Fruitful and productive research on FVS and OCT have led to the study of several
variants and generalizations of FVS and OCT. Some of these admit polynomial kernels
and for some one can show that none can exist, unless some unlikely collapse happens in
complexity theory. In this paper we study the following generlization of FVS, OCT and
ECT, from the view-point of kernelization complexity.

Conflict Free Feedback Vertex Set (CF-FVS) Parameter: k

Input: An undirected graph G, a conflict graph H on vertex set V (G) and a non-negative
integer k.
Question: Does there exist S ⊆ V (G), such that |S| ≤ k, G− S is a forest and H[S] is
edgeless?

2 This foundational paper has been awarded the Nerode Prize for 2018.
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One can similarly define Conflict Free Odd Cycle Transversal (CF-OCT) and
Conflict-Free Even Cycle Transversal (CF-ECT).
Our Motivation. On the outset, a natural thought is “why does one care” about such an
esoteric (or obscure) problem. We thought exactly the same in the beginning, till we realized
the modeling power the problem provides and the rich set of questions one can ask. In the
course of this paragraph we will try to explain this. First observe that, if one wants to model
“independent” version of these problems (where the solution is suppose to be an independent
set), then one takes conflict graph to be same as the input graph. An astute reader will figure
out that the problem as stated above is W[1]-hard – a simple reduction from Multicolor
Independent Set with each color class being modeled as cycle and the conflict graph
being the input graph. Thus, a natural question is: when does the problem become FPT? To
state the question formally, let F and G be two families of graphs. Then, (G,F)-CF-FVS is
same problem as CF-FVS, but the input graph G and the conflict graph H are restricted
to belong to G and H, respectively. It immediately brings several questions: (a) for which
pairs of families the problem is FPT; (b) can we obtain some kind of dichotomy results; and
(c) what could we say about the kernelization complexity of the problem. We believe that
answering these questions for basic problems such as FVS, OCT, and Dominating Set
will extend both the tractability as well as intractability tools in parameterized complexity
and led to some fruitful and rewarding research. It is worth to note that initially we were
inspired to define these problems by similar problems in computational geometry. See related
results for more on this.
Our Results and Methods. A graph G is called d-degenerate if every subgraph of G
has a vertex of degree at most d. For a fixed positive integer d, let Dd denote the set of
graphs of degeneracy at most d. In this paper we study the (?,Dd)-CF-FVS (Dd-CF-FVS)
problem. The symbol ? denotes that the input graph G is arbitrary. One can similarly define
Dd-CF-ECT. We also study, CF-OCT for a very restricted family of conflict graphs, a
family of disjoint union of paths of length at most three and two star graphs. We denote
this family as P??

≤3 and this variant of CF-OCT as P??
≤3-CF-OCT. Starting point of our

research is the recent study of Jain et al. [17], who studied conflict-free graph modification
problems in the realm of parameterized complexity. As a part of their study they gave
FPT algorithms for Dd-CF-FVS, Dd-CF-OCT and Dd-CF-ECT using the independence
covering families [20]. Their results also imply similar FPT algorithm when the conflict graph
belongs to nowhere dense graphs. In this paper we focus on the kernelization complexity of
Dd-CF-FVS, P??

≤3-CF-OCT and Dd-CF-ECT and obtain the following results.

1. Dd-CF-FVS admits a O(kO(d)) kernel.
2. Dd-CF-ECT admits a O(kO(d2)) kernel.
3. P??

≤3-CF-OCT does not admit polynomial kernel, unless NP ⊆ coNP
poly .

Note that D0 denotes edgeless graphs and hence D0-CF-FVS, D0-CF-ECT and D0-CF-
OCT are essentially FVS, ECT and OCT, respectively. Thus, any polynomial kernel for
Dd-CF-FVS, P??

≤3-CF-OCT, and Dd-CF-ECT must generalize the known kernels for these
problems. We remark that the above results imply that CF-FVS and CF-ECT admit
polynomial kernels when the conflict graph belong to several well studied graph families, such
as planar graphs, graphs of bounded degree, graphs of bounded treewidth, graphs excluding
some fixed graph as a minor, a topological minor and graphs of bounded expansion etc. (all
these graphs classes have bounded degeneracy).
Strategy for CF-FVS and Dd-CF-ECT. Our kernelization algorithm for CF-FVS consists
of the following two steps. The first step of our kernelization algorithm is a structural

CVIT 2016
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decomposition of the input graph G. This does not depend on the conflict graph H. In
this phase of the algorithm, given an instance (G,H, k) of CF-FVS we obtain an equivalent
instance (G′, H ′, k′) of CF-FVS such that:

The minimum degree of G′ is at least 2.
The number of vertices of degree at least 3 in G′ is upper bounded by O(k3). Let V≥3
denote the set of vertices of degree at least 3 in G′.
The number of maximal degree 2 paths in G′ is upper bounded by O(k3). That is,
G′ − V≥3 consists of O(k3) connected components where each component is a path.

We obtain this structural decomposition using reduction rules inspired by the quadratic
kernel for FVS [28]. As stated earlier, this step can be performed for any graph H. Thus the
problem reduces to designing reduction rules that bound the number of vertices of degree 2
in the reduced graph. Note that we can not do this for any arbitrary graph H as the problem
is W[1]-hard. Once the decomposition is obtained we can not use the known reduction rules
for FVS. This is for a simple reason that in G′ the only vertices that are not bounded have
degree exactly 2 in G′. On the other hand for FVS we can do simple “short-circuit” of
degree 2 vertices (remove the vertex and add an edge between its two neighbors) and assume
that there is no vertices of degree two in the graph. So our actual contributions start here.
The second step of our kernelization algorithm bounds the degree two vertices in the graph
G′. Here we must use the properties of the graph H. We propose new reduction rules for
bounding degree two vertices, when H belongs to the family of d-degenerate graphs. Towards
this we use the notion of d-degeneracy sequence, which is an ordering of the vertices in H
such that any vertex can have at most d forward neighbors. This is used in designing a
marking scheme for the degree two vertices. Broadly speaking our marking scheme associates
a set with every vertex v. Here, set consists of “ paths and cycles of G′ on which the forward
neighbors of v are”. Two vertices are called similar if their associated sets are same. We
show that if some vertex is not marked then we can safely contract this vertex to one of its
neighbors. We then upper bound the degree two vertices by O(kO(d)dO(d)), and thus obtain
a kernel of this size for Dd-CF-FVS.

The kernelization algorithm for Dd-CF-ECT starts similar to the one for Dd-CF-FVS,
but we need to do significantly more work in this case to bound the vertices in simple
structure we get after our decomposition. In particular, rather than degree two paths now
we get chains of odd cycles. We first apply reduction rules, similar to the one to bound
degree two paths in the case of Dd-CF-FVS, to bound the length of these cycles. Then,
we give a much more complicated marking schemes to show that if the chain is long then a
cycle in this chain is irrelevant and hence can be “omitted”. Also, note that, we can give a
simple reduction from Dd-CF-FVS to Dd-CF-ECT by sub-dividing each edge and making
sure that none of these are selected in solution. Towards this given an instance (G,H, k) of
Dd-CF-FVS, we generate an instance (G′, H ′, k + 1) of Dd-CF-ECT as follows. Initially,
we have V (G′) = V (H ′) = V (G) ∪ {a, b1, · · · , bk+2}. Now, for each edge ei ∈ E(G), add a
vertex wi to V (G′) and V (H ′). Let xi, yi be end points of ei ∈ E(G). For each ei ∈ E(G),
add edges xiwi and yiwi to E(G′). Also, add two multiple edges abi, for all i ∈ [k+ 2]. Edge
set of H ′ is defined as E(H ′) = E(H) ∪ {awi | wi ∈ V (H ′)}. Since, we add (k + 2)-even
flowers in G′ centred at a, a belongs to any solution of size k + 1. Hence, the new vertices
do not go to the solution. In the short version of the paper we only give key ideas in the
polynomial kernel for Dd-CF-FVS and have moved the complete section containing the
kernel for Dd-CF-ECT to the Appendix.
Strategy for CF-OCT. The kernelization lower bound is obtained by the method of cross-
composition [7]. We first define a conflict version of the s-t-Cut problem, where H belongs
to P??

≤3. Then, we show that the problem is NP-hard and cross composes to itself. Finally,
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we give a parameter preserving reduction from the problem to P??
≤3-CF-OCT, and obtain

the desired kernel lower bound.

Related Work. In the past, the conflict free versions of some classical problems have been
studied, e.g. for Shortest Path [18], Maximum Flow [24, 25], Knapsack [26], Bin
Packing [14], Scheduling [15], Maximum Matching and Minimum Weight Spanning
Tree [11, 10]. It is interesting to note that some of these problems are NP-hard even when
their non-conflicting version is polynomial time solvable. The study of conflict free problems
has also been recently initiated in computational geometry motivated by various applications
(see [1, 2, 3]).

2 Preliminaries

Throughout the paper, we follow the following notions. Let G be a graph, V (G) and E(G)
denote the vertex set and the edge set of graph G, respectively. Let n and m denote the
number of vertices and the number of edges of G, respectively. Let G be a graph and
X ⊆ V (G), then G[X] is the graph induced on X and G−X is graph G induced on V (G)\X.
Let ∆ denotes the maximum degree of graph G. We use NG(v) to denote the neighborhood
of v in G and NG[v] to denote NG(v) ∪ {v}. Let E′ be subset of edges of graph G, by G[E′]
we mean the graph with the vertex set V (G) and the edge set E′. Let X ⊆ E(G), then
G−X is a graph with the vertex set V (G) and the edge set E(G) \X. Let Y be a set of
edges on vertex set V (G), then G ∪ Y is graph with the vertex set V (G) and the edge set
E(G) ∪ Y . Degree of a vertex v in graph G is denoted by degG(v). For an integer `, we
denote the set {1, 2, . . . , `} by [`]. A path P = {v1, . . . , vn} is an ordered collection of vertices
such that there is an edge between every consecutive vertices in P and v1, vn are endpoints of
P . For a path P by V (P ) we denote set of vertices in P and by E(P ) we denote set of edges
in P . A cycle C = {v1, . . . , vn} is a path with an edge v1vn. We define a maximal degree two
induced path in G as an induced path of maximal length such that all vertices in path are of
degree exactly two in G. An isolated cycle in graph G is defined as an induced cycle whose
all the vertices are of degree exactly two in G. Let G′ and G be graphs, V (G′) ⊆ V (G) and
E(G′) ⊆ E(G), then we say that G′ is a subgraph of G. A graph is connected if any pair of
vertices in the graph are joined by at least one path. A cut vertex of a graph G is a vertex
such that G[V (G) \ {x}] is not connected. A maximal connected component of a graph G a
connected subgraphs of G with as many edges as possible. The subscript in the notations
will be omitted if it is clear from the context.

A graph G has degeneracy d if every subgraph of G has a vertex of degree at most d. An
ordering of vertices σ : V (G)→ {1, · · · , n} is is called a d-degeneracy sequence of graph G, if
every vertex v has at most d neighbors u with σ(u) > σ(v). A graph G is d-degenerate if and
only if it has a d-degeneracy sequence. For a vertex v in d-degenerate graph G, the neighbors
of v which comes after (before) v in d-degeneracy sequence are called forward (backward)
neighbors of v in the graph G. Given a d-degenerate graph, we can find d-degeneracy sequence
in linear time [21].

A conflict graph, H of graph G is a graph such that V (H) = V (G) but edge sets might
be different. A conflict free parameterization problem is denoted by (G,H, k) where H is a
conflict graph and k is a parameter.

Two instances of a parameterized problem Π are called equivalent if (I, k) ∈ Π if and
only if (I ′, k′) ∈ Π. A Reduction Rule for a parameterized problem Π is a polynomial time
algorithm which takes an instance (I, k) of Π and returns an instance (I ′, k′) of Π. If (I, k)
and (I ′, k′) are equivalent then we say that reduction rule is safe or correct.

CVIT 2016
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3 Tools: Polynomial Kernelization Algorithms

In this section, we give the tools and techniques which will be used in designing kernelization
algorithms for CF-FVS and CF-ECT, when the conflict graph belongs to the family of
d-degenerate graphs. Let σ be a d-degeneracy sequence of H which can be obtained in the
polynomial time. In the kernelization algorithms, we will work with this fixed ordering.
Forward and Backward neighbors of a vertex v are also defined with respect to ordering σ. If
σ(u) < σ(v), then u is a backward neighbor of v and v is a forward neighbor of u. By Nf

H(v)
(N b

H(v)) we denote the set of forward (backward) neighbors of the vertex v in H.
Now, we give the technique which bounds the number of vertices in a d-degenerate graph

H that share forward neighbors. Algorithm 1 describes this technique. We first define the
notion of q-reducible set.

