
On finding short reconfiguration sequences1

between independent sets2

Akanksha Agrawal !3

Indian Institute of Technology Madras, Chennai, India4

Soumita Hait !5

Indian Institute of Technology, Kharagpur, India6

Amer E. Mouawad !7

American University of Beirut, Lebanon8

University of Bremen, Germany9

Abstract10

Assume we are given a graph G, two independent sets S and T in G of size k ≥ 1, and a positive11

integer ℓ ≥ 1. The goal is to decide whether there exists a sequence ⟨I0, I1, ..., Iℓ⟩ of independent sets12

such that for all j ∈ {0, . . . , ℓ − 1} the set Ij is an independent set of size k, I0 = S, Iℓ = T , and Ij+113

is obtained from Ij by a predetermined reconfiguration rule. We consider two reconfiguration rules,14

namely token sliding and token jumping. Intuitively, we view each independent set as a collection15

of tokens placed on the vertices of the graph. Then, the Token Sliding Optimization (TSO)16

problem asks whether there exists a sequence of at most ℓ steps that transforms S into T , where at17

each step we are allowed to slide one token from a vertex to an unoccupied neighboring vertex (while18

maintaining independence). In the Token Jumping Optimization (TJO) problem, at each step,19

we are allowed to jump one token from a vertex to any other unoccupied vertex of the graph (as long20

as we maintain independence). Both TSO and TJO are known to be fixed-parameter tractable when21

parameterized by ℓ on nowhere dense classes of graphs. In this work, we investigate the boundary of22

tractability for sparse classes of graphs. We show that both problems are fixed-parameter tractable23

for parameter k + ℓ + d on d-degenerate graphs as well as for parameter |M | + ℓ + ∆ on graphs having24

a modulator M whose deletion leaves a graph of maximum degree ∆. We complement these result25

by showing that for parameter ℓ alone both problems become W[1]-hard already on 2-degenerate26

graphs. Our positive result makes use of the notion of independence covering families introduced27

by Lokshtanov et al. [24]. Finally, we show as a side result that using such families we can obtain28

a simpler and unified algorithm for the standard Token Jumping Reachability problem (a.k.a.29

Token Jumping) parameterized by k on both degenerate and nowhere dense classes of graphs.30

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact31

algorithms32

Keywords and phrases Token sliding, token jumping, fixed-parameter tractability, combinatorial33

reconfiguration, shortest reconfiguration sequence34

Funding Amer E. Mouawad: Research supported by the Alexander von Humboldt Foundation, by35

PHC Cedre project 2022 “PLR”, and partially supported by URB project “A theory of change36

through the lens of reconfiguration”.37

1 Introduction38

Given a simple undirected graph G, a set of vertices I ⊆ V (G) is an independent set if39

the vertices of I are pairwise non-adjacent. Finding an independent set of size k, i.e., the40

Independent Set (IS) problem, is known to be NP-complete [20] and W[1]-complete41

parameterized by solution size k [11]. We view an independent set as a collection of k42

tokens placed on the vertices of a graph such that no two tokens are placed on adjacent43

vertices. This gives rise to two natural adjacency relations between independent sets (or44

token configurations), also called reconfiguration steps. These reconfiguration steps, in turn,45

mailto:akanksha@cse.iitm.ac.in
mailto:soumitahait7321@gmail.com
mailto:aa368@aub.edu.lb
https://orcid.org/0000-0003-2481-4968

2 On finding short reconfiguration sequences between independent sets

give rise to several combinatorial reconfiguration problems [31, 28, 7].46

In the Token Sliding Reachability (TSR) problem, introduced by Hearn and47

Demaine [15], two independent sets are adjacent if one can be obtained from the other48

by removing a token from a vertex u and immediately placing it on another unoccupied49

vertex v with the requirement that {u, v} must be an edge of the graph. The token is50

said to slide from vertex u to vertex v along the edge {u, v}. Generally speaking, in the51

Token Sliding Reachability problem, we are given a graph G and two independent52

sets S and T of size k in G. The goal is to decide whether there exists a sequence of53

slides (a reconfiguration sequence) that transforms S to T . The TSR problem has been54

extensively studied [4, 5, 10, 13, 17, 19, 23]. It is known that the problem is PSPACE-55

complete, even on restricted graph classes such as planar graphs of bounded bandwidth (and56

hence pathwidth) [15, 33, 32], split graphs [3], and bipartite graphs [22]. However, Token57

Sliding Reachability can be decided in polynomial time on trees [10], interval graphs [4],58

bipartite permutation and bipartite distance-hereditary graphs [13], and line graphs [16]. In59

the Token Sliding Optimization (TSO) problem, we are additionally given a parameter60

ℓ and the goal is to decide if S can be transformed to T in at most ℓ token slides. Very61

little is known about the optimization variant of the problem other than the hardness results62

that follow immediately from the reachability variant. In fact, to the best of our knowledge,63

the only known polynomial-time solvable instances of TSO are those restricted to interval64

graphs [34, 18] and cographs [19].65

In the Token Jumping Reachability (TJR) problem, introduced by Kamiński66

et al. [19], we drop the restriction that the token should move along an edge of G and67

instead we allow it to move to any unoccupied vertex of G provided it does not break the68

independence of the set of tokens. That is, a single reconfiguration step consists of first69

removing a token on some vertex u and then immediately adding it back on any other70

unoccupied vertex v, as long as no two tokens become adjacent. The token is said to jump71

from vertex u to vertex v. Token Jumping Reachability is also PSPACE-complete on72

planar graphs of bounded bandwidth [15, 33, 32]. Lokshtanov and Mouawad [22] showed that,73

unlike Token Sliding Reachability, which is PSPACE-complete on bipartite graphs,74

the Token Jumping Reachability problem becomes NP-complete on bipartite graphs.75

On the positive side, it is “easy” to show that Token Jumping Reachability can be76

decided in polynomial-time on trees (and even on split/chordal graphs) since we can simply77

jump tokens to leaves (resp. vertices that only appear in the bag of a leaf in the clique tree)78

to transform one independent set into another. In the Token Jumping Optimization79

(TJO) problem, we are additionally given a parameter ℓ and the goal is to decide if S can80

be transformed to T in at most ℓ token jumps. To the best of our knowledge, the only81

known polynomial-time solvable instances of TJO are those restricted to chordal graphs and82

even-hole-free graphs [19, 25].83

In this paper we focus on the parameterized complexity of the aforementioned problems84

with respect to parameters k and ℓ and when restricted to sparse classes of graphs. Given85

an NP-hard or PSPACE-hard problem, parameterized complexity [12] allows us to refine86

the notion of hardness; does the hardness come from the whole instance or from a small87

parameter? A problem Π is FPT (fixed-parameter tractable) parameterized by k if one can88

solve it in time f(k) · poly(n), for some computable function f (sometimes called FPT-time).89

In other words, the combinatorial explosion can be restricted to the parameter k. In the rest90

of the paper, we mainly consider parameters k (the number of tokens) and ℓ (the number of91

reconfiguration steps). TSO and TJO are known to be W[1]-hard parameterized by k+ ℓ on92

general graphs [7]. TSR and TJR are known to be W[1]-hard parameterized by k on general93

A. Agrawal, S. Hait, and A. E. Mouawad 3

graphs [23]. When we restrict our attention to sparse classes of graphs, TSO and TJO are94

known to be fixed-parameter tractable when parameterized by ℓ on nowhere dense classes of95

graphs [25]. For TJR, the problem becomes fixed-parameter tractable parameterized by k96

on biclique-free classes of graphs [6]. Finally, for TSR, the problem becomes fixed-parameter97

tractable parameterized by k on planar graphs, chordal graphs of bounded clique number,98

and graphs of bounded degree [2]. We refer the reader to the recent survey by Bousquet et99

al. [7] for more background on the parameterized complexity of these problems.100