I Definition 1. For q ∈ [d], let q = 1, nq = kd+ 1 , otherwise nq = knq−1 + kd+ 1. A set
X ⊆ V (H) of vertices is q-reducible, if for every set U ⊆ X such that vertices in U share
d− q + 1 forward neighbors, in particular |

⋂
v∈U N

f
H(v)| = d− q + 1, we have that |U | ≤ nq.

Algorithm 1 Algo1(H,X)
Input: d-degenerate graph H, X ⊆ V (H)
Output: X ′ ⊆ X

1: For q ∈ [d], let nq = kd+ 1, when q = 1, nq = knq−1 + kd+ 1, otherwise.
2: while q ≤ d do
3: while X is not q-reducible do
4: Find U ⊆ X of size nq + 1, such that |

⋂
v∈U N

f
H(v)| = d− q + 1.

5: Let v be an arbitrary vertex in U .
6: X = X \ {v}
7: end while
8: q = q + 1
9: end while

10: while |X| > nd+1 do
11: Let u be an arbitrary vertex in U .
12: X = X \ {u}
13: end while
14: return X ′ = X

I Observation 1. Let H be a d-degenerate graph and S be an independent set of H of size
at most k. Then, for any set U ⊆ V (H) such that for each vertex u ∈ U , N b

H(u)∩ S 6= ∅, we
have that |U | ≤ kd.

The proof of above observation follows from the fact that any vertex can have at most d
forward neighbors.

I Claim 1. Let d-degenerate graph H, X ⊆ V (H) be the input and X ′ be the output of
Algorithm 1. Let S ⊆ V (H) be an independent set in H of size at most k and v ∈ (X \X ′)∩S.
Then there exist a vertex v′ ∈ X ′ such that (S \ {v}) ∪ {v′} is also an independent set in H.

Proof. We consider cases when X is d-reducible and when X is not d-reducible.
Case 1: X is not d-reducible.
We use induction on q to prove the lemma.
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Base Step: q = 1, n1 = kd+ 1.
IfX is not q-reducible, then the algorithm finds U ⊆ X of size kd+1, such that |

⋂
v∈U N

f
H(v)| =

d, and deletes an arbitrary vertex v ∈ U from X. If S contains v, then none of the forward
neighbors of v are in S. This implies that none of the vertices in U have their forward
neighbors in S. By Observation 1, at most kd vertices in U have backward neighbors in S.
Therefore, there exists a vertex v′ ∈ U \ {v} such that neither any of its forward neighbor
nor any of its backward neighbor is in S. Hence, (S \ {v}) ∪ {v′} is also an independent set
in H of size at most k.
Induction Hypothesis: Let us assume that claim holds for q ≤ j − 1.
Induction Step: q = j, nj = knj−1 + kd+ 1.
IfX is not j-reducible, then the algorithm finds U ⊆ X of size nj+1, such that |

⋂
v∈U N

f
H(v)| =

d− j + 1 and deletes an arbitrary vertex v ∈ U from X. If S contains v, then none of the
forward neighbors of v are in S. This implies that d− j + 1 common forward neighbors of
vertices in U are not in S. Since, X is j − 1- reducible, therefore, if there exist a subset
U ′ ⊆ U such that vertices in U ′ have a vertex in S as a common forward neighbor, then
this implies that |

⋂
v∈U ′ N

f
H(v)| ≥ d− j + 2 and by the induction hypothesis |U ′| ≤ nj−1.

Hence, at most knj−1 vertices in U contains a vertex that have forward neighbors in S. By
Observation 1, at most kd vertices in U have a backward neighbors in S. Therefore, there
exists a vertex v′ ∈ U \ {v} such that neither any of its forward neighbor nor any of its
backward neighbor is in S. Hence, (S \ {v}) ∪ {v′} is also an independent set in H of size at
most k.
Case 2: X is d-reducible. When X is d-reducible and |X| > nd+1, then the algorithm deletes
an arbitrary vertex v ∈ U from X. Let S contains v. Since, X is d- reducible, therefore,
if there exist a subset U ′ ⊆ U such that vertices in U ′ have a vertex in S as a common
forward neighbor, then this implies that |

⋂
v∈U ′ N

f
H(v)| ≥ 1 and by correctness of the Case 1

|U ′| ≤ nd. Hence, at most knd vertices in U contains a vertex that have forward neighbors
in S. By Observation 1, at most kd vertices in U have backward neighbors in S. Therefore,
there exists a vertex v′ ∈ U \ {v} such that neither any of its forward neighbor nor any of its
backward neighbor is in S. Hence, (S \ {v}) ∪ {v′} is also an independent set in H of size at
most k. J

I Lemma 2. Algorithm 1 runs in polynomial time.

Proof. Let σ be a d-degenerate sequence of the graph H. Using σ, for each v ∈ X, we can
find Nf

H(v) in the polynomial time. For t ∈ [d], and v ∈ V (H), we can find all the vertices
in V (H) that shares t forward neighbors with v, in polynomial time. Clearly, for a fixed q,
Step 4 of Algorithm 1 can be performed in O(2d) time. Since, |X| ≤ n, this step can be
performed in O(2dn) time. Clearly, all the other steps of the algorithm can be performed in
O(n) time. Hence, the running time of the algorithm is nO(1). J

4 A Polynomial Kernel for Dd-CF-FVS

In this section, we design a kernelization algorithm for Dd-CF-FVS. To design a kernelization
algorithm for Dd-CF-FVS, we define another problem called Dd-Disjoint-CF-FVS (Dd-
DCF-FVS, for short). We first define the problem Dd-DCF-FVS formally, and then explain
its uses in our kernelization algorithm.

CVIT 2016
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Dd-Disjoint-CF-FVS (Dd-DCF-FVS) Parameter: k

Input: An undirected graph G, a graph H ∈ Dd such that V (G) = V (H), a subset
R ⊆ V (G), and a non-negative integer k.
Question: Is there a set S ⊆ V (G) \R of size at most k, such that G− S does not have
any cycle and S is an independent set in H?

Notice that Dd-CF-FVS is a special case of Dd-DCF-FVS, where R = ∅. Given an
instance of Dd-CF-FVS, the kernelization algorithm creates an instance of Dd-DCF-FVS
by setting R = ∅. Then it applies a kernelization algorithm for Dd-DCF-FVS. Finally, the
algorithm takes the instance returned by the kernelization algorithm for Dd-DCF-FVS and
generates an instance of Dd-CF-FVS. Before moving forward, we note that the purpose
of having set R is to be able to prohibit certain vertices to belong to a solution. This is
particularly useful in maintaining the independent set property of the solution, when applying
reduction rules which remove vertices from the graph (with an intention of it being in a
solution).

We first focus on designing a kernelization algorithm for Dd-DCF-FVS, and then give
a polynomial time linear parameter preserving reduction from Dd-DCF-FVS to Dd-CF-
FVS. If the kernelization algorithm for Dd-DCF-FVS returns that (G,H,R, k) is a YES
(NO) instance of Dd-DCF-FVS, then conclude that (G,H, k) is a YES (NO) instance of
Dd-CF-FVS.In the following, we describe a kernelization algorithm for Dd-DCF-FVS. Let
(G,H,R, k) be an instance of Dd-DCF-FVS. The algorithm starts by applying the following
simple reduction rules.

I Reduction Rule 1.
(a) If k ≥ 0 and G is acyclic, then return that (G,H,R, k) is a YES instance of Dd-DCF-

FVS.
(b) Return that (G,H,R, k) is a NO instance of Dd-DCF-FVS, if one of the following

conditions is satisfied:
(i) k ≤ 0 and G is not acyclic,
(ii) G is not acyclic and V (G) ⊆ R, or
(iii) There are more than k isolated cycles in G.

I Reduction Rule 2.
(a) Let v be a vertex of degree at most 1 in G. Then delete v from the graphs G,H and the

set R.
(b) If there is an edge in G (H) with multiplicity more than 2 (more than 1), then reduce its

multiplicity to 2 (1).
(c) If there is a vertex v with self loop in G. If v /∈ R, delete v from the graphs G and H,

and decrease k by one. Furthermore, add all the vertices in NH(v) to the set R, otherwise
return that (G,H,R, k) is a NO instance of Dd-DCF-FVS.

(d) If there are parallel edges between (distinct) vertices u, v ∈ V (G) in G:
(i) If u, v ∈ R, then return that (G,H,R, k) is a NO instance of Dd-DCF-FVS.
(ii) If u ∈ R (v ∈ R), delete v (u) from the graphs G and H, and decrease k by one.

Furthermore, add all the vertices in NH(v) (NH(u)) to the set R.

It is easy to see that the above reduction rules are correct, and can be applied in
polynomial time. In the following, we define some notion and state some known results,
which will be helpful in designing our next reduction rules.

I Definition 2. For a graph G, a vertex v ∈ V (G), and an integer t ∈ N, a t-flower at v is a
set of t vertex disjoint cycles whose pairwise intersection is exactly {v}.
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I Proposition 1. [9, 22, 28] For a graph G, a vertex v ∈ V (G) without a self-loop in G, and
an integer k, the following conditions hold.
(i) There is a polynomial time algorithm, which either outputs a (k + 1)-flower at v, or it

correctly concludes that no such (k+1)-flower exists. Moreover, if there is no (k+1)-flower
at v, it outputs a set Xv ⊆ V (G) \ {v} of size at most 2k, such that X intersects every
cycle passing through v in G.

(ii) If there is no (k + 1)-flower at v in G and the degree of v is at least 4k + (k + 2)2k.
Then using a polynomial time algorithm we can obtain a set Xv ⊆ V (G) \ {v} and a set
Cv of components of G[V (G) \ (Xv ∪ {v})], such that each component in Cv is a tree,
v has exactly one neighbor in C ∈ Cv, and there exist at least k + 2 components in Cv

corresponding to each vertex x ∈ Xv such that these components are pairwise disjoint and
vertices in Xv have an edge to each of their associated components.

I Reduction Rule 3. Consider v ∈ V (G), such that there is a (k + 1)-flower at v in G. If
v ∈ R, then return that (G,H,R, k) is a NO instance of Dd-DCF-FVS. Otherwise, delete v
from G,H and decrease k by one. Furthermore, add all the vertices in NH(v) to R.

The correctness of above reduction rule follows from the fact that such a vertex must be
part of every solution of size at most k. Moreover, the applicability of it in polynomial time
follows from Proposition 1 (item (i)).

I Reduction Rule 4. Let v ∈ V (G), Xv ⊆ V (G) \ {v}, and Cv be the set of components
which satisfy the conditions in Proposition 1(ii) (in G), then delete edges between v and the
components of the set Cv, and add parallel edges between v and every vertex x ∈ Xv in G.

The polynomial time applicability of Reduction Rule 4 follows from Proposition 1. And,
in the following lemma, we prove the safeness of this reduction rule.

I Lemma 3. Reduction Rule 4 is safe.

Proof. Let (G,H,R, k) be an instance of Dd-DCF-FVS. Furthermore, let v ∈ V (G), Xv ⊆
V (G), and Cv be the tuple for which the conditions of Reduction Rule 4 are satisfied, and
(G′, H,R, k) be the instance resulting after application of the reduction rule. We prove that
(G,H,R, k) is a YES instance of Dd-DCF-FVS if and only if (G′, H,R, k) is a YES instance
of Dd-DCF-FVS.

In the forward direction, let (G,H,R, k) be a YES instance of Dd-DCF-FVS and S be
one of its solution. We claim that S is also a solution of Dd-DCF-FVS for (G′, H,R, k).
Suppose not, then G′−S must contains a cycle as the conflict graphs in both the instances are
the same. Observe that G−{v} is identical to G′−{v}, and G′−Xv is a subgraph of G−Xv,
therefore, if either v ∈ S or Xv ⊆ S, then S is a solution of Dd-DCF-FVS for (G′, H,R, k).
Next, we assume that neither v /∈ S, nor Xv * S. For x ∈ X, let Wx ⊆ Cv be the set
of components associated with x, which is obtained by the algorithm in Proposition 1(ii).
Observe that, there are at least k + 2 disjoint paths from v to each x ∈ Xv passing through
components inWx in the graph G. Since S is of size at most k, there are at least two (distinct)
connected components say C1, C2 in Wx such that v, x together with C1, C2 creates a cycle
in G− S. This is a contradiction to S being a solution of Dd-DCF-FVS for (G,H,R, k).

In the reverse direction, let (G′, H,R, k) be a YES instance of Dd-DCF-FVS and S′ be
one of its solution. Observe that for each vertex x ∈ Xv, we have parallel edges between v
and x in G′, therefore either v ∈ S′ or Xv ⊆ S′. As observed before G− {v} is identical to
G′−{v}, therefore if v ∈ S′ then S′ is also a solution of Dd-DCF-FVS in (G,H,R, k). Next
we assume that Xv ⊆ S′. Observe that edges incident to v and a vertex in some components
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in Cv are cut edges in G−Xv, by Proposition 1(ii), and hence they do not participate in any
cycle in G−Xv. This concludes that S′ is a solution of Dd-DCF-FVS for (G,H,R, k). J

In the following state an easy observation, which follows from non-applicability of Reduc-
tion Rule 1 to 4.

I Observation 4. Let (G,H,R, k) be an instance of Dd-DCF-FVS, where none of Reduction
Rule 1 to 4 apply. Then the degree of each vertex in G is bounded by O(k2).

To design our next reduction rule, we construct an auxilary graph G?. Intuitively speaking,
G? is obtained from G by shortcutting all degree two vertices. That is, vertex set of G?

comprises of all the vertices of degree at least three in 3. From now on, vertices of degree at
least 3 (in G) will be refereed to as high degree vertices. For high degree vertex v ∈ G. For
each uv ∈ E(G), where u, v are high degree vertices, we add the edge uv in G?. Furthermore,
for an induced maximal path Puv, between u and v where all the internal vertices of Puv

are degree two vertices in G, we add the (multi) edge uv to E(G?). Next, we will use the
following result to bound the number of vertices and edges in G?.

I Proposition 2. [9] A graph G with minimum degree at least 3, maximum degree ∆, and a
feedback vertex set of size at most k has at most (∆ + 1)k vertices and 2∆k edges.

The above result (together with the construction of G?) gives us the following (safe)
reduction rule.

I Reduction Rule 5. If |V (G?)| ≥ 4k2 + 2k2(k + 2) or |E(G?)| ≥ 8k2 + 4k2(k + 2), then
return No.

I Lemma 5. Let (G,H,R, k) be an instance of Dd-DCF-FVS, where none of the Reduction
Rules 1 to 5 are applicable. Then we obtain the following bounds:

The number of vertices of degree at least 3 in G is bounded by O(k3).
The number of maximal degree two induced paths in G is bounded by O(k3).

Having shown the above bounds, it remains to bound the number of degree two vertices
in G. We start by applying the following simple reduction rule to eliminate vertices of degree
two in G, which are also in R.

I Reduction Rule 6. Let v ∈ R, dG(v) = 2, and x, y be the neighbors of v in G. Delete v
from the graphs G,H and the set R. Furthermore, add the edge xy in G.

The correctness of this reduction rule follows from the fact that vertices in R can not be part
of any solution and all the cycles passing through v also passes through its neighbors.

In the polynomial kernel for the Feedback Vertex Set problem (with no conflict
constraints), we can short-circuit degree two vertices. But in our case, we cannot perform
this operation, since we also need the solution to be an independent set in the conflict graph.
Thus to reduced the number of degree two vertices in G, we exploit the properties of a
d-degenerate graph. To this end, we use the tool that we developed in Section 3. This
immediately gives us the following reduction rule.

I Reduction Rule 7. Let P be a maximal degree two induced path in G. If |V (P )| ≥ nd+1 +1,
apply Algorithm 1 with input (H,V (P ) \R). Let V̂ (P ) be the set returned by Algorithm 1.
Let v ∈ (V (P ) \ R) \ V̂ (P ), and x, y be the neighbors of v in G. Delete v from the graphs
G,H. Furthermore, add edge xy in G.

I Lemma 6. Reduction Rule 7 is safe.
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Proof. Let (G,H,R, k) be an instance of Dd-DCF-FVS and v be a vertex in a maximal
degree two path P with neighbors x and y, with respect to which Reduction Rule 6 is applied.
Furthermore, let (G′, H ′, R, k) be the resulting instance after application of the reduction
rule. We will show that (G,H,R, k) is a YES instance of Dd-DCF-FVS if and only if
(G′, H ′, R, k) is a YES instance of Dd-DCF-FVS.

In the forward direction, let (G,H,R, k) be a YES instance of Dd-DCF-FVS and S be
one of its minimal solution. Consider the case when v /∈ S. In this case, we claim that S
is also a solution of Dd-DCF-FVS for (G′, H ′, R, k). Suppose not then either S is not an
independent set in H ′ or G′ − S contains a cycle. Since, H ′ is an induced subgraph of H,
we have that S′ is also an independent set in H ′. So we assume that G′ − S has a cycle,
say C. If C does not contain the edge xy, then C is also a cycle in G − S. Therefore, we
assume that C contains the edge xy. Bu then (C \ {xy})∪{xv, vy} is a cycle in G−S. Next,
we consider the case when v ∈ S. By Claim 1 we have a vertex v′ ∈ V (P ) \ {v} such that
(S \ {v}) ∪ {v′} is an independent set in H ′. By using the fact that any cycle that passes
through v also contains all vertices in P (together with the discussions above) imply that
(S \ {v}) ∪ {v′} is a solution of Dd-DCF-FVS for (G′, H ′, R, k).

In the reverse direction, let (G′, H ′, R, k) be a YES instance of Dd-DCF-FVS and S′
be one of its minimal solution. We claim that S′ is also a solution of Dd-DCF-FVS for
(G,H,R, k). Suppose not, then either S is not an independent set in H or G− S contains a
cycle. Since, H ′ is an induced subgraph of H, we have that S′ is also an independent set in H.
Next, assume that there is a cycle C in G− S. The cycle C must contain v, otherwise, C is
also a cycle in G′ − S′. Since v is a degree two vertex in G, therefore any cycle that contians
v, must also contain x and y. As observed before, G − {xv, vy} is identical to G′ − {xy}.
But then, (C \ {xv, vy})∪ {xy} is a cycle in G′ − S′, a contradiction. This concludes that S′
is a solution of Dd-DCF-FVS for (G,H,R, k). J

I Lemma 7. Let (G,H,R, k) be an instance of Dd-DCF-FVS, where none of the Reduction
Rules 1 to 7 are applicable. Then the number of vertices in a degree two induced path in G
is bounded by O(kO(d)).

I Theorem 8. Dd-DCF-FVS admits a kernel with O(kO(d)) vertices.

Proof. Let (G,H,R, k) be an instance of Dd-DCF-FVS, where none of the Reduction Rules
1 to 7 are applicable. Then by Lemma 5, the number of vertices of degree at least 3 and the
number of maximal degree two induced paths in G are bounded by O(k3) and By Lemma 7,
the number of vertices in a degree two induced path in G is bounded by O(kO(d)). Hence,
the number of vertices in G is bounded by O(kO(d)). Since, each of the reduction rules can
be applied in polynomial time and each of them either (correctly) declare that the given
instance is a YES or NO instance or (safely) reduce the size of G. Therefore, the overall
running time is polynomial in the input size. J

I Lemma 9. There is a polynomial time parameter preserving reduction from Dd-DCF-FVS
to Dd-CF-FVS.

Proof. Given an instance (G,H,R, k) of Dd-DCF-FVS, we generate an instance (G′, H ′, k′)
of Dd-CF-FVS as follows. We let the vertex set of V (G′) and V (H ′) to be V (G) ∪ {x},
where x is a new vertex. Now, we define the edge sets of G′ and H ′. Initially, E(G′) = E(G).
Additionally, we add a self loop on x in G′. We let E(H ′) = E(H −R) ∪ {xw | w ∈ R}. We
set k′ = k + 1. Clearly, this construction can be carried out in the running time linear in the
size of the input instance. We claim that (G,H,R, k) is a YES instance of Dd-DCF-FVS if
and only if (G′, H ′, k + 1) is a YES instance of Dd-CF-FVS.
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In the forward direction, let S be a solution to Dd-DCF-FVS in (G,H,R, k). We claim
that S′ = S ∪{x} is a solution to Dd-CF-FVS in (G′, H ′, k+ 1). Since, G′−{x} is identical
to G, G′ − S′ does not contain any cycle. Since, S ∩R = ∅, S ∪ {v} is an independent set in
H ′. This completes the proof in the forward direction. In the reverse direction, let (G′, H ′, k′)
be a YES instance of Dd-CF-FVS and S be one of its solution. Since there is a self loop at
x in G, x ∈ S. We claim that S′ = S \ {x} is a solution to Dd-DCF-FVS in (G,H,R, k).
Clearly, G′−{x} is identical to G, therefore, G−S′ does not contain any cycle. Since, x ∈ S,
none of the vertices in R can belong to S. Since, H − R same as H − (R ∪ {x}), S′ is an
independent set in H ′ and S′ ∩ R = ∅, we have that S′ is a solution to Dd-DCF-FVS in
(G,H,R, k). J

By Theorem 8 and Lemma 9, we obtain the following result.

I Theorem 10. Dd-CF-FVS admits a kernel with O(kO(d)) vertices.

5 Kernelization Complexity of P??
≤3-CF-OCT

In this section, we show that CF-OCT does not admit a polynomial kernel when the conflict
graph belongs to the family P??

≤3. Let P≤3 denotes the family of disjoint union of paths of
length at most three, and P?

≤3 denotes the family of disjoint union of paths of length at
most three and a star graph. We give parameter preserving reduction from P?

≤3-Conflict
Free s-t Cut (P?

≤3-CF-s-t Cut) to P??
≤3-CF-OCT. P?

≤3-CF-s-t Cut is formally defined
as follows.

P?
≤3-Conflict Free s-t Cut (P?

≤3-CF-s-t Cut) Parameter: k

Input: An undirected graph G, a graph H ∈ P≤3 (V (G) = V (H)), two vertices s and t
and an integer k
Question: Is there a set X ⊆ V such that X is a s− t cut in G and H[X] is edgeless?

We first prove that P?
≤3-CF-s-t Cut is NP-hard. Then, we prove that P?

≤3-CF-s-t Cut
does not admit a polynomial compression, unless NP ⊆ coNP

poly using the method of cross-
composition. To show the NP-hardness of P?

≤3-CF-s-t Cut, we give a reduction from the
well known NP-hard problem (3, B2)-SAT [4] to P?

≤3-CF-s-t Cut. (3, B2)-SAT is formally
defined as follows.

(3, B2)-SAT
Input: An instance (U, C), where U is the set of boolean variables and C is the set of
clauses such that each clause has exactly three literals, and each literal occurs in exactly
two clauses
Question: Does there exist an assignment to variables such that each clause is satisfied?

5.1 NP-hardness of P≤3-CF-s-t Cut
In this section, we prove that P≤3-CF-s-t Cut is NP-hard. Given an instance (U, C) of
(3, B2)-SAT, we construct an instance (G,H, s, t, k) of P≤3-CF-s-t Cut as follows. Let
|U | = n and |C| = m. For each clause C = (v1, v2, v3) ∈ C, add vertices vC

1 , v
C
2 , and vC

3 in
V (G) and V (H). We also add 2n+ 2 new vertices s, t, ai and bi in V (G) and V (H), where
i ∈ [n]. Corresponding to each clause C = (v1, v2, v3) ∈ C, we add a path (s, vC

1 , v
C
2 , v

C
3 , t) in

G. We also add paths (s, ai, bi, t), for all i ∈ [n]. Now we define edge set of H. Let xi ∈ U .
Add edges between ai and vertices corresponding to positive literal of xi and also between bi

and vertices corresponding to negative literal of xi. We set k = n+m. Figure 1 describes
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Figure 1 An illustration of construction of graph G and H in NP-hardness of P≤3-CF-s-t Cut
for C = {(x1, x̄2, x2), (x̄1, x̄2, x3), (x̄1, x2, x̄3), (x1, x2, x̄3)}.

the construction of G and H. Clearly, this construction can be carried out in the polynomial
time. In the following lemma, we prove that C is satisfiable if and only if (G,H) has a conflict
free s− t cut of size n+m.

I Lemma 11. (U, C) is a YES instance of (3, B2)-SAT if and only if (G,H, s, t, k) is a
YES instance of P≤3-CF-s-t Cut.

Proof. In the forward direction, let C be satisfiable, and φ be a solution. Further, let S
be the set of literals which are set to true in φ. Given S, we construct a solution S′ of
P≤3-CF-s-t Cut in (G,H) as follows. Let vi ∈ S and vi belongs to the clauses C and C ′.
Add vC

i and vC′

i to S′. Let PC = (s, vC
1 , v

C
2 , v

C
3 , t) be a path in G corresponding to the clause

C. If more than one vertex from PC belongs to S′, delete all but one from S′ arbitrarily. If
variable corresponding to positive literal xi belongs to S′, add bi to S′, otherwise add ai to
S′. Since, there are n+m disjoint paths between s and t and we select exactly one vertex
from each path, |S′| = n+m. Since, C is satisfiable and for each path (s, ai, bi, t) either ai or
bi belongs to S′, S′ is a s− t cut of G. By the construction of S′, it is also an independent
set in H. This completes the proof in the forward direction.