Given that TSO and TJO are fixed-parameter tractable when parameterized by ℓ on101

nowhere dense classes of graphs, it is natural to ask whether this result can be extended102

beyond nowhere dense graphs to biclique-free graphs. Even simpler, can we show that TSO103

and TJO remain fixed-parameter tractable when parameterized by ℓ on graph of bounded104

degeneracy? Recall that any degenerate or nowhere dense class of graphs is a biclique-free105

class, but not vice versa. Motivated by these questions, we show the following:106

Both problems are fixed-parameter tractable for parameter k + ℓ + d on d-degenerate107

graphs;108

Both problems are fixed-parameter tractable for parameter |N | + k + ℓ + d on graphs109

having a modulator N whose deletion leaves a d-degenerate graph (assuming N is given110

as part of the input); and111

Both problems are fixed-parameter tractable for parameter |M | + ℓ+ ∆ on graphs having112

a modulator M whose deletion leaves a graph of maximum degree ∆.113

We complement these result by showing that for parameter ℓ alone both problems become114

W[1]-hard already on 2-degenerate graphs (recall that both problems are polynomial-time115

solvable on 1-degenerate graphs, i.e., forests, which completes the picture based on the116

degeneracy of the graph).117

In fact, our hardness reductions construct 2-degenerate graphs which can be partitioned118

into two sets V1 and V2, where V1 is an independent set and every vertex in V2 has constant119

degree in the graph. Hence, our positive result for parameter |M |+ℓ+∆ shows that when |M |120

is part of our parameter we can drop k and still obtain fixed-parameter tractable algorithms;121

and when |M | (and k) is not part of the parameter the problem is W[1]-hard.122

Most of our positive results make use of the notion of independence covering families123

introduced by Lokshtanov et al. [24], which we believe could be of independent interest for124

the reconfiguration of independent sets. Let us start by formally defining such families and125

the various algorithms for extracting them on different graph classes.126

▶ Definition 1.1 ([24]). For a graph G and k ≥ 1, a family of independent sets of G is called127

an independence covering family for (G, k), denoted by F(G, k), if for any independent set I128

in G of size at most k, there exists J ∈ F(G, k) such that I ⊆ J .129

▶ Theorem 1.2 ([24]). There is a deterministic algorithm that given a d-degenerate graph G130

and k ≥ 1, runs in time O((kd)O(k) · (n+m) logn), and outputs an independence covering131

family for (G, k) of size at most O((kd)O(k) · logn).132

▶ Theorem 1.3 ([24]). Let k, d ∈ N and G be a graph. Let S ⊆ V (G) such that G − S is133

d-degenerate. There is a deterministic algorithm that given a G, S, and k, d ∈ N, runs in134

time O(2|S| · (kd)O(k) · 2O(kd) · (n+m) logn), and outputs an independence covering family135

for (G, k) of size at most O(2|S| · (kd)O(k) · 2O(kd) · logn).136

▶ Theorem 1.4 ([24]). Let G be a graph such that G ∈ G, where G is a class of nowhere137

dense graphs. There is a deterministic algorithm that given k ≥ 1, runs in time O(fG(k) ·138

4 On finding short reconfiguration sequences between independent sets

(n + m) logn), and outputs an independence covering family for (G, k) of size at most139

O(gG(k) · n logn), where fG(k) and gG(k) depend on k and the class G but are independent140

of the size of the graph.141

We use Theorems 1.2 and 1.3 to design fixed-parameter tractable algorithms for142

parameters k + ℓ + d and |N | + k + ℓ + d, respectively. Our algorithm for parameter143

|M | + ℓ+ ∆ is based on the random separation technique [8]. Finally, we show that using144

independence covering families we can obtain a simpler and unified algorithm for the standard145

Token Jumping Reachability problem (a.k.a. Token Jumping) parameterized by k on146

both degenerate and nowhere dense classes of graphs; this is in contrast to the algorithms147

presented in [23]. To do so, we make use of Theorems 1.2 and 1.4. Note that the major148

difference between Theorems 1.2 and 1.4 is that in the former we are guaranteed a family of149

size at most O((kd)O(k) ·logn) while in the latter the family is of size at least O(gG(k)·n logn),150

i.e., we have an extra linear dependence on n. This difference is the reason why our algorithm151

for parameter k + ℓ+ d cannot be adapted to work for nowhere dense graphs. The current152

complexity status of all problems considered in this work is summarized in Table 1.153

Table 1 Parameterized complexity status of the reachability and optimization variants of Token
Sliding and Token Jumping. Results proved in this paper are shown in bold.

Degenerate Nowhere dense Biclique free
TSR parameterized by k Open Open Open
TSO parameterized by k Open Open Open
TSO parameterized by ℓ W[1]-hard FPT W[1]-hard

TSO parameterized by k + ℓ FPT FPT Open
TJR parameterized by k FPT FPT FPT
TJO parameterized by k Open Open Open
TJO parameterized by ℓ W[1]-hard FPT W[1]-hard

TJO parameterized by k + ℓ FPT FPT Open

The rest of the paper is organized as follows. In Section 2 we introduce required154

background and terminology. In Section 3 we present our main positive results which are155

the fixed-parameter tractable algorithms for TSO and TJO parameterized by k + ℓ+ d on156

d-degenerate graphs and parameterized by |N | + k + ℓ+ d on graphs having a modulator157

N whose deletion leaves a d-degenerate graph (assuming N is given as part of the input).158

Section 4 is devoted to the fixed-parameter tractable algorithm for parameter |M | + ℓ+ ∆ on159

graphs having a modulator M whose deletion leaves a graph of maximum degree ∆. We show160

hardness on 2-degenerate graphs in Section 5 for TSO and in Section 6 for TJO. We conlude161

in Section 7 where we present a unified algoritm for Token Jumping Reachability on162

graphs admitting efficiently computable independence covering families of the right size.163

2 Preliminaries164

Sets and functions. We denote the set of natural numbers (including 0) by N. For n ∈ N,165

we use [n] and [n]0 to denote the sets {1, 2, · · · , n} and {0, 1, 2, · · · , n}, respectively. For a166

set X, we denote its power set by 2X = {X ′ | X ′ ⊆ X}. For a function f : X → Y and an167

element y ∈ Y , f−1(y) denotes the set {x ∈ X | f(x) = y}. For a non-empty set X, a family168

F ⊆ 2X is a partition of X, if i) for each Y ∈ F , Y ̸= ∅, ii) for distinct Y,Z ∈ F , we have169

Y ∩ Z = ∅, and iii) ∪Y ∈FY = X. An observation that we will make use of is the following:170

A. Agrawal, S. Hait, and A. E. Mouawad 5

▶ Proposition 2.1. For 0 < k ∈ N and 0 < c ≤ n ∈ N, for some constant c, we have171

(logn)k ≤ n+ k2k.172

Proof. To see why the proposition holds, we distinguish between two cases:173

If k ≤ logn/ log logn we have k log logn ≤ logn. Raising both sides to the power of 2,174

we obtain (logn)k ≤ n.175

If k > logn/ log logn then we claim that log logn < k. Suppose not. Then we must have,176

for all n, logn < k log logn ≤ (log logn)2 which is false. Hence, we have logn ≤ k2 and177

we get (logn)k ≤ k2k.178

Combining the two inequalities we get (logn)k ≤ n+ k2k. ◀179

Graphs and graph classes. Unless otherwise stated, we assume that each graph G is a180

simple, undirected graph with vertex set V (G) and edge set E(G), where |V (G)| = n and181

|E(G)| = m. The open neighborhood, or simply neighborhood, of a vertex v is denoted by182

NG(v) = {u | {u, v} ∈ E(G)}, the closed neighborhood by NG[v] = NG(v) ∪ {v}. Similarly,183

for a set of vertices S ⊆ V (G), we define NG(S) = {v | {u, v} ∈ E(G), u ∈ S, v ̸∈ S} and184

NG[S] = NG(S) ∪ S. The degree of a vertex is |NG(v)|. We drop the subscript G when clear185

from context. A subgraph of G is a graph G′ such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G).186

The induced subgraph of G with respect to S ⊆ V (G) is denoted by G[S]; G[S] has vertex187

set S and edge set E(G[S]) = {{u, v} ∈ E(G) | u, v ∈ S}.188

Contracting an edge {u, v} of G results in a new graph H in which the vertices u and189

v are deleted and replaced by a new vertex w that is adjacent to (NG(u) ∪NG(v)) \ {u, v}.190

If a graph H can be obtained from G by repeatedly contracting edges, H is said to be a191

contraction of G. If H is a subgraph of a contraction of G, then H is said to be a minor of G,192

denoted by H ⪯m G. The class of nowhere dense graphs [26, 27] is a common generalization193

of proper minor closed classes, classes of graphs with bounded degree, graph classes locally194

excluding a fixed graph H as a minor and classes of bounded expansion. In order to formally195

define the class of nowhere dense graphs, we need a few additional definitions.196

▶ Definition 2.2. A graph H is an r-shallow minor of G, where r is an integer, if there197

exists a set of disjoint subsets V1, . . . , V|H| of V (G) such that198

1. each graph G[Vi] is connected and has radius at most r, and199

2. there is a bijection ψ : V (H) → {V1, . . . , V|H|} such that for every edge {u, v} ∈ E(H)200

there is an edge in G with one endpoint in ψ(u) and the second in ψ(v).201

The set of all r-shallow minors of a graph G is denoted by G▽r. Similarly, the set of all202

r-shallow minors of all the members of a graph class C is denoted by C▽r =
⋃

G∈C(G▽r).203

let ω(G) denotes the size of the largest clique in G and ω(C) = supG∈C(ω(G)).204

▶ Definition 2.3. A class of graphs C is said to be nowhere dense if there exists a function205

fω : N → N such that for all r we have that ω(C▽r) ≤ fω(r).206

Nowhere density turns out to be a very robust concept with several natural characteriz-207

ations and applications (see, e.g., [21]).208

▶ Definition 2.4. A class of graphs C is said to be d-degenerate if every induced subgraph209

of any graph G ∈ C has a vertex of degree at most d. C is said to be degenerate if it is210

d-degenerate for some d.211

Graphs of bounded degeneracy and nowhere dense graphs are incomparable [14]. In212

other words, graphs of bounded degeneracy are somewhere dense. Degeneracy is a hereditary213

6 On finding short reconfiguration sequences between independent sets

property, hence an induced subgraph of a d-degenerate graph is also d-degenerate. It is214

well-known that graphs of treewidth at most d are also d-degenerate. Moreover a d-degenerate215

graph cannot contain Kd+1,d+1 as a subgraph, which brings us to the class of biclique-free216

graphs. The relationship between bounded degeneracy, nowhere dense, and Kd,d-free graphs217

was shown by Philip et al. and Telle and Villanger [29, 30].218

▶ Definition 2.5. A class of graphs C is said to be d-biclique-free, for some d > 0, if Kd,d is219

not a subgraph of any G ∈ C. C is said to be biclique-free if it is d-biclique-free for some d.220

▶ Proposition 2.6. Any degenerate or nowhere dense class of graphs is biclique-free, but not221

vice-versa.222

3 FPT algorithm for parameter k + ℓ + d223

In this section we start by designing a fixed-parameter tractable algorithm for the TSO224

problem parameterized by k+ ℓ+d on d-degenerate graphs. We then show how the algorithm225

can be adapted for TJO as well as for parameter |N |+k+ℓ+d on graphs having a modulator226

N whose deletion leaves a d-degenerate graph (assuming N is given as part of the input).227

We let (G,S, T, k, ℓ) denote an instance of TSO, where G is d-degenerate. Moreover, we228

assume that we have computed in time O((kd)O(k) · (n+m) logn) an independence covering229

family F(G, k) for (G, k) of size at most O((kd)O(k) · logn) (Theorem 1.2). Without loss of230

generality, we assume that both S and T belong to F(G, k); as otherwise we can simply add231

them. Note that if (G,S, T, k, ℓ) is a yes-instance then there exists a sequence ⟨I0, I1, ..., Iℓ⟩232

of independent sets such that for all j ∈ {0, . . . , ℓ − 1} the set Ij is an independent set of233

size k in G, I0 = S, Iℓ = T , and Ij+1 is obtained from Ij by a token slide. This implies234

that there exists a sequence ⟨J0, J1, ..., Jℓ⟩ of elements of F(G, k) such that J0 = S, Jℓ = T ,235

and for j ∈ {1, . . . , ℓ − 1} we have Ij ⊆ Jj . In what follows, we assume that we guessed236

a sequence ⟨J0, J1, ..., Jℓ⟩ of elements of F(G, k) such that J0 = S and Jℓ = T . Our goal237

now is to design an algorithm that either finds a reconfiguration sequence ⟨I0 = S, I1 ⊆238

J1, ..., Iℓ−1 ⊆ Jℓ−1, Iℓ = T ⟩ or determine that no such sequence exists.239

We define a constraint as a pair (X, b) where X ⊆ V (G) and b is a positive integer,240

called the budget of X. We denote a set of constraints by C = {(X, b), . . .}. We say that the241

constraint (X, b) is satisfied (by Z) if |Z ∩ X| = b, where Z ⊆ V (G). We say that the set242

of constraints C is satisfied if all pairs (X, b) ∈ C are satisfied. We denote a set of sets of243

constraints by C. We now proceed by building sets of sets of constraints C0, C1, . . ., Cℓ and244

show that for each i ∈ [ℓ]0, the following invariants are satisfied:245

Correctness Invariant I: If a k-sized set Z ⊆ Ji satisfies at least one set of constraints246

in Ci, then Z is reachable from S = J0.247

Correctness Invariant II: For any k-sized set Z ⊆ Ji, if there is a reconfiguration248

sequence S = I0, I1, I2, . . . , Ii = Z, where for each p ∈ [i]0, Ip ⊆ Jp, then Z satisfies at249

least one set of constraints in Ci.250

Size Invariant: The total number of constraints at the ith step is
∑

C∈Ci
|C| ≤ (i+ 1)!.251

At the base case, we let C0 = {{(S, k)}}. The correctness of the base case immediately252

follows from its construction. We now proceed recursively as follows. Consider i ∈ [ℓ]. We253

assume that for each p ∈ [i− 1], we have computed Cp that satisfy the correctness and size254

invariants. Initialize Ci = ∅.255

A. Agrawal, S. Hait, and A. E. Mouawad 7

For each C ∈ Ci−1256

For each constraint (X, b) ∈ C257

1. Initialize a constraint set C ′ = ∅;258

2. If b = 1259

a. Add (N(X) ∩ Ji, 1) to C ′;260

b. Add (X ′ ∩ Ji, b
′) for all other constraints (X ′, b′) ∈ C to C ′;261

3. Else262

a. Add (X ∩ Ji, b− 1) to C ′;263

b. Add (N(X) ∩ Ji, 1) to C ′;264

c. Add (X ′ ∩ Ji, b
′) for all other constraints (X ′, b′) ∈ C to C ′;265

4. Add C ′ to Ci;266

▶ Lemma 3.1. For every C ∈ Ci,
⋃

(X,b)∈C X ⊆ Ji.267

Proof. We use induction to prove the lemma. For the base case, i = 0, we have C0 =268