In the reverse direction, let S be a solution to P≤3-CF-s-t Cut in (G,H, s, t, k). Given
S, we construct a satisfyning assignment φ for the instance (U, C) of (3, B2)-SAT as follows.
Let v be a literal which occurs in the clauses C and C ′. If S ∩{vC , vC′} 6= ∅, we assign 1 to v.
Since, H[S] is edgeless, if vertex corresponding to positive literal xi belongs to the solution,
bi belongs to the solution and hence vertices corresponding to negative literal x̄i do not
belong to the solution. This implies that both the positive and negative literal corresponding
to a variable are not set to one. If none of them are true, we assign 1 to xi (or to x̄i). By
the construction of G, φ is a satisfying assignment for C. J

I Theorem 12. P≤3-CF-s-t Cut is NP-hard.

Proof. The proof follows from the construction of an instance of P≤3-CF-s-t Cut, Lemma
11 and NP-hardness of (3, B2)-SAT. J

5.2 Lower bound for Kernel of P?
≤3-CF-s-t Cut

In this section, we prove that P?
≤3-CF-s-t Cut does not admit a polynomial compression

unless NP ⊆ coNP
poly which results into the fact that P?

≤3-CF-s-t Cut does not admit polynomial
kernel as well. Towards this, we cross-compose P≤3-CF-s-t Cut into P?

≤3-CF-s-t Cut
parameterized by k, the size of cut. Before going into the details, we define the notion of
cross-composition.
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I Definition 3. [7, 9] Let Σ be a finite set of alphabets. A polynomial equivalence relation
is an equivalence relation R on Σ? if there is an algorithm that given two strings x, y ∈ Σ?,
decides whether x ≡R y in time polynomial in |x|+ |y|. Moreover, the relation R restricted
to the set Σ≤n has at most p(n) equivalence classes, where p(·) is some polynomial function.

I Definition 4. [7, 9] Let L ⊆ Σ? be a language and Q ⊆ Σ? × N be a parameterized
language. We say that L cross-composes into Q if there exists a polynomial equivalence
relation R and an algorithm A satisfying the following conditions. The algorithm A takes as
input a sequence of strings x1, · · · , xt ∈ Σ? that are equivalent with respect to R, runs in
time polynomial in Σt

i=1|xi|, and outputs one instance (y, k) ∈ Σ? × N such that:
(i) k ≤ p(maxi∈[t] |xi|+ log t) for some polynomial p(·), and
(ii) (y, k) ∈ Q if and only if there exists at least one index i ∈ [t] such that xi ∈ L.

Now, we state following known result which will be further used in this section.

I Theorem 13. [7, 9] Let L be an NP-hard language that cross-composes into a parameterized
language Q. Then, Q does not admit a polynomial compression, unless NP ⊆ coNP

poly .

Next, we present a cross-composition of P≤3-CF-s-t Cut into P?
≤3-CF-s-t Cut parameterized

by the solution size.

I Lemma 14. There exists a cross-composition from P≤3-CF-s-t Cut into P?
≤3-CF-s-t

Cut parameterized by the cut size.

Proof. By choosing an appropriate polynomial equivalence relation R, we may assume that
we are given q instances (Gi, Hi, si, ti, ki)q

i=1 of P≤3-CF-s-t Cut, where V (Gi) = n and ki

is same for each i ∈ [q]. More precisely, equivalence relation R is defined as follows. We
put all malformed instances into one equivalent class, while all the well-formed instances are
partitioned with respect to the number of vertices in the graph and the integer ki, where
i ∈ [q]. Two well-formed instances are considered equivalent if number of the vertices in the
graphs and integer ki are same in both the instances. Clearly, the number of equivalence
relation in Σ≤n is bounded by n3 + 1 and the equivalence of two relations can be tested in
the polynomial time. Hence, R is a polynomial equivalence relation. The cross-composition
algorithm works as follows. Given a set of malformed instances, returns some trivial no-
instance of P?

≤3-CF-s-t Cut, while given a sequence of well-formed instances, it construct a
parameterized instance (G?, H?, s, t, k+1) of P?

≤3-CF-s-t Cut as follows. Let xi = (i−1)n+1
and yi = xi + n − 1. Let V (Gi) = V (Hi) = {si, vxi , · · · , vyi , ti}. Now, we construct G?

and H? as follows. V (G?) = V (H?) = ∪i∈[q](V (Gi) \ {si, ti}) ∪i∈[q−1] {wi} ∪ {a, s, t} and
E(G?) = ∪i∈[q]E(Gi − {si, ti}). If s1v ∈ E(G1), add sv in E(G?). Similarly, if tqv ∈ E(Gq),
add tv in E(G?). If an edge tiv ∈ E(Gi) or si+1v ∈ E(Gi+1), add an edge wiv in E(G?),
for all i ∈ [q − 1]. We also add edges sa and ta in G?. Now we define edge set of H?.
E(H?) = ∪i∈[q]E(Hi − {si, ti}). We also add edge awi, for all i ∈ [q − 1]. Since, paths are
closed under vertex deletion, H? belongs to the family P?

≤3. We set parameter k = k1. Figure
2 describes the construction of G and H. We claim that (G?, H?, s, t, k + 1) is a yes-instance
of P?

≤3-CF-s-t Cut if and only if one of the input instance of P≤3-CF-s-t Cut has a conflict
free s− t cut of size k.

In the forward direction, let S be a solution to P?
≤3-CF-s-t Cut in (G?, H?, s, t, k + 1).

Since, a ∈ S, none of wi belongs to S, where i ∈ [q−1]. We claim that S′ = (S \{a})∩V (Gi)
is a solution to P≤3-CF-s-t Cut in (Gi, Hi, si, ti, ki), for some i ∈ [q]. Suppose not, then
there exists at least one path between each pair of vertex (si, ti) in Gi, where i ∈ [q]. Let
Pi be a path between si and ti in Gi, where i ∈ [q]. Hence, path induced by the vertex
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Figure 2 An illustration of construction of graph G and H in cross-composition from P≤3-CF-s-t
Cut to P?

≤3-CF-s-t Cut

set ∪i∈[q](V (Pi) \ {si, ti}) ∪i∈[q−1] {wi} ∪ {s, t} yields a path between s and t in G?, a
contradiction. Hence, there is some Gi such that S′ is a s − t cut of Gi. Since Hi[S] is a
induced subgraph of H, Hi[S] is edgeless. This completes the proof in the forward direction.

In the reverse direction, let one of the input instance (Gi, Hi, si, ti, ki), i ∈ [q] be a
yes-instance of P≤3-CF-s-t Cut and S be one of its solution, i.e. Gi \ S does not have a
path from si to ti. Clearly, by the construction of G?, G? \ (S ∪ {a}) does not have a path
from s to t. Since, a is not adjacent to any vertex v ∈ V (H?) ∩ V (Hi), where i ∈ [q] and
uv ∈ E(H?) if uv ∈ E(Hi), where i ∈ [q], u 6= a and v 6= a, S ∪ {a} is an independent set in
H. This completes the proof. J

I Theorem 15. P?
≤3-CF-s-t Cut does not admit a polynomial compression unless NP ⊆

coNP
poly .

Proof. Since, P≤3-CF-s-t Cut is NP-hard, using Lemma 14 and Theorem 13, P?
≤3-CF-s-t

Cut, parameterized by the size of cut does not admit a polynomial compression unless
NP ⊆ coNP

poly . J

I Corollary 16. P?
≤3-CF-s-t Cut does not admit a polynomial kernel.

Proof. The proof follows from Theorem 15 and the fact that polynomial kernel is also a
polynomial compression. J

5.3 Lower Bound for Kernel of P??
≤3-CF-OCT

In this subsection, we prove the main result of this section. We show that there does not exist
a polynomial kernel of P??

≤3-CF-OCT. Towards this we give a parameter preserving reduction
from P?

≤3-CF-s-t Cut to P??
≤3-CF-OCT. Given an instance (G,H, s, t, k) of P?

≤3-CF-s-t
Cut, we construct an instance (G′, H ′, k + 1) of P??

≤3-CF-OCT as follows. Initially, we have
V (G′) = V (H ′) = V (G) ∪ {z, a, b}. Now, for each edge ei ∈ E(G), add a vertex wi to V (G′)
and V (H ′). Now, we define the edge set of G′. Let xi, yi be end points of ei ∈ E(G). For
each ei ∈ E(G), add edges xiwi and yiwi to E(G′). Also, add a self loop on z in G′ and
edges sa, ab and bt to E(G′). To construct the edge set of H ′, we set E(H ′) = E(H −{s, t}).
Additionally, we add zs, zt, za, zt, and zwi for each wi ∈ V (H ′) to E(H ′). Figure 3 describes
the construction of G and H. Clearly, H ′ belongs to P??

3 and this construction can be
carried out in the polynomial time. Now, we prove the equivalence between the instances
(G,H, s, t, k) of P?

≤3-CF-s-t Cut and (G′, H ′, k+1) of P??
≤3-CF-OCT in the following lemma.
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Figure 3 An illustration of construction of graph G and H in reduction from P?
≤3-CF-s-t Cut

to P??
≤3-CF-OCT.

I Lemma 17. (G,H, s, t, k) is a yes-instance of P?
≤3-CF-s-t Cut if and only if (G′, H ′, k+1)

is a yes-instance of P??
≤3-CF-OCT.

Proof. In the forward direction, let (G,H, s, t, k) be a yes-instance of P?
≤3-CF-s-t Cut and S

be one of its solution. We claim that S ∪{z} is a solution to P??
≤3-CF-OCT in (G′, H ′, k+ 1).

In the graph G′, since we subdivide each edge, all the paths from s− t are of even length.
Since, we subdivide each edge of G, G′ − {a, b, z} is a bipartite graph. Hence, an odd cycle
in G′ − z consists of an s − t path in G′ − {a, b} and edges sa, ab and bt. Clearly, by the
construction of G′, (G′ − {a, b}) \ S does not contain an s− t path and hence G′ − z does
not contain an odd cycle. Since, H[S] is edgeless, S ∪ {z} is an independent set in H ′. This
completes the proof in the forward direction.

In the reverse direction, let S be a solution to P??
≤3-CF-OCT in (G′, H ′, k+1). Since, z ∈ S,

therefore, s, t, a, b, wi /∈ S for any wi ∈ V (H ′). We claim that S′ = S\{z} is a solution to P?
≤3-

CF-s-t Cut in (G,H, s, t, k). Suppose not, then there exists a s− t path (s, x1, x2, · · · , xl, t)
in G \ S′. Correspondingly, there exists a s− t path (s, w1, x1, w2, x2, · · · , xl, wl+1, t) in G′
of even length which results into an odd cycle (s, w1, x1, w2, x2, · · · , xl, wl+1, t, b, a) in G′ \ S,
a contradiction. This completes the proof.

J

Now, we present the main result of this section in the following theorem.

I Theorem 18. P??
≤3-CF-OCT does not admit a polynomial kernel. unless NP ⊆ coNP

poly .

Proof. Using the construction defined above, given an instance (G,H, s, t, k) of P?
≤3-CF-

s-t Cut, we construct an instance (G′, H ′, k + 1) of P??
≤3-CF-OCT. Using Lemma 17,

(G,H, s, t, k) is a yes-instance of P?
≤3-CF-s-t Cut if and only if (G′, H ′, k + 1) is a yes-

instance of P??
≤3-CF-OCT. We claim that P??

≤3-CF-OCT does not admit a polynomial kernel.
Towards the contrary, suppose that P??

≤3-CF-OCT admits polynomial kernel, then the
instance (G,H, s, t, k) of P?

≤3-CF-s-t Cut admits a polynomial compression, a contraction
to the fact P?

≤3-CF-s-t Cut does not admit polynomial compression unless NP ⊆ coNP
poly . J
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A A Polynomial Kernel for CF-ECT

In this section, we design a kernelization algorithm for CF-ECT when the conflict graph
belongs to the family of d-degenerate graphs, where d ≥ 1. We call this variant of CF-
ECT as Dd-CF-ECT. In the following, we define the problem Dd-CF-ECT formally.