{{(S, k)}}. For C = {(S, k)}, we can see that the lemma holds. For the inductive step, we269

assume that the lemma holds true for i − 1 and prove that it still holds for i. So, for all270

C ∈ Ci−1, ∪(X,b)∈CX ⊆ Ji−1. In the ith step of the algorithm, we add new sets of constraints271

C ′ such that all the constraints (Y, β) ∈ C ′ have Y ⊆ Ji. Hence, their union must be a subset272

of Ji. This completes the proof of the lemma. ◀273

▶ Lemma 3.2. For every C ∈ Ci,
∑

(X,b)∈C b = k.274

Proof. We use induction to prove the lemma. For the base case, i = 0, we have C0 =275

{{(S, k)}}. For C = {(S, k)}, we can see that the lemma holds. For the inductive step,276

we assume that the lemma holds true for i − 1, and prove it for i. So, for all C ∈ Ci−1,277 ∑
(X,b)∈C b = k. In the ith recursive step of the algorithm, we add a new set of constraints278

C ′ corresponding to each constraint (X, b) contained in some member of Ci−1. If b is 1, we279

add another constraint with budget 1. Otherwise, we split the budget in the previous budget,280

i.e. b, into two parts b− 1 and 1. The total budget still remains the same as the i− 1th step,281

i.e., k. This completes the proof of the lemma. ◀282

▶ Lemma 3.3. For every C ∈ Ci, all the vertex subsets which are part of the constraints in283

C are pairwise disjoint.284

Proof. We use induction to prove the lemma. For the base case, i = 0, we have C0 =285

{{(S, k)}}. For C = {(S, k)}, we can see that the lemma holds trivially. For i = 1, we have286

C1 = {{(S ∩ J1, k − 1), (N(S) ∩ J1, 1)}}. For C = {(S ∩ J1, k − 1), (N(S) ∩ J1, 1)}, we can287

see that (S ∩ J1) ∩ (N(S) ∩ J1) = ∅ and the lemma holds. For the inductive step, we assume288

that the lemma holds true for i− 1, and prove it for i. So, for all C ∈ Ci−1, all the vertex289

subsets which are part of the constraints in C are pairwise disjoint. In the ith recursive290

step of the algorithm, we add a new set of constraints C ′ corresponding to each constraint291

(X, b) contained in some member of Ci−1, say C. The sets X ′ ∩ Ji added corresponding to292

all constraints (X ′, b′) ∈ C such that (X ′, b′) ̸= (X, b) are pairwise disjoint by the induction293

hypothesis. If b > 1, the set X ∩ Ji added is disjoint with all the sets X ′ ∩ Ji such that294

(X ′, b′) ∈ C and (X ′, b′) ̸= (X, b) by the induction hypothesis. The set N(X) ∩ Ji added is295

disjoint with X ′ ∩ Ji for all (X ′, b′) ∈ C because all X ′ are part of an independent set Ji by296

Lemma 3.1, and none of them can have their neighbourhoods intersecting with the other297

sets. This completes the proof of the lemma. ◀298

▶ Lemma 3.4 (Size Invariant). The total number of constraints at the ith step is ci =299 ∑
C∈Ci

|C| ≤ (i+ 1)!. Therefore, cℓ ≤ (ℓ+ 1)!.300

8 On finding short reconfiguration sequences between independent sets

Proof. Let ci =
∑

C∈Ci
|C|. We have c0 = 1 from the base case of the algorithm. At301

each step the number of constraints in a set of constraints added increases by at most 1.302

For i = 0, we have only one constraint in {(S, k)} ∈ C0. Therefore, at the ith step, the303

maximum number of constraints in any set contained in Ci is at most i + 1. In the ith
304

recursive step of the algorithm, we add a new set of constraints C ′ corresponding to each305

constraint (X, b) contained in some member of Ci−1. So, we get the following recursive306

relation: |Ci| = ci−1. Using the fact that all members of Ci contain at most i+ 1 constraints,307

we get that ci =
∑

C∈Ci
|C| ≤ (i + 1)|Ci| = (i + 1)ci−1. Solving the recurrence, we get308

ci ≤ (i+ 1)!. Therefore, cℓ ≤ (ℓ+ 1)!. ◀309

▶ Lemma 3.5 (Correctness Invariant I). If a k-sized independent set Z ⊆ Ji satisfies at least310

one set of constraints in Ci, then Z is reachable from S.311

Proof. We use induction to prove the lemma. For i = 0, we have C0 = {{(S, k)}}. For312

C = {(S, k)}, we can see that the lemma holds trivially. For the inductive step, we assume313

that the lemma holds true for i− 1, and prove it for i. Let Z ⊆ Ji and |Z| = k such that314

it satisfies some set of constraints C ∈ Ci. Let (X, b) be the constraint in C ′ ∈ Ci−1 which315

produces this set of constraints C in the ith recursive step of the algorithm.316

Let v∗ be the vertex in Z ∩ (N(X) ∩ Ji). Let u∗ be a vertex in X sharing an edge with317

v∗. Take Z ′ = (Z ∪ {u∗}) \ {v∗}. It can be seen that |Z ′| = k and Z can be obtained from318

Z ′ by sliding one token. Since Z satisfies the set of constraints C, we have:319

1. |Z ∩ (N(X) ∩ Ji)| = 1320

2. |Z ∩ (X ∩ Ji)| = |Z ∩X| = b− 1 (0 if b = 1)321

3. |Z ∩ (X ′ ∩ Ji)| = |Z ∩X ′| = b′ for all other constraints (X ′, b′) ∈ C ′
322

The way we construct Z ′, it must satisfy the following conditions:323

1. |Z ′ ∩X| = b ≥ 1 (since u∗ is included in Z ′); and324

2. |Z ′ ∩X ′| = b′ for all other constraints (X ′, b′) ∈ C ′.325

It can be clearly seen that Z ′ satisfies the set of constraints C ′ ∈ Ci−1. So, |Z ′ ∩326

(∪(X′,b′)∈C′X ′)| =
∑

(X′,b′)∈C′ |Z ′ ∩X ′| =
∑

(X′,b′)∈C′ b′ = k, where the first equality follows327

from the fact that all X ′ such that (X ′, b′) ∈ C ′ are pairwise disjoint by Lemma 3.3 and the328

last equality follows from Lemma 3.2. Therefore, Z ′ ⊆ ∪(X′,b′)∈C′X ′ ⊆ Ji−1 by Lemma 3.1.329

Thus, Z ′ is a k-sized subset of Ji−1 and satisfies at least one set of constraints in Ci−1.330