Dd-CF-ECT Parameter: k

Input: An undirected graph G, a d-degenerate graph H (V (G) = V (H)), where d ≥ 1
and a non-negative integer k
Question: Is there a set X ⊆ V (G) of size at most k, such that G− S does not have
any even cycle and S is an independent set in H?

We also define a variant of Dd-CF-ECT, which we call Dd-Disjoint-CF-ECT (Dd-
DCF-ECT) (to be defined shortly) as follows.

Dd-Disjoint-CF-ECT (Dd-DCF-ECT) Parameter: k

Input: An undirected graph G, a d-degenerate graph H (V (G) = V (H)), where d ≥ 1,
a subset R ⊆ V (G) and a non-negative integer k.
Question: Is there a set S ⊆ V (G) \R of size at most k, such that G− S does not have
any even cycle and S is an independent set in H?

Given an instance of Dd-CF-ECT, the kernelization algorithm first reduces to an instance
of Dd-DCF-ECT and applies the kernelization algorithm for Dd-DCF-ECT. Finally the
algorithm takes the reduced instance of Dd-DCF-ECT and generates an instance of Dd-
CF-ECT. Let (G,H,R, k) be an instance of Dd-DCF-ECT, purpose of the set R in
Dd-DCF-ECT is that the vertices in R are not to be picked in any solution of Dd-CF-ECT
for (G,H, k). Observe that given an instance (G,H, k) of Dd-CF-ECT, we can construct an
instance of Dd-DCF-ECT by setting R = ∅. Firstly, we design a kernelization algorithm for
Dd-DCF-ECT and then give a polynomial time linear parameter preserving reduction from
Dd-DCF-ECT to Dd-CF-ECT. If the kernelization algorithm for Dd-DCF-ECT returns
that (G,H,R, k) is a YES (NO) instance of Dd-DCF-ECT, then conclude that (G,H, k) is a
YES (NO) instance of Dd-CF-ECT. Before going into the details of kernelization algorithm
we define the notion of cactus and odd cactus graphs.

A block in a graph is a maximal connected subgraph without a cut vertex. A graph G is
called a cactus graph if each edge in E(G) is part of at most one cycle and each block in G
is either an isolated vertex or an edge (edge block) or a cycle (cycle block). An odd cactus
graph is a cactus graph without any even cycles. An even cycle transversal of a graph G is a
set S ⊆ V (G), such that G− S does not contain any even cycle.

In the following we state some known results that will be used later to prove other lemmas.

I Proposition 3. [23] Let G be a graph with at least two distinct cycles C,C ′ such that
|V (C) ∩ V (C ′)| ≥ 2, then G has a cycle with even number of vertices.

I Proposition 4. [23] Let G be a graph and S be an even cycle transversal of G, then G− S
is an odd cactus graph.

Let (G,H,R, k) be an instance of Dd-DCF-ECT. In the following, we give a kernelization
algorithm for Dd-DCF-ECT. Firstly, the algorithm applies some reduction rules to bound
the maximum degree of a vertex in G. Then the algorithm uses an approximate solution S∗
of ECT of size O(k) in G and exploit the properties of the graph G− S∗ and the conflict
graph H to further reduce the instance. In the following sections, we state the reduction
rules used by the algorithm. The kernelization algorithm applies all the reduction rules
exhaustively, in the order in which they are stated.
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A.1 Bounding Maximum Degree of G

Let (G,H,R, k) be an instance of Dd-DCF-ECT. In the following, we state some reduction
rules that do not need the properties of graph H. We start with the following simple reduction
rules.

I Reduction Rule 8.
(a) If k ≥ 0 and G is an odd cactus, then return that (G,H,R, k) is a YES instance of

Dd-DCF-ECT.
(b) Return that (G,H,R, k) is a NO instance of Dd-DCF-ECT, if one of the following

conditions is satisfied:
(i) k ≤ 0 and G is not an odd cactus,
(ii) G is not an odd cactus and V (G) ⊆ R,
(iii) There are more than k isolated cycles in G.

I Reduction Rule 9.
(a) Let v be a vertex of degree at most 1 in G. Then delete v from the graphs G,H and the

set R.
(b) If there is an edge in G (H) with multiplicity more than 2 (more than 1) , then reduce

its multiplicity to 2.
(c) If there is a vertex v with self loop in G, then delete self loop edge from vertex v in G.
(d) If there are parallel edges between (distinct) vertices u, v ∈ V (G) in G:

(i) If u, v ∈ R, then return that (G,H,R, k) is a NO instance of Dd-DCF-ECT.
(ii) If u ∈ R (v ∈ R), delete v (u) from the graphs G,H, decrease k by one. Furthermore,

add all the vertices in NH(v) (NH(u)) to the set R.

I Definition 5. For a graph G and an even number t ∈ N, a t-even flower at v ∈ V (G) is a
set of t vertex disjoint even cycles whose pairwise intersection is exactly v.

In the following we give some reduction rules to bound the maximum degree of a vertex in
G. This requires the following proposition.

I Proposition 5. [23] Given a graph G, a vertex v ∈ V (G) and an integer k, there is a
polynomial time algorithm such that, either it outputs a (k + 1)-even flower at v, or it
concludes that no such (k + 1)-even flower exists and further outputs a set Sv ⊆ V (G) \ {v}
of cardinality O(k), such that G− Sv has no even cycles.

I Reduction Rule 10. For a vertex v ∈ V (G), apply algorithm in Proposition 5. Suppose
that there exists a (k + 1)-even flower at v in G. If v ∈ R, then return that (G,H,R, k) is a
NO instance of Dd-DCF-FVS. Otherwise, delete v from G and H and decrease k by one.
Furthermore, add all the vertices in NH(v) to R.

The correctness of above reduction rule follows from the fact that such a vertex must be
part of every solution of size at most k.

Let Sv be the set obtained using Proposition 5 for a vertex v ∈ V (G). Let Cv = Cv
1 , . . . , C

v
`

be the set of connected components in G[V (G) \ (Sv ∪ {v})], that have a vertex adjacent to
v in G.

We obtain the following observation by Proposition 3 and 4.

I Observation 19. A vertex v can be adjacent to at most two vertices in each C ∈ Cv and
each C ∈ Cv induces an odd cactus in G.
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I Reduction Rule 11. Consider a vertex v ∈ V (G). If there is a component Cv
i ∈ Cv such

that there is no edge from Cv
i to Sv in G, in particular |

⋃
u∈Cv

i
(NG(u)∩Sv)| = ∅, then delete

all vertices in Cv
i from G,H and the set R.

The correctness of above reduction rule follows from the fact that vertices in such component
can not be part of any even cycle in G.

I Definition 6. Let G be a bipartite graph with vertex bipartition (A,B). Let X ⊆ A and
Y ⊆ B, we say that X has |X| many q-stars in Y if for every vertex x ∈ X we can associate
a subset Zx ⊆ N(x) ∩ Y such that |Zx| = q and for any (distinct) x, x′ ∈ X, we have that
Zx ∩ Zx′ = ∅.

In the following we state a generalized version of Expansion Lemma in [29].

I Proposition 6. (q-Expansion Lemma)[29] Let q ≥ 1 be a positive integer and G be a
bipartite graph with bipartition (A,B) such that |B| > q|A| and B does not contain isolated
vertices. Then, there exists a polynomial time algorithm that outputs nonempty sets X ⊆ A
and Y ⊆ B such that X has |X| many q-stars in Y and N(Y ) ⊆ X. In this case, we say that
there is an q-expansion from X to Y .

For each vertex v ∈ V (G) we define an auxiliary bipartite graph Gv with vertex bipartition
(Av, Sv), where Av = {c | C ∈ Cv} and E(Gv) = {cy | xy ∈ E(G), x ∈ C,C ∈ Cv, y ∈ Sv}.
For a set Y ⊆ Av, we define E(v, Y ) = {vv′ | vv′ ∈ E(G), v′ ∈ C,C ∈ Cv, c ∈ Y } (the set of
edges in the graph G, between v and vertices in components corresponding to Y ).

I Reduction Rule 12. If for a vertex v ∈ V (G), degree of v is at least 2(k + 3)|Sv|+ 2|Sv|
in graph G, then apply algorithm in Proposition 6, to find sets Xv ⊆ Sv and Yv ⊆ Av, such
that there is a (k + 3)-expansion from Xv to Yv in the graph Gv. Then delete E(v, Yv) from
G. Furthermore, add parallel edges between v and each vertex x ∈ Xv in the graph G. Let
(G′, H,R, k) be the resulting instance.

I Lemma 20. Reduction rule 12 is safe.

Proof. We prove that (G,H,R, k) is a YES instance of Dd-DCF-ECT if and only if
(G′, H,R, k) is a YES instance of Dd-DCF-ECT. In the forward direction, let (G,H,R, k)
be a YES instance of Dd-DCF-ECT, and let S be one of its solution. We claim that S is
also a solution of Dd-DCF-ECT for (G′, H,R, k). Suppose not, then G′ − S contains an
even cycle. Observe that G − {v} is identical to G′ − {v}, and G′ − Xv is a subgraph of
G − Xv, therefore, if either v ∈ S or Xv ⊆ S, then S is a solution of Dd-DCF-ECT for
(G′, H,R, k). Next we assume that v /∈ S and Xv * S. Let Wx ⊆ N(x) ∩ Yv be the set
assigned to x by the expansion lemma and let Wx ⊆ Cv be the set of connected components
corresponding to set Wx. Observe that, there are k + 3 disjoint paths from v to each x ∈ X
passing through each connected component in Wx. Observe that, S can contain vertices
from at most k connected components in Wx. Therefore, there are at least three connected
components say C1, C2, C3 in Wx such that v, x together with C1, C2, C3 creates an even
cycle in G− S by Proposition 3, a contradiction.

In the reverse direction, let (G′, H,R, k) be a YES instance of Dd-DCF-ECT, and let S′
be one of its solution. We claim that S′ is also a solution of Dd-DCF-ECT for (G′, H,R, k).
Suppose not, then G′ − S contains an even cycle C. As observed before, graph G− {v} is
identical to graph G′ − {v}, therefore if v ∈ S′ then S′ is also a solution of Dd-DCF-ECT
for (G,H,R, k). Next we assume that v /∈ S′. Observe that for each vertex x ∈ Xv, we
have parallel edges between v and x in G′, which creates an even cycle, therefore, Xv ⊆ S′.
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Observe the only edges wich are not present in G′ − S′ and present in G − S′ are edges
in E(y, Yv), therefore C must contain an edge from the set E(v, Yv). By expansion lemma
N(Yv) ⊆ Xv, this implies that no vertex in any components corresponding to set Av \ Yv

have an edge to a vertex in Sv \Xv in G. By definition of Sv, every even cycle in G that
passes from v also passes through a vertex in Sv. This implies that, any even cycle in G that
passes through v and a vertex in components corresponding to the set Yv must pass through
Xv. Since Xv ⊆ S′, we obtain a contradiction. Therefore S′ is a solution of Dd-DCF-ECT
for (G,H,R, k). J

I Lemma 21. Let (G,H,R, k) be an instance of Dd-DCF-ECT, where none of the Reduction
Rules 8 to 12 are applicable. Then degree of each vertex in G is bounded by O(k2).

I Proposition 7. [23] There is a factor 10-approximation algorithm for ECT.

Let (G,H,R, k) be an instance of Dd-DCF-ECT, where none of the Reduction Rules from
8 to 12 are applicable. Next, the kernelization algorithm finds an approximate solution
S∗ of ECT in G, using Proposition 7. If |S∗| > 10k, then return that (G,H,R, k) is a NO
instance of Dd-DCF-ECT. The correctness follows from correctness of Proposition 7. From
now onwards we assume that |S∗| ≤ 10k. By Proposition 4, we know that G− S∗ is an odd
cactus graph. In the following sections, the algorithm exploits the properties of the block
decomposition of G−S∗ to further reduce the instance. Firstly, we define the notion of block
decomposition and block graphs.

Given a graph G?, the block decomposition D of G? is a set of all the blocks of the graph
G?. The block-cut vertex tree T of G∗ has vertices corresponding to each cut vertex in G?

and each block in D. Let u, v ∈ T , where u corresponds to a cut vertex and v corresponds to
a block Bv in G?. There is an edge uv in T , if u ∈ Bv. It is known that block-cut vertex tree
of a graph is a tree [12]. A pendant block is a block which contains at most one cut vertex,
equivalently a pendant block in G−S∗ is a block corresponding to a leaf vertex in T . A high
degree cut vertex is a cut vertex with degree at least three in T , equivalently a high degree
cut vertex is a cut vertex in G− S∗ which is contained in at least three blocks in G− S∗. A
low degree cut vertex is a cut vertex with degree at most two in T , equivalently a low degree
cut vertex is a cut vertex in G − S∗ which is contained in at most two blocks in G − S∗.
A high degree block is a block which contains at least three cut vertices or contains a high
degree cut vertex, equivalently a high degree block is a block in G− S∗ which corresponds
to a vertex with degree at least three in T . A block B in a block chain B is called as poor
block if both cut vertices of B are in R, |Eodd(B)| = 1, and |Eeven(B)| ≥ 2. A dirty vertex is
a vertex that has a neighbor in S∗. A dirty block in G− S∗ is a block which contains a dirty
vertex. Let P be a maximal degree two induced path in T such that blocks corresponding to
P in G− S∗ are not dirty blocks, then the set of blocks corresponding to vertices in P in
G− S∗ is called as block chain.

A.2 Bounding the number of high degree blocks and block chains
At this point, we have a graph G such that degree of all the vertices of G are bounded by
O(k2). In this section, we bound the number of pendant blocks, high degree blocks, high
degree cut vertices, and number of block chains in G− S?.

I Proposition 8. [12, 16] There is an algorithm, which given a graph G, in polynomial time
outputs the block decomposition and block-cut vertex tree of G.

The algorithm finds the block decomposition of G− S∗ and corresponding block graph T of
graph G− S∗ using Proposition 8. Now, we first bound the number of pendant blocks.
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I Reduction Rule 13. If there is a pendant block B in G− S∗, which is not a dirty block,
then delete all vertices except cut vertex in B, from the graphs G,H and the set R.

The correctness of above reduction rule follows from the fact that vertices in such blocks
do not participate in an even cycle in G. After applying the above reduction rule exhaustively,
each leaf blocks in G− S∗ contains a vertex which has a neighbor in S∗. Using Lemma 21,
we obtain the following result.

I Lemma 22. Let (G,H,R, k) be an instance of Dd-DCF-ECT, when none of the Reduction
Rules 8 to 13 are applicable. Then, the number of leaf blocks in G−S∗ and number of leaves
in T are bounded by O(k3).

In the following we state a well known fact about trees.

I Lemma 23. [] For a tree T with ` leaves, the number of degree at least three vertices in T
is bounded by `. Furthermore, the number of maximal degree two paths in T is bounded by `.

Using Lemmata 21, 22, and 23, we get the following result.

I Lemma 24. Let (G,H,R, k) be an instance of Dd-DCF-ECT, where none of the Reduction
Rules 8 to 13 are applicable. Then we obtain the following bounds.
1. The number of high degree blocks in G− S∗ is bounded by O(k3).
2. The number of high degree cut vertices, dirty vertices and dirty blocks in G−S∗ is bounded

by O(k3).
3. The number of block chains in G− S∗ is bounded by O(k3).
4. Let B is cycle block in G− S∗, then the number of maximal degree two induced paths in

B, that do not contain a dirty vertex or cut vertex is bounded by O(k3).

After the exhaustive applications of the Reduction Rules 8 to 13, we are left with bounding
number of vertices in a block and the number of blocks in a block chain.

A.3 Bounding number of vertices in a block
In this section, the kernelization algorithm exploits the properties of d-degenerate graph H
to bound the vertices in a degree two induced path in G which results into bounding vertices
in a block in G− S∗.

In the following, we state a reduction rule to bound vertices that belong to the set R in a
degree two induced path in G.

I Reduction Rule 14. If there exist a degree two induced path P in G such that P contains
two vertices u, v ∈ R, then proceed as follows.

If u, v are adjacent in G, let x 6= v, y 6= u be neighbors of u, v in G respectively. Delete
u, v from the graphs G,H and the set R. Furthermore, add edge xy in G.
If u, v are not adjacent in G, let x1, y1 be neighbors of u and x2, y2 be neighbors of v in G.
Delete u, v from the graphs G,H and the set R. Furthermore, add edges x1y1, x2y2 in G.

Let (G′, H ′, R′, k) be the resulting instance.

I Lemma 25. Reduction Rule 14 is safe.

Proof. We prove that (G,H,R, k) is a YES instance of Dd-DCF-ECT if and only if
(G′, H ′, R′, k) is a YES instance of Dd-DCF-ECT. In the forward direction, let (G,H,R, k)
be a YES instance of Dd-DCF-ECT and S be one of its solution. We claim that S is
also a solution of Dd-DCF-ECT for (G′, H ′, R′, k). Suppose not, then either S is not an
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independent set in H ′ or G′−S contains an even cycle. Since, H ′ is an induced subgraph of H,
S is an independent set in H ′. Let G′−S contains an even cycle C. Observe that G−{u, v}
is identical to G′−{xy} (G′−{x1y1, x2y2}). Therefore, if C does not contain edge xy (edges
x1y1 or x2y2), then C is also an even cycle in G−S, a contradiction. Observe that any cycle
in G′ containing x1y1 also contains x2y2 and vice versa. Suppose that C contains edge xy
(edges x1y1, x2y2), then (C \{xy})∪{xu, uv, vy} ((C \{x1y1, x2y2})∪{x1u, uy1, x2v, vy2}) is
an even cycle in G−S, a contradiction. This concludes that S is a solution of Dd-DCF-ECT
for (G′, H ′, R, k).

In the reverse direction, let (G′, H ′, R′, k) be a YES instance of Dd-DCF-ECT and S′
be one of its solution. We claim that S′ is also a solution of Dd-DCF-ECT for (G,H,R, k).
Suppose not, then either S′ is not an independent set in H or G− S′ contains an even cycle.
Since, H ′ is an induced subgraph of H, we have that S′ is also an independent set in H. Let
G− S′ contains an even cycle C. As observed before, G− {u, v} is identical to G′ − {xy}
(G′ − {x1y1, x2y2}). Therefore if C does not contain u or v, then C is also an even cycle in
G′ − S′, a contradiction. Since P is a degree two induced path in G, therefor any cycle that
passes trough one vertex (edge) of P passes through all (vertices) edges of P . Suppose that C
contains vertices u, v then, (C \{xu, uv, vy})∪{xy} ((C \{x1u, uy1, x2v, vy2})∪{x1y1, x2y2})
is an even cycle in G′ − S′, a contradiction. This concludes that S′ is also a solution of
Dd-DCF-ECT for (G,H,R, k).

J

I Lemma 26. Let (G,H,R, k) be an instance of Dd-DCF-ECT, where none of the Reduction
Rules 8 to 14 are applicable, then for a degree two induced path P in G, |V (P ) ∩R| ≤ 1

I Reduction Rule 15. Let P be a maximal degree two induced path in G. If |V (P )| ≥ nd+1+2,
apply Algorithm 1 with input (V (P ) \R,H). Let V̂ (P ) be the set returned by Algorithm 1.
Let u, v ∈ (V (P ) \R) \ V̂ (P ), then proceed as follows:

If u, v are adjacent in G, let x 6= v, y 6= u be neighbors of u, v in G respectively. Then
delete u, v from the graphs G,H. Furthermore, add edge xy in G.
If u, v are not adjacent in G, let x1, y1 be neighbors of u and x2, y2 be neighbors of v in
G. Delete u, v from graph G,H. Add edges x1y1, x2y2 in G.

Let (G′, H ′, R, k) be the resulting instance.

I Lemma 27. Reduction Rule 15 is safe.

Proof. We prove that (G,H,R, k) is a YES instance of Dd-DCF-ECT if and only if
(G′, H ′, R, k) is a YES instance of Dd-DCF-ECT. In the forward direction, let (G,H,R, k)
be a YES instance of Dd-DCF-ECT and S be one of its solution. Suppose that S∩{u, v} = ∅,
then we claim that S is also a solution of Dd-DCF-ECT for (G′, H ′, R, k). Suppose not,
then either S is not an independent set in H ′ or G′ − S contains an even cycle. Since, H ′ is
an induced subgraph of H, we have that S′ is also an independent set in H ′. Let G′ − S
contains an even cycle C. Since P is a degree two induced path in G, any minimal solution
of Dd-DCF-ECT for (G,H,R, k) contain at most one vertex from V (P ). Let S ∩ {u, v} = ∅
and G′ − S contain an even cycle C. Observe that G − {u, v} is identical to G′ − {xy}
(G′ − {x1y1, x2y2}). Therefore if C does not contain edge xy (edges x1y1 or x2y2), then C is
also an even cycle in G− S, a contradiction. Observe that any cycle in G′ containing x1y1
also contains x2y2 and vice versa. Suppose that C contains edge xy (edges x1y1,x2y2) then
(C \ {xy})∪{xu, uv, vy} ((C \ {x1y1, x2y2})∪{x1u, uy1, x2v, vy2}) is an even cycle in G−S,
a contradiction. This concludes that S is a solution of Dd-DCF-ECT for (G′, H ′, R, k).
Now, suppose that S contains u or v, Without loss of generality, let u ∈ S, then by Claim 1
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we have a vertex u′ ∈ V̂ (P ) such that (S \ {u}) ∪ {u′} is an independent set in H ′. Since
V̂ (P ) ⊂ V (P ), then by using the fact that any cycle that passes trough one vertex (edge)
of P passes through all (vertices) edges of P , we have that (S \ {u}) ∪ {u′} is a solution of
Dd-DCF-ECT for (G′, H ′, R, k).

Reverse direction arguments are similar to proof of Lemma 25.
J

I Lemma 28. Let (G,H,R, k) be an instance of Dd-DCF-ECT, when none of the Reduction
Rules 8 to 15 are applicable. Then the number of vertices in a degree two induced path in G
are bounded by (d+ 1)k(d+1).

We obtain following result by Lemmata 24 and 28.

I Lemma 29. Let (G,H,R, k) be an instance of Dd-DCF-ECT, when none of the Reduction
Rules 8 to 15 are applicable. Then the number of vertices in a block in G− S∗ is bounded by
O(dkO(d))

A.4 Bounding cut vertices in a block chain
In this section, the kernelization algorithm exploits the properties of d-degenerate graph H
to bound the cut vertices in a block chain in G− S∗. Firstly, the kernelization algorithm
applies reduction rules to bound the cut vertices that do not belong to R and then bounds
the cut vertices that belong to the set R. Let B be a cycle block in G− S∗ with exactly two
cut vertices a, b, then there are two disjoint paths from a to b in block B, one of even length
and other of odd length. We define even (odd) length path as even-path (odd-path) in B.
We define an odd-even pair (a, b) of a cycle block B as a pair of vertices such that vertex a
belong to the odd-path and vertex b belong to the even-path in B. An odd-even pair (a, b)
is good if a, b /∈ R and ab /∈ E(H). By Eodd(B)(Eeven(B)), we denote edge set of odd-path
(even-path) of B. Let B be a block chain in G− S∗, by K(B) we denote cut vertices in B
that are not in R. By V (B) we denote vertices in a block B. By V (B) we denote the set⋃

B∈B V (B).
In the following, we state a reduction rule to bound the number of cut vertices that do

not belong to R.

I Reduction Rule 16. Let B be a maximal block chain in G − S∗. If K(B) > nd+1,
apply Algorithm 1, with input (K(B), H). Let K̂(B) be the set returned by Algorithm
1 and u ∈ K(B) \ K̂(B). Then, add u to the set R to generate the reduced instance
(G,H,R′ = R ∪ {u}, k).

I Lemma 30. Reduction Rule 16 is safe.

Proof. We prove that (G,H,R, k) is a YES instance of Dd-DCF-ECT if and only if
(G,H,R′, k) is a YES instance of Dd-DCF-ECT. In the forward direction, let (G,H,R, k)
be a YES instance of Dd-DCF-ECT and S be one of its minimal solution. Since B is a
block chain in G− S∗, any minimal solution of Dd-DCF-ECT for (G,H,R, k) contains at
most one vertex from K(B). Suppose that u /∈ S. Since, R′ = R ∪ {u}, S is also a solution
of Dd-DCF-ECT for (G,H,R′, k). Now, suppose that S contains u, then by Claim 1, we
have a vertex u′ ∈ K̂(B) such that S′ = (S \ {u})∪ {u′} is an independent set in H. Since B
is a block chain, any cycle that contains a vertex in B passes through all cut vertices in B
and hence S′ is also a solution of Dd-DCF-ECT for (G,H,R, k). Hence, it is a solution of
Dd-DCF-ECT for (G,H,R′, k).
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In the reverse direction, since R ⊆ R′, any solution to Dd-DCF-ECT in (G,H,R′, k) is
also a solution to Dd-DCF-ECT in (G,H,R, k).

J

I Lemma 31. Let (G,H,R, k) be an instance of Dd-DCF-ECT and none of the Reduction
Rules 8 to 16 are applicable. Let B be a block chain in G− S∗. Then number of cut vertices
in B that do not belong to the set R is bounded by (d+ 1)kd+1.