By the induction hypothesis, Z ′ is reachable from S. Now, since Z is reachable from Z ′, Z331

is also reachable from S. ◀332

▶ Lemma 3.6 (Correctness Invariant II). For any k-sized independent set Z ⊆ Ji, if there is333

a reconfiguration sequence S = I ′
0, I

′
1, I

′
2, . . . , I

′
i = Z, where for each p ∈ [i]0, I ′

p ⊆ Jp, then Z334

satisfies at least one set of constraints in Ci.335

Proof. We use induction to prove the lemma. For i = 0, we have C0 = {{(S, k)}}. The set S336

satisfies the set of constraints C = {(S, k)} and the lemma holds.337

We now assume that the lemma holds true for i− 1, and prove it for i. Let C ∈ Ci−1 be338

the set of constraints that I ′
i−1 satisfies. So, |I ′

i−1 ∩ (∪(X,b)∈CX)| =
∑

(X,b)∈C |I ′
i−1 ∩X| =339 ∑

(X,b)∈C b = k, where the first equality follows from the fact that all X such that (X, b) ∈ C340

are pairwise disjoint by Lemma 3.3 and the last equality follows from Lemma 3.2. Since341

|I ′
i−1| = k, we have I ′

i−1 ⊆ ∪(X,b)∈CX. In the ith step of the reconfiguration sequence,342

we slide a token from I ′
i−1 to I ′

i, i.e. from some set X such that (X, b) ∈ C to its open343

neighbourhood. Consider the set of constraints C ′ ∈ Ci obtained by splitting the constraint344

A. Agrawal, S. Hait, and A. E. Mouawad 9

(X, b) in the ith recursive step of the algorithm. We will show that I ′
i satisfies C ′. Since I ′

i−1345

satisfies the set of constraints C, we have |I ′
i−1 ∩X| = b for all other constraints (X, b) ∈ C.346

So, in the ith step we have |I ′
i ∩ (N(X) ∩ Ji)| = |I ′

i ∩N(X)| = 1, where the first equality is347

because I ′
i ⊆ Ji and the second equality is because I ′

i is obtained from I ′
i−1 by sliding a token348

from X to its neighbourhood. We have |I ′
i ∩ (X ∩ Ji)| = |I ′

i ∩X| = |I ′
i−1 ∩X| − 1 = b− 1 as349

one token is moved from X. When b = 1, we get I ′
i ∩X = ∅ and this budget constraint is350

not included in the ith recursive step of the algorithm. For all other (X ′, b′) ∈ C, we have351

|I ′
i ∩ (X ′ ∩ Ji)| = |I ′

i ∩X ′| = |I ′
i−1 ∩X ′| = b′ as none of the tokens in any X ′ are moved in352

the ith step of the reconfiguration sequence. Therefore, I ′
i = Z satisfies all the constraints in353

C ′, as needed. ◀354

We are now ready to prove our first main theorem.355

▶ Theorem 3.7. Token Sliding Optimization is fixed-parameter tractable parameterized356

by k + ℓ+ d where d denotes the degeneracy of the graph.357

Proof. Let (G,S, T, k, ℓ) denote an instance of TSO, where G is d-degenerate. We first358

computed in time O((kd)O(k) · (n+m) logn) an independence covering family F(G, k) for359

(G, k) of size at most O((kd)O(k) · logn) (by Theorem 1.2). We then add S and T to F(G, k)360

(in case they do not already belong to F(G, k)). Next, we “guess” a (iterate over every)361

sequence ⟨J0, J1, ..., Jℓ⟩ of elements of F(G, k) such that J0 = S, Jℓ = T . Note that this362

guessing can be accomplished in time O(((kd)O(k) · logn)ℓ+1), which by Proposition 2.1 is363

still FPT-time. Finally, we compute C0, C1, . . ., Cℓ, which by Lemma 3.4 can also be done364

in FPT-time. To conclude, we simply need to check whether T satisfies at least one set of365

constraints in Cℓ. The correctness of the algorithm follows from Lemma 3.5 and 3.6. ◀366

▶ Theorem 3.8. Token Sliding Optimization is fixed-parameter tractable parameterized367

by |N | + k + ℓ + d on graphs having a modulator N whose deletion leaves a d-degenerate368

graph (assuming N is given as part of the input).369

Proof. We proceed exactly as in the proof of Theorem 3.7 but we invoke Theorem 1.3 instead370

of Theorem 1.2. ◀371

We conlude this section by showing how we can adapt the previous two results for the372

Token Jumping Optimization problem.373

▶ Theorem 3.9. Token Jumping Optimization is fixed-parameter tractable parameterized374

by k + ℓ + d where d denotes the degeneracy of the graph and fixed-parameter tractable375

parameterized by |N | + k + ℓ+ d on graphs having a modulator N whose deletion leaves a376

d-degenerate graph (assuming N is given as part of the input).377

Proof. To allow tokens to jump to arbitrary vertices of the graph we only need to slightly378

modify our construction of the sets of sets of constraints C1, . . ., Cℓ. In particular, we do the379

following:380

For each C ∈ Ci−1381

Initialize a constraint set C ′ obtained from C by replacing each (X, b) by (X ∩ Ji, b);382

If X ∩ Ji ̸= ∅ and |X| ≥ b for all X then add C ′ to Ci;383

For each constraint (X, b) ∈ C384

1. Initialize a constraint set C ′ = ∅;385

2. If b = 1386

a. Add ((N(X) ∩ Ji) ∪ (Ji \ ∪(X,b)∈CX), 1) to C ′;387

10 On finding short reconfiguration sequences between independent sets

b. Add (X ′ ∩ Ji, b
′) for all other constraints (X ′, b′) ∈ C to C ′;388

3. Else389

a. Add (X ∩ Ji, b− 1) to C ′.390

b. Add ((N(X) ∩ Ji) ∪ (Ji \ ∪(X,b)∈CX), 1) to C ′;391

c. Add (X ′ ∩ Ji, b
′) for all other constraints (X ′, b′) ∈ C to C ′;392

4. Add C ′ to Ci;393

5. If |C| > 1394

a. Initialize C ′ = C \ (X, b) when b = 1 and C ′ = (C \ (X, b)) ∪ (X, b− 1) otherwise;395

b. For each (X ′, b′) ∈ C ′ where X ′ ̸= X396

i. Create a new constraint set C ′′ = (C ′ \ (X ′, b′)) ∪ (X ′, b′ + 1);397

ii. If |X ′| ≥ b′ for all X add C ′′ to Ci;398

It is not hard to see that the correctness invariants remain true. Note that at every step399

we create at most O(k) constraint sets (each of size O(k)) and so the size of the contraint400

sets and the time to compute them is bounded by a function of k and ℓ. ◀401

4 FPT algorithm for parameter |M | + ℓ + ∆402

In this section, we prove that TSO and TJO are fixed-parameter tractable parameterized403

by |M | + ℓ+ ∆. Recall that an instance of either problem is denoted by (G,S, T, k, ℓ) where404

V (G) can be partitioned into H and M and every vertex in H has degree at most ∆ in G.405

Our algorithm is randomized and based on a variant of the color-coding technique [1] that406

is particularly useful in designing parameterized algorithms on graphs of bounded degree.407

The technique, known in the literature as random separation [8], boils down to a simple, but408

fruitful observation that in some cases, if we randomly color the vertex set of a graph using409

two colors, the solution or vertices we are looking for are appropriately colored with high410

probability. In our case, we want to make sure that the set of vertices involved in token slides411

or jumps gets highlighted. We note that our algorithm is an adaptation of the algorithm of412

Mouawad et al. [25] and it can easily be derandomized using standard techniques [9].413