I Lemma 32. Let (G,H,R, k) be an instance of Dd-DCF-ECT and none of the Reduction
Rules 8 to 16 are applicable. Let B be a block chain in G−S∗. Then the number of blocks in
B, which contains a cut vertex, that does not belong to the set R is bounded by (d+ 1)kd+1.

Now, we state a reduction rule to bound cut vertices with degree two in G, that belong
to the set R in a block chain in G− S∗.

I Reduction Rule 17. If there exist a block chain B in G− S∗ such that B contains two cut
vertices u, v ∈ R of degree exactly two in G, then proceed as follows.

If u, v are adjacent in G, let x 6= v, y 6= u be neighbors of u, v in G respectively. Then
delete u, v from the graphs G,H and the set R. Furthermore, add edge xy in G.
If u, v are not adjacent in G, let x1, y1 be neighbors of u and x2, y2 be neighbors of v in
G. Then delete u, v from the graphs G,H and the set R. Furthermore, add edges x1y1
and x2y2 in G.

Let (G′, H ′, R′, k) be the reduced instance.

I Lemma 33. Reduction Rule 17 is safe.

Proof. We prove that (G,H,R, k) is a YES instance of Dd-DCF-ECT if and only if
(G′, H ′, R′, k) is a YES instance of Dd-DCF-ECT. In the forward direction, let (G,H,R, k)
be a YES instance of Dd-DCF-ECT and S be one of its minimal solution. We claim that S
is also a solution of Dd-DCF-ECT for (G′, H ′, R′, k). Suppose not, then either S is not an
independent set in H ′ or G′ − S contains an even cycle. Since, H ′ is an induced subgraph
of H, S is an independent set in H ′. Let G′ − S contains an even cycle C. Observe that
G−{u, v} is identical to G′−{xv}(G′−{x1y1, x2, y2}). Therefore, if C does not contain edge
xy (edges x1y1 or x2y2), then C is also an even cycle in G−S, a contradiction. Observe that
any cycle that passes trough a vertex of a block chain passes through all of its cut vertices.
This implies that any cycle in G′ containing x1y1 also contains x2y2 and vice versa. Then
(C \ {xy})∪{xu, uv, vy} ((C \ {x1y1, x2y2})∪{x1u, uy1, x2v, vy2}) is an even cycle in G−S,
a contradiction. This concludes that S is a solution of Dd-DCF-ECT for (G′, H ′, R, k).

In the reverse direction, let (G′, H ′, R′, k) be a YES instance of Dd-DCF-ECT and S′
be one of its solution. We claim that S′ is also a solution of Dd-DCF-ECT for (G,H,R, k).
Suppose not, then either S′ is not an independent set in H or G− S′ contains an even cycle.
Since, H ′ is an induced subgraph of H, we have that S′ is also an independent set in H. Let
G− S′ contains an even cycle C. As observed before, G− {u, v} is identical to G′ − {xy}
(G′ − {x1y1, x2y2}). Therefore if C does not contain u or v, then C is also an even cycle
in G′ − S′, a contradiction. As observed before any cycle that passes trough a vertex of
a block chain passes through all of its cut vertices. Suppose that C contains vertices u, v
then, (C \ {xu, uv, vy}) ∪ {xy} ((C \ {x1u, uy1, x2v, vy2}) ∪ {x1y1, x2y2}) is an even cycle
in G′ − S′, a contradiction. This concludes that S′ is also a solution of Dd-DCF-ECT for
(G,H,R, k). J
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I Lemma 34. Let (G,H,R, k) be an instance of Dd-DCF-ECT, where none of the Reduction
Rules 8 to 17 are applicable. Then there exist at most one cut vertex of degree two in G that
belong to the set R, in a block chain in G− S∗.

At this point, we are only left with bounding the cut vertices of degree at least 3 in G
that belong to R in a block chain in G− S∗. Towards this, we bound the number of cycle
blocks in a block chain that contains both of the cut vertices in the set R, which also results
into bounding cut vertices in G− S∗ that belong to R and of degree at least 3 in G.

I Lemma 35. Let (G,H,R, k) be an instance of Dd-DCF-ECT, where none of the Reduction
Rules 8 to 17 are applicable. Then a vertex in G can be in at most (d+ 1)kd+1 odd-even
pairs in G− S∗.

Proof. The number of vertices in a degree two induced path in G is bounded by (d+ 1)kd+1

by Lemma 28. This implies that number of vertices in odd and even paths in a block are
bounded by (d+ 1)kd+1. Hence, the claim follows. J

I Observation 36. Let (G,H,R, k) be an instance of Dd-DCF-ECT. Let B be a block chain
in G−S∗, with at least two cycle blocks. Let B be a block in B with both of its cut vertices in
R. Then for any minimal solution S of (G,H,R, k) for Dd-DCF-ECT, either V (B)∩S = ∅,
or V (B) ∩ S = {a, b} such that (a, b) is a good odd-even pair in B, or V (B) ∩ S = {v} such
that B is a poor block, v ∈ B, and v /∈ R.

Let B be a block chain in G−S∗. By BP we denote the set of all poor blocks in B, which
have both the cut vertices in R. By W (BP ) we denote the set of all vertices that do not
belong to the set R in blocks in BP .

I Reduction Rule 18. Let B be a block chain in G− S∗. If |W (BP )| ≥ k + 1, then add all
vertices of W (BP ) to R to generate a reduced instance (G,H,R′, k).

I Lemma 37. Reduction Rule 18 is safe.

Proof. We prove that (G,H,R, k) is a YES instance of Dd-DCF-ECT if and only if
(G,H,R′, k) is a YES instance of Dd-DCF-ECT. In the forward direction, let S be a
minimal solution to Dd-DCF-ECT in (G,H,R, k). Let B1, · · · , B` be poor blocks in B, then
we claim that if a vertex from even-path in Bi is in S for any i ∈ [`], then |S ∩Bj | = 1 for all
j ∈ [`]. Since, S is a minimal solution, there exists an even cycle C that contains Eeven(Bi).
Since, B is a block chain, either Eodd(Bj) or Eeven(Bj) is contained in C for j 6= i. If C
contains Eodd(Bj), then (C \ (Eodd(Bj ∪ Eeven(Bi))) ∪ (Eeven(Bj ∪ Eodd(Bi))) is an even
cycle in G−S, a contradiction. If C contains Eeven(Bj), then (C \ (Eeven(Bj)∪Eeven(Bi))∪
(Eodd(Bj)∪Eodd(Bi)) is an even cycle in G−S, a contradiction. Since, |W (BP )| ≥ k+ 1, no
vertex of W (BP ) belongs to S. Hence, S is also a solution to Dd-DCF-ECT in (G,H,R′, k).
This completes the proof in the forward direction.

In the reverse direction, since R ⊆ R′, any solution to Dd-DCF-ECT in (G,H,R′, k) is
also a solution to Dd-DCF-ECT in (G,H,R, k). J

I Lemma 38. Let (G,H,R, k) be an instance of Dd-DCF-ECT, where none of the Reduction
Rules 8 to 18 are applicable. Then the number of poor blocks in a block chain in G− S∗ is
bounded by k.

In the following, we state reduction rules to bound cycle blocks that contain both of the
cut vertices in R and are not poor. Let B be a block chain in G− S∗. By BR we denote the
set of all cycle blocks in B, which have both the cut vertices in R. By O(BR) we denote the

CVIT 2016



23:28 Exploring the Kernelization Borders for Hitting Cycles

set of all good odd-even pairs in blocks in BR. For a set A of odd-even pairs by V (A) we
denote the set

⋃
(a,b)∈A{a, b}.

I Definition 7. Let η = (d + 1)k(d+1). If r = 1, let nr = η(kd) + 1, otherwise, nr =
knr−1 + η(kd) + 1. A set X of odd-even pairs is r-reducible, if for every set U ⊆ X

such that pairs in U have at least 2d − r + 1 common forward neighbors, in particular
|
⋂

(a,b)∈U (Nf
H(a) ∪Nf

H(b))| = 2d− r + 1, |U | ≤ nr.

The following observation is due to Observation 1 and Lemma 28

I Observation 39. Let (G,H,R, k) be a YES instance of Dd-DCF-ECT and S be one of
its solution. Let X be a set of good odd-even pairs such that for each pair (a, b) ∈ X, either a
or b have a backward neighbor in S, in particular (N b

H(a)∪N b
H(b))∩S 6= ∅, then |X| ≤ η(kd),

where η = (d+ 1)k(d+1).

Algorithm 2 Algo2(H,X)
Input: d-degenerate graph H, X ⊆ V (H)× V (H)
Output: X ′ ⊆ X

1: For r ∈ [2d], let nr = η(kd) + 1, if r = 1, otherwise, nr = ηnr−1 + η(kd) + 1.
2: q = 1
3: while r ≤ 2d do
4: while X is not r-reducible do
5: Find U ⊆ X of size nr + 1, such that |

⋂
(a∗,b∗)∈U (Nf

H(a∗)∪Nf
H(b∗))| = 2d− r+ 1.

6: Let (a, b) be an arbitrary pair in U .
7: X = X \ {(a, b)}
8: end while
9: q = q + 1

10: end while
11: while |X| > n2d+1 do
12: Let (x, y) be an arbitrary pair in X.
13: X = X \ {(x, y)}
14: end while
15: return X ′ = X

I Claim 2. Let d-degenerate graph H, X ⊆ V (H) × V (H) be the input and X ′ be the
output of Algorithm 2. Let S ⊆ V (H) be an independent set in H of size at most k and
(a, b) ∈ (X \X ′) ∩ S. Then there exist a pair (a′, b′) ∈ X ′ such that (S \ {a, b}) ∪ {a′, b′} is
also an independent set in H of size at most k.

Proof. We consider cases when X is 2d-reducible and when X is not 2d-reducible.
Case 1: X is not 2d-reducible.
We use induction on r to prove the lemma.
Base Step: r = 1, n1 = η(kd) + 1.

If X is not r-reducible, then the algorithm finds U ⊆ X of size η(kd) + 2, such that
|
⋂

(a∗,b∗)∈U (Nf
H(a∗) ∪Nf

H(b∗))| = 2d, and delete an arbitrary pair (a, b) ∈ U from X. If S
contains a, b, then none of the forward neighbors of a, b are in S. This implies that none of
the vertices in V (U) have their forward neighbors in S. By Observation 39, at most η(kd)
pairs in U contains a vertex that have a backward neighbors in S. Therefore, there exists a
pair (a′, b′) ∈ U \ {(a, b)} such that vertices a′, b′ have neither any of its forward neighbor
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nor any of its backward neighbor in S. Hence, (S \ {a, b}) ∪ {a′, b′} is also an independent
set in H of size at most k.
Induction Hypothesis: Let us assume that claim holds for r ≤ j − 1.
Induction Step: r = j, nj = knj−1 + η(kd) + 1.

If X is not j-reducible, then algorithm finds U ⊆ X of size nj + 1, such that
|
⋂

(a∗,b∗)∈U (Nf
H(a∗)∪Nf

H(b∗))| = 2d−j+1 and delete an arbitrary pair (a, b) ∈ U from X. If
S contains a, b, then none of the forward neighbors of a, b are in S. This implies that 2d−j+1
common forward neighbors of vertices of pairs in U are not in S. Since, X is (j−1)-reducible,
therefore, if there exist a subset U ′ ⊆ U such that vertices in pairs of U ′ have a vertex in S as a
common forward neighbor, then this implies that |

⋂
(a∗,b∗)∈U ′(N

f
H(a∗)∪Nf

H(b∗))| ≥ 2d−j+2
and by the induction hypothesis |U ′| ≤ nj−1. Hence, at most knj−1 pairs in U contains
a vertex that have forward neighbors in S. By Observation 39, at most η(kd) pairs in
U contains a vertex that have a backward neighbors in S. Therefore, there exists a pair
(a′, b′) ∈ U \ {(a, b)} such that vertices a′, b′ have neither any of its forward neighbor nor any
of its backward neighbor are in S. Hence, (S \ {a, b}) ∪ {a′, b′} is also an independent set in
H of size at most k.