We start with an instance (G = (H,M,E), S, T, k, ℓ) of TSO; the algorithm is identical414

for TJO. We color independently every vertex of H using one of two colors, say red and415

blue (denoted by R and B), with probability 1
2 . We let χ : H → {R,B} denote the416

resulting random coloring. Suppose that (G,S, T, k, ℓ) is a yes-instance, and let σ denote a417

reconfiguration sequence from S to T of length at most ℓ. We say a vertex v ∈ H is touched418

in σ whenever a token slides from a neighbor of v to v or from v to some neighbor of v. We419

let V (σ) denote the set of vertices touched by σ. We say that the coloring χ is successful if420

both of the following conditions hold:421

Every vertex in V (σ) ∩H is colored red; and422

Every vertex in NH(V (σ) ∩H) is colored blue.423

Observe that V (σ) ∩H and NH(V (σ) ∩H) are disjoint. Therefore, the two aforemen-424

tioned conditions are independent. Moreover, since the maximum degree of G[H] is ∆, we425

have |V (σ) ∩H| + |NH(V (σ) ∩H)| ≤ 2ℓ∆. Consequently, the probability that χ is successful426

is at least:427

1
2|V (σ)∩H|+|NH (V (σ)∩H)| ≥ 1

22ℓ∆ = 1
4ℓ∆ .428

429

Let HR denote the set of vertices of H colored red and HB denote the set of vertices430

of H colored blue. Moreover, we let C1, . . . , Cq denote the set of connected components of431

G[HR]. The main observation now is the following:432

A. Agrawal, S. Hait, and A. E. Mouawad 11

▶ Lemma 4.1. If χ is successful then V (σ) has a non-empty intersection with at most 2ℓ433

connected components of G[HR], and each one of those components consists of at most 2ℓ434

vertices.435

Proof. Since |V (σ)| ≤ 2ℓ, we know that G[(V (σ) ∪NG(V (σ))) ∩H] consists of at most 2ℓ436

connected components (each of size at most 2ℓ∆) and G[V (σ) ∩H] consists of at most 2ℓ437

components (each of size at most 2ℓ). Let C be a connected component of G[HR] such that438

|V (C)| > 2ℓ. Suppose to the contrary that V (σ) ∩ V (C) = Q ̸= ∅. Since χ is successful, it439

must be the case that every vertex in NH(Q) is colored blue. However, we know that there440

exists at least one vertex in NH(Q) that is colored red (since C is a connected component441

of G[HR] and all at least 2ℓ + 1 vertices in C are colored red). As we have obtained a442

contradiction, we can conclude that when χ is successful, V (σ) can intersect at most 2ℓ443

connected components of G[HR], and none of those components can be of a size greater than444

2ℓ, as needed. ◀445

Given an instance (G = (H,M,E), S, T, k, ℓ) of TSO and a coloring χ of H, we know446

from Lemma 4.1 that when χ is successful every connected component of G[HR] consists of447

at most 2ℓ vertices. We now construct a new (reduced) instance (G′, S′, T ′, k′, ℓ) of TSO.448

We first guess the vertices of M that will be touched in a solution and we let M ′ denote this449

set. Note that this guessing can be accomplished in time 2M -time. Starting from a copy of450

G we proceed as follows:451

If there exists v ∈ (S ∩ T) ∩H and v is colored blue then we delete v and its neighbors452

from the graph;453

If there exists v ∈ (S ∩ T) ∩ (M \M ′) then we delete v and its neighbors from the graph;454

If there exists v ∈ (S ∩ T) ∩H, v is colored red, and v belongs to a red component C of455

G[HR] such that |V (C)| > 2ℓ then we delete v and its neighbors from the graph;456

If there exists a blue vertex v which is not in S ∩ T then we delete v from the graph;457

If there exists a red vertex v which is not in S ∩ T and v belongs to a red component C458

of G[HR] such that |V (C)| > 2ℓ then we delete v from the graph.459

We adjust S, T , and k appropriately to obtain the new equivalent instance (G′, S′, T ′, k′, ℓ).460

Note that in this new instance (assuming a successful coloring) no vertices are colored blue461

and (assuming a correct guess) all vertices of M ′ will be touched in a solution. In other462

words, G′ can be partitioned into M ′ and H ′ where H ′ consists of (an unbounded number463

of) connected components each consisting of at most 2ℓ vertices. Note that when the number464

of connected components is constant then we are done since we can solve the problem via465

brute-force. In other words, we can simply enumerate all possible sequences of length at466

most ℓ and make sure that at least one of them is the required reconfiguration sequence from467

S′ to T ′. This brute-force testing can be accomplished in time 2O(ℓ log ℓ) · nO(1).468

Let us now consider the general case when the number of components is not necessarily469

bounded. We say a component C of G′ −M ′ is important if V (C) ∩ ((S′ \T ′) ∪ (T ′ \S′)) ̸= ∅.470

There are at most 2ℓ important components. Hence, we only need to bound the number471

of unimportant components. To that end, we partition the unimportant components of472

G′ − M ′ into equivalence classes with respect to the relation ≃. For two graphs G1, G2473

and two sets X1 ⊆ V (G), X2 ⊆ V (G2), we say that (G1, X1) and (G2, X2) are isomorphic474

if the graphs G1 and G2 are isomorphic where vertices of X1 and X2 are now assigned the475

same color. Formally, a c-colored graph G is a tuple (V,E,K) such that K = {K1, . . . ,Kc}476

is a collection of subsets of V (G) where each Ki is called a color set. Two colored graphs477

G1 = (V1, E1,K1) and G2 = (V2, E2,K2) are isomorphic if there is a color-preserving478

isomorphism f : V1(G1) → V2(G2) such that:479

12 On finding short reconfiguration sequences between independent sets

for all u, v ∈ V1(G1), {u, v} ∈ E1(G1) if and only if {f(u), f(v)} ∈ E2(G2); and480

for all v ∈ V1(G1) and K1
i ∈ K1, v ∈ K1

i if and only if f(v) ∈ K2
i .481

Hence, (G1, X1) and (G2, X2) are isomorphic if the colored graphs G1 = (V1, E1, {X1}) and482

G2 = (V2, E2, {X2}) are isomorphic. Let C1 and C2 be two components in G′ −M ′ and let483

N1 and N2 be their respective neighborhoods in M ′. We say C1 and C2 are equivalent, i.e.,484

C1 ≃ C2, whenever N1 = N2 = N and (G[V (C1) ∪ N], V (C1) ∩ S′ ∩ T ′) is isomorphic to485

(G[V (C2) ∪N], V (C2) ∩ S′ ∩ T ′) by an isomorphism that fixes N point-wise.486

▶ Lemma 4.2. The total number of 2-colored graphs with at most 2ℓ vertices is at most487

2O(ℓ2), and therefore, the equivalence relation ≃ has at most 2O(ℓ2) equivalence classes.488

Assume that some equivalence class contains more than 2ℓ unimportant components.489

We claim that retaining only 2ℓ of them is enough. To see why, it is enough to note that490

V (σ) intersects with at most 2ℓ of those components; they are all equivalent. Putting it all491

together, we know that we have at most 2O(ℓ2) equivalence classes, each with at most 2ℓ492

components, and each component is of size at most 2ℓ. Hence, we can guess the sequence493

from S′ to T ′ in time 2O(ℓ3 log ℓ) · nO(1) (testing whether two graphs with 2ℓ vertices are494

isomorphic can be accomplished naively in time 2ℓ log ℓ).495

We have proven that the probability that χ is successful is at least 4−ℓ∆. Hence, to496

obtain a Monte Carlo algorithm with false negatives, we repeat the above procedure 4ℓ∆
497

times and obtain the following result:498

▶ Theorem 4.3. There exists a one-sided error Monte Carlo algorithm with false negatives499

that solves TSO and TJO parameterized by |M |+ℓ+∆ in time O(2M ·4ℓ∆ ·2O(ℓ3 log ℓ) ·nO(1)).500

5 Hardness of TSO parameterized by ℓ on 2-degenerate graphs501

In the Multicolored Clique problem, we are given an input graph G whose vertices are502

colored with k colors and the goal is to find a clique containing one vertex from each color.503

We show that TSO parameterized by ℓ is W[1]-hard on 2-degenerate graphs via a reduction504

from Multicolored Clique, known to be W[1]-hard.505

We construct an instance (G′, S, T, κ, ℓ = 8
(

k
2
)

+ 2k) of TSO from an instance of506

Multicolored Clique denoted by (G, k, (V1, V2, . . . , Vk)), where, w.l.o.g., we assume that507

there are no edges between two vertices of G of the same color.508

Construction of G′. We subdivide all the edges in G. Let the vertex set of G be V . All509

the vertices corresponding to the edges in G are partitioned into
(

k
2
)

sets of the form Eij ,510

where i = {1, 2, . . . , k} and j = {1, 2, . . . , k} and i ̸= j, such that Eij contains all the vertices511

corresponding to the edges in G having one incident vertex of color i and the other incident512

vertex of color j. Let the union of all the sets Eij be denoted by E.513

We introduce two independent sets X and Y , each of size
(

k
2
)
. Let us label the vertices514

in X from 1 to
(

k
2
)

and the sets Eij from 1 to
(

k
2
)
. We add edges between vertex with label b515

in X and all the vertices in the Eij with label b. Similarly, we label the vertices of Y and516

add edges from each vertex in Y to all the vertices in the Eij having the same label. Each of517

these edges is further subdivided three times. Let the vertices on the subdivided edges from518

X to E, which are neither adjacent to some vertex in X nor E be denoted by U1, and the519

vertices on the subdivided edges from Y to E, which are neither adjacent to some vertex in520

Y nor E be denoted by U2. We take U = U1 ∪ U2.521

We also add a vertex corresponding to each vertex in V and add an edge between522

the two. Let this set of vertices be Z. The induced subgraph of G′ having V ∪ Z as its523

A. Agrawal, S. Hait, and A. E. Mouawad 13

Figure 1 An illustration of the reduction from (G, k, (V1, V2, . . . , Vk)) to (G′, S, T, κ, ℓ = 8
(

k
2

)
+2k).

vertex set forms a perfect matching. Our initial independent set S = V ∪ X ∪ U and our524

target independent set T = V ∪ Y ∪ U . Note that |S| = |T | = n +
(

k
2
)

+ |U | = κ. We set525

ℓ = 8
(

k
2
)

+ 2k.526

▶ Lemma 5.1. The graph G′ is 2-degenerate.527

Proof. Recall that a graph G′ is 2-degenerate if every induced subgraph H of G′ has a vertex528

of degree at most 2. Consider any induced subgraph H of G′. If H contains a vertex of Z or529

a vertex from the subdivided edges from X ∪ Y to E then we are done; as those vertices530

have degree at most two in G′. Otherwise, we know that H either contains an isolated vertex531

from X ∪ Y or a degree-two vertex from E, as needed. ◀532

▶ Lemma 5.2. If (G, k, (V1, V2, . . . , Vk)) is a yes-instance of Multicolored Clique then533

there is a reconfiguration sequence of length at most ℓ from S to T in G′.534

Proof. Let the solution to the Multicolored Clique instance be {v1, v2, . . . , vk} ⊆ V .535

Consider the following reconfiguration sequence from S to T :536

1. Slide each token on vi to its matched neighbour in Z; for a total of k slides.537

2. Since the vertices {v1, v2, . . . , vk} form a clique in G, there are
(

k
2
)

edges, each having538

distinct pair of colors on their incident vertices. So in G′, all the vertices corresponding539

to the edges of the clique lie in distinct partitions Eij . We slide all the tokens from X to540

Y using these
(

k
2
)

vertices. Consider the path from a vertex vx ∈ X to a vertex vy ∈ Y ,541

passing through one of these
(

k
2
)

vertices, say vi where i ∈ [k]. This path contains a542

vertex u1 ∈ U1 and a vertex u2 ∈ U2. Slide the token on u2 to vy (2 slides), the token on543

u1 to u2 through vi (4 slides), and the token on vx to u1 along this path (2 slides); for a544

total of 8
(

k
2
)

slides.545

3. Finally we slide the tokens in Z back to V ; for a total of k slides.546

The length of the reconfiguration sequence is 8
(

k
2
)

+ 2k. This completes the proof. ◀547

▶ Lemma 5.3. If there is a reconfiguration sequence of length at most ℓ from S to T in G′
548

then (G, k, (V1, V2, . . . , Vk)) is a yes-instance of Multicolored Clique.549

14 On finding short reconfiguration sequences between independent sets

Proof. Let the reconfiguration sequence be I0, I1, I2, . . . , Iℓ where I0 = S, Iℓ = T , and550

ℓ ≤ 8
(

k
2
)

+ 2k.551

We need at least one step for moving out each token in X. This requires a total of
(

k
2
)

552

slides. In order to move out a token from X, we need to move out a token on U1 on at least553

one of the paths connecting that vertex in X to Eij . This again requires at least
(

k
2
)

slides.554

The tokens moved out from U1 need to be replaced, which requires at least
(

k
2
)

slides.555

Since in the initial configuration S all tokens are at a distance of at least 2 from the556

vertices in Y , we need at least 2 slides to bring a token into a vertex in Y . This amounts to557

a total of 2
(

k
2
)

slides. Now, consider the vertex v from which a token is moved to a vertex in558

Y . The neighbour of v, say u, originally had a token, which must have been moved out for559

placing a token on v. This token needs to be replaced by moving in a token from an adjacent560

vertex in N(E), say v′. Bringing a token to v′ and then moving it to u requires at least 2561

slides. So, we get a total of at least 2
(

k
2
)

slides.562

The only way to move tokens out of X ∪N [U1] is through E. Thus,
(

k
2
)

tokens have to563

be moved out of X ∪N [U1] to E. Every Eij has at least one token at some point of time.564

This requires another
(

k
2
)

slides. In total we have taken up at least 8
(

k
2
)

slides. So, we are565

left with a budget of at most 2k.566

Any token moved out of V either needs to be brought back or replaced. Both of these567

require 2 slides at least. So, we can move out at most k tokens from V .568

Whenever a token is to be moved out of X ∪N [U1] to a vertex ve (corresponding to569

an edge e in G) in Eij for some i and j, the tokens on the 2 vertices incident on e must be570

moved out of V . We need to move out all the
(

k
2
)

tokens from X ∪N [U1], one token through571

each of the
(

k
2
)

sets Eij . Therefore, we should move out the tokens from V which are adjacent572

to the vertices in Eij sets to which the tokens from X ∪N [U1] are moved. Thus for the
(

k
2
)

573

vertices in E (one in each Eij), we can have at most k neighbours in V .574

Let us consider the subgraph induced in G by these set of vertices in V . It has at most575

k vertices and exactly
(

k
2
)

edges. Now a graph having
(

k
2
)

edges must have at least k vertices.576

So, the induced subgraph has exactly k vertices and forms a clique such that every edge has577

a distinct pair of colors on their incident vertices. This set of vertices in V give us a solution578

to the Multicolored Clique instance. ◀579

The combination of Lemmas 5.2 and 5.3 give us the following:580

▶ Theorem 5.4. Token Sliding Optimization parameterized by ℓ is W[1]-hard on 2-581

degenerate graphs.582

6 Hardness of TJO parameterized by ℓ on 2-degenerate graphs583

We now show that TJO parameterized by ℓ is W[1]-hard on 2-degenerate graphs via a584

reduction from the Clique problem, known to be W[1]-hard. We construct an instance585

(G′, S, T, κ, 2
(

k
2
)