Case 2: X is 2d-reducible.
When X is 2d-reducible and |X| > n2d+1, then algorithm delete an arbitrary pair (a, b) ∈ X
from X. Let S contains a, b. Since, X is 2d-reducible, therefore, if there exist a subset
U ′ ⊆ X such that vertices in pairs of U ′ have a vertex in S as a common forward neighbor,
then this implies that |

⋂
(a∗,b∗)∈U ′(N

f
H(a∗) ∪Nf

H(b∗))| ≥ 1 and by correctness of the Case 1,
we have that |U ′| ≤ n2d. Hence, at most kn2d pairs in X contains a vertex that have forward
neighbors in S. By Observation 39, at most η(kd) pairs in X contains a vertex that have
a backward neighbors in S. Therefore, there exists a pair (a′, b′) ∈ X \ {(a, b)} such that
vertices a′, b′ have neither any of its forward neighbor nor any of its backward neighbor in S.
Hence, (S \ {a, b}) ∪ {a′, b′} is also an independent set in H of size at most k. J

I Lemma 40. Algorithm 2 runs in polynomial time.

Proof. Let σ be a d-degenerate sequence of the graph H. Using σ, for each v ∈ V (H), we can
find Nf

H(v) in the polynomial time. For t ∈ [2d], and a pair of distinct vertices u, v ∈ V (H),
we can find all the pairs of vertices in V (H) that shares t forward neighbor with u, v in
polynomial time. Clearly, for a fixed r, Step 4 of Algorithm 1 can be performed in O(22d)
time. Since, X ⊆

(
V (G)

2
)
, |X| ≤ n2, hence Step 4 can be performed in O(2dn2) time. Clearly,

all the other steps of the algorithm can be performed in O(n) time. Hence, the running time
of the algorithm is nO(1). J

I Reduction Rule 19. Let B be a block chain in G− S∗. If |BR| > n2d+1, apply Algorithm
2 with input (O(BR), H). Let Ô(BR) be the set returned by Algorithm 2. Let B1 ∈ B \ BT

be a cycle block that do not contain any pair in Ô(BR), and x1, y1 be the cut vertices of B1.
Since, B is a block chain, either x1 or y1 has at least three neighbors in V (B). Without loss
of generality, let |NG(y1) ∩ V (B)| ≥ 3, then proceed as follows:

Case 1. Let |NG(y1)∩V (B)| = 3 and w ∈ (NG(y1)∩V (B))\V (B1). Delete V (B1)\{x1, y1}
from the graphs G,H and the set R. Furthermore, add edges x1w, x1y1 to G.

Case 2. Let |NG(y1)∩V (B)| = 4 and w1, w2 ∈ (NG(y1)∩V (B))\V (B1). Delete V (B1)\{x1}
from the graphs G,H and the set R. Furthermore, add the edges x1w1 and x1w2 to G.

I Lemma 41. Reduction Rule 19 is safe.
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Proof. Let (G′, H ′, R′, k) be the reduced instance after the application of Reduction Rule 19.
We claim that (G,H,R, k) is a YES instance of Dd-DCF-ECT if and only if (G′, H ′, R′, k)
is a YES instance of Dd-DCF-ECT.
Case 1. Suppose that the instance (G′, H ′, R′, k) is generated by the application of Case 1.
In the forward direction, let S be a minimal solution to Dd-DCF-ECT in (G,H,R, k). If S
is also a solution of Dd-DCF-ECT in (G′, H ′, R′, k), then the claim holds. Otherwise, S
is not a solution of Dd-DCF-ECT in (G′, H ′, R′, k). This implies that either S is not an
independent set in H ′ or G′ − S contains an even cycle. Since, H ′ is an induced subgraph
of H, S is also an independent set in H ′. Let C be an even cycle in G′ − S. Suppose that
S ∩ V (B1) = ∅. Since, G− (V (B1) \ {x1, y1}) is identical to G′ − {x1w, x1y1}, C contains
either edges {x1y1, y1w} or x1w. If C contains {x1y1, y1w}, then (C\{x1y1})∪Eodd(B1) is an
even cycle in G−S, a contradiction. If C contains x1w, then (C \{x1w})∪Eeven(B1)∪{y1w}
is an even cycle in G− S, a contradiction to the fact that S is a solution of Dd-DCF-ECT
in (G,H,R, k). Now, suppose that S ∩ V (B1) 6= ∅. Since, all the vertices of a poor block in
B \ BT are red, B1 is not a poor block. Using Observation 36, if a ∈ S ∩ V (B1), then there
exists a vertex b ∈ S ∩V (B1) such that (a, b) is a good odd-even pair in B1. By claim 2 there
exists a pair (a′, b′) ∈ Ô(BR) such that S′ = (S \ {a, b}) ∪ {a′, b′} is an independent set in
H ′. Observe that if a cycle C passes through a vertex in V (B), then either C ∩Eodd(B) 6= ∅
or C ∩ Eeven(B) 6= ∅, for any B ∈ B. Therefore, S′ is a solution of Dd-DCF-ECT in
(G′, H ′, R′, k).

In the reverse direction, let (G′, H ′, R′, k) be a YES instance of Dd-DCF-ECT and S
be one of its solution. If S is also a solution of Dd-DCF-ECT in (G,H,R, k), then the
claim holds. Otherwise, S is not a solution of Dd-DCF-ECT in (G,H,R, k). Since, H ′
is an induced subgraph of H, S is an independent set in H. Let C be an even cycle in
G − S. Since, G − (V (B1) \ {x1, y1}) is identical to G′ − {x1w, x1y1}, either C contains
Eodd(B1) or Eeven(B1). Also, C ∩ {y1w1} 6= ∅. Suppose C contains Eodd(B1), then (C \
Eodd(B1))∪{x1y1} is an even cycle in G′−S, a contradiction. If C contains Eeven(B1) then
(C \ (Eeven(B1) ∪ {y1w1})) ∪ {x1w} is an even cycle in G′ − S, a contradiction. Hence, S is
also a solution to Dd-DCF-ECT in (G,H,R, k).

Case 2. Suppose that the instance (G′, H ′, R′, k) is generated by the application of Case 2.
Let B2 be a block which contains w1 and w2. Without loss of generality, let y1w1 ∈ Eodd(B2)
and y1w2 ∈ Eeven(B2). In the forward direction, let S be a minimal solution to Dd-DCF-
ECT in (G,H,R, k). If S is also a solution of Dd-DCF-ECT in (G′, H ′, R′, k), then the
claim holds. Otherwise, S is not a solution to Dd-DCF-ECT in (G′, H ′, R′, k). This implies
that either S is not an independent set in H ′ or G′−S contains an even cycle. Since, H ′ is an
induced subgraph of H, S is also an independent set in H ′. Let C be an even cycle in G′−S.
Suppose that S ∩ V (B1) = ∅. Since, G− (V (B1) \ {x1}) is identical to G′−{x1w1, x1w2}, C
contains either x1w1 or x1w2. Then, (C \ {x1wi}) ∪ Eeven(B1) ∪ {y1wi}, where i ∈ [2] is an
even cycle in G− S, a contradiction. Now, suppose that S ∩ V (B1) 6= ∅. By claim 2 there
exists a pair (a′, b′) ∈ Ô(BR) such that S′ = (S \ {a, b}) ∪ {a′, b′} is an independent set in
H ′. Observe that if a cycle C passes through a vertex in V (B), then either C ∩Eodd(B) 6= ∅
or C ∩ Eeven(B) 6= ∅, for any B ∈ B. Therefore, S′ is a solution of Dd-DCF-ECT in
(G′, H ′, R′, k).

In the reverse direction, let (G′, H ′, R′, k) be a YES instance of Dd-DCF-ECT and S be
one of its solution. If S is also a solution of Dd-DCF-ECT in (G,H,R, k), then the claim
holds. Otherwise, S is not a solution of Dd-DCF-ECT in (G,H,R, k). This implies that
either S is not an independent set in H or G − S contains an even cycle. Since, H ′ is an
induced subgraph of H, S is an independent set in H. Let C be an even cycle in G − S.
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Since, G− (V (B1) \ {x1}) is identical to G′ − {x1w1, x1w2}, C contains either Eodd(B1) or
Eeven(B1). Suppose that C∩Eodd(Bi) 6= ∅, for all i ∈ [2], then (C \ (Eodd(B1)∪Eodd(B2)))∪
(Eeven(B2) \ {y1w2}) ∪ {x1w2} is an even cycle in G′ − S, a contradiction. The similar
argument follows when C ∩ Eeven(Bi) 6= ∅, for all i ∈ [2]. Suppose that C contains Eodd(B1)
and Eeven(B2), then (C \ (Eodd(B1)∪Eeven(B2)))∪ (Eodd(B2)\{y1w1})∪{x1w1}) is an even
cycle in G′ − S, a contradiction. The similar argument follows when C contains Eeven(B1)
and Eodd(B2). Hence S is also a solution to Dd-DCF-ECT in (G,H,R, k) J

I Lemma 42. Let (G,H,R, k) be an instance of Dd-DCF-ECT, where none of the Reduction
Rules 8 to 19 are applicable. Then, the number of blocks in a block chain in G− S∗, which
contains both cut vertices in R is bounded by O(dO(d)kO(d2)).

I Lemma 43. Let (G,H,R, k) be an instance of Dd-DCF-ECT, where none of the Reduction
Rules 8 to 19 are applicable. Then the number of blocks in a block chain in G − S∗ is
bounded by O(dO(d)kO(d2)).

Proof. The number of blocks in a block chain which contains a cut vertex, that does not
belong to the set R is bounded by (d+ 1)kd+1 by Lemma 32. Since, the number of blocks in
a block chain in G − S∗, which contains both of the cut vertices in R is also bounded by
O(dO(d)kO(d2)) by Lemma 42, the claim follows. J

I Theorem 44. Dd-DCF-ECT admits a kernel with O(dO(d)kO(d2)) vertices.

Proof. Let (G,H,R, k) be an instance of Dd-DCF-ECT, where none of the Reduction Rules
8 to 19 are applicable. Let S? be an approximate solution of ECT for G. Let T be a
block-cut vertex tree of G− S?. By Lemma 22, number of leaf blocks are bounded by O(k3).
By Lemma 24, number of high degree blocks, high degree cut vertices, number of degree
two induced paths which neither contain a cut vertex nor a dirty vertex in a block, and
the number of block chains are bounded by O(k3). The algorithm further bounds number
of vertices in a block in G − S? by O(dkO(d)) by Lemma 29. Now, we are only left with
bounding cut vertices in a block chain. By Lemma 43, the number of blocks in a block chain
are bounded by O(dO(d)kO(d2)). Hence, the number of cut vertices in a block chain are also
bounded by O(dO(d)kO(d2)). Since, each of the rules can be applied in polynomial time and
each of them either declare that the given instance is a YES or NO instance or reduce the
size of the graph. Therefore, the overall running time is polynomial in the input size.

J

I Lemma 45. There is a parameter preserving reduction from Dd-DCF-ECT to Dd-CF-
ECT.

Proof. Given an instance (G,H,R, k) of Dd-DCF-ECT, we generate an instance (G′, H ′, k′)
of Dd-CF-ECT as follows. Let X = {v, u1, · · · , uk+2}. We define vertex set of V (G′) and
V (H ′) as V (G) ∪X. Now, we define edge sets of G′ and H ′. E(G′) = E(G) ∪ {vui, vui | i ∈
[k + 2]}. E(H ′) = E(H −R) ∪ {vw | w ∈ R}. We set k′ = k + 1. Clearly, this construction
can be carried out in the polynomial time in the size of input instance. We claim that
(G,H,R, k) is a YES instance of Dd-DCF-ECT if and only if (G′, H ′, k + 1) is a YES
instance of Dd-CF-ECT.

In the forward direction, let S be a solution to Dd-DCF-ECT in (G,H,R, k). We claim
that S′ = S ∪ {v} is a solution to Dd-CF-ECT in (G′, H ′, k + 1). Since, G′ contains a
(k + 2)-even flower at v ∈ V (G′), v belongs to any solution of size at most k + 1. Since,
G′ − v is identical to G, G′ − S′ does not contain any even cycle. Since, S ∩R = ∅, S ∪ {v}
is an independent set in H ′. This completes the proof in the forward direction.
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In the reverse direction, let (G′, H ′, k′) be a YES instance of Dd-CF-ECT and S be
one of its solution. As argued above, v ∈ S. We claim that S′ = S \ {v} is a solution to
Dd-DCF-ECT in (G,H,R, k). Clearly, G′ − v is identical to G, therefore, G− S′ does not
contain any even cycle. Since, v ∈ S, none of the vertices of R belongs to S. Since, H
is an induced subgraph of H ′, S′ is an independent set in H. Hence, S′ is a solution to
Dd-DCF-ECT in (G,H,R, k). J

We obtain the following result by Theorem 46 and Lemma 45.

I Theorem 46. Dd-CF-ECT admits a kernel with O(dO(d)kO(d2)) vertices, when H is
d-degenerate graph.
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