+
(

k
2
)2 + 2k) of TJO starting from the a Clique instance (G, k). The586

construction is quite similar to that of the sliding variant but with some adaptation to587

account for the possibility of tokens jumping anywhere in the graph.588

Construction of G′. We subdivide all the edges in G. Let the vertex set of G be V . We589

let the set of vertices in G′ corresponding to the edges be denoted by E. We introduce a590

biclique with parts L and R, each of size
(

k
2
)
. Next, we subdivide all the edges of the biclique591

twice. Let this entire set of vertices, i.e. L ∪ N(L) ∪ N(R) ∪ R be denoted by X. The592

vertices in X do not have edges with those in E or V . We also add a vertex corresponding593

A. Agrawal, S. Hait, and A. E. Mouawad 15

Figure 2 An illustration of the reduction from (G, k) to (G′, S, T, κ, 2
(

k
2

)
+

(
k
2

)2 + 2k).

to each vertex in V and add an edge between the two. Let this set of vertices be Z. The594

induced subgraph of G′ having V ∪ Z as its vertex set forms a perfect matching. Our initial595

independent set S = V ∪L∪N(R) and our target independent set T = V ∪R ∪N(L). Note596

that |S| = |T | = κ. We let ℓ = 2
(

k
2
)

+
(

k
2
)2 + 2k.597

▶ Lemma 6.1. The graph G′ is 2-degenerate.598

Proof. Consider any induced subgraph H of G′. If H contains a vertex of Z or a vertex from599

N(L) ∪N(R) then we are done; as those vertices have degree at most two in G′. Otherwise,600

we know that H either contains an isolated vertex from L ∪R or a degree-two vertex from601

E, as needed. ◀602

▶ Lemma 6.2. If (G, k) is a yes-instance of Clique then there is a reconfiguration sequence603

of length at most ℓ from S to T in G′.604

Proof. Let the solution to the Clique instance be {v1, v2, . . . , vk} ⊆ V . Consider the605

following reconfiguration sequence from S to T :606

1. Jump each token on vi to its matched neighbour in Z; for a total of k jumps.607

2. Since the vertices {v1, v2, . . . , vk} form a clique in G, there are
(

k
2
)

edges in the subgraph608

induced on those vertices. Let the set of corresponding vertices in E be EC . We jump all609

the
(

k
2
)

tokens from L to the vertices in EC ; for a total of
(

k
2
)

jumps.610

3. Jump all the tokens in N(R) to their adjacent vertex in N(L); for a total of
(

k
2
)2 jumps.611

4. Now jump all the tokens in EC to R; for a total of
(

k
2
)

jumps.612

5. Finally we jump the tokens in Z back to V ; for a total of k jumps.613

The length of the reconfiguration sequence is 2
(

k
2
)

+
(

k
2
)2 + 2k. This completes the proof. ◀614

▶ Lemma 6.3. The first time a token jumps to R, there can be at most
(

k
2
)2 tokens in the615

structure X.616

Proof. Let us assume that the first time a token jumps to R there are
(

k
2
)2 + 1 tokens in X.617

Also, let the vertex in R where a token is to be moved be v. If y > 0 of these tokens are in L618

16 On finding short reconfiguration sequences between independent sets

and none of them are in R then there cannot be any tokens on the vertices of the subdivided619

edges from those y vertices in L to v. So, we have at most y tokens on the vertices in L and620

those on the paths from them to v. We have
(

k
2
)2 − y paths from the remaining vertices in L621

to the vertices in R \ {v}. These paths can have at most
(

k
2
)2 − y tokens. Thus, in total we622

can have at most y +
(

k
2
)2 − y =

(
k
2
)2 tokens in X. This leads us to a contradiction, which623

completes the proof. ◀624

▶ Lemma 6.4. If there is a reconfiguration sequence of length at most ℓ from S to T in G′
625

then (G, k) is a yes-instance of Clique.626

Proof. Let the reconfiguration sequence be I0, I1, I2, . . . , Iℓ, where I0 = S, Iℓ = T , and627

ℓ ≤ 2
(

k
2
)

+
(

k
2
)2 +2k. None of the tokens in X have the same position in both S and T . Hence,628

all of them have to jump at least once. This accounts for
(

k
2
)

+
(

k
2
)2 steps. From Lemma 6.3,629

we know that no tokens can be moved into R until we have no more than
(

k
2
)2 tokens left in630

X. This implies that at least
(

k
2
)

of the tokens in X have to be moved out to either E, V ,631

or Z. When we are about to move a token into R for the first time, we can have at most632 (
k
2
)2 tokens in X. So, an extra

(
k
2
)

tokens have to be moved into X, which takes at least
(

k
2
)

633

steps. Therefore, we are left with a budget of at most 2k. We consider the following three634

cases while jumping tokens out of X:635

Case I: If a token from X jumps to some vertex ve in E, the tokens on the two636

neighbouring vertices of ve in V should have been moved out to E or Z (we are not637

considering X, as moving a token from V to X in order to shift a token out of X does638

not help).639

Case II: If a token from X is to be moved to a vertex vz in Z, the token on the640

neighbouring vertex of vz in V needs to be moved out to E or Z. If that is to be moved641

to some vertex in Z, then the token on the neighbour of the matched vertex in V needs to642

be jumped out of V . Again if that token is to be moved out to Z, the sequence continues.643

At most n − 1 tokens can be jumped out of V to Z, because the initial token from X644

would occupy one vertex in Z. So, after at most n− 1 steps in the sequence, the token645

must be moved out of V to some vertex ve in E. Now, the tokens on the two neighbours646

of ve in V must have been moved out of V prior to the above sequence of jumps. Thus,647

we can consider a shorter reconfiguration sequence where the token from X is directly648

jumped to ve after shifting the tokens on its neighbours in V . Then it becomes similar to649

Case I.650

Case III: If a token from X is to be moved to a vertex vv in V , the token on vv needs651

to be moved out to E \ N(vv) or Z \ N(vv). If that is to be moved to some vertex in652

Z \ N(vv), then the token on the neighbour of the matched vertex in V needs to be653

jumped out of V . Again if that token is to be moved out to Z, the sequence continues.654

At most n− 1 tokens can be jumped out of V to Z, because we cannot place a token on655

the neighbour of vv in Z. So, after at most n− 1 steps in the sequence, the token must656

be moved out of V to some vertex ve in E. Now, the tokens on the two neighbours of ve657

in V must have been moved out of V prior to the above sequence of jumps. Thus, we can658

consider a shorter reconfiguration sequence where the token from X is directly jumped to659

ve after shifting the tokens on its neighbours in V . Thus, it becomes similar to Case I.660

By the above case analysis, it is sufficient to consider that Case I holds for our661

reconfiguration sequence. We need to move out at least
(

k
2
)

tokens from X through the662

vertices in E. Therefore, we should move out the tokens from V which are adjacent to the663

A. Agrawal, S. Hait, and A. E. Mouawad 17

vertices in E to which the tokens from X are moved. While we are moving tokens out of X,664

any token moved out of V eventually needs to be moved to X or brought back to V . Both665

of these take at least 2 steps because we directly cannot jump a token from V to X until X666

contains at most
(

k
2
)2 tokens. So, we can move out at most k tokens from V . Thus for the667 (

k
2
)

vertices in E, we can have at most k neighbours in V .668

Let us consider the subgraph in G induced by this set of vertices in V . It has at most k669

vertices and exactly
(

k
2
)

edges. Now a graph having
(

k
2
)

edges must have at least k vertices.670

So, the induced subgraph has exactly k vertices and forms a clique. This set of vertices in V671

give us a solution to the Clique instance, as needed. ◀672

The combination of Lemmas 6.2–6.4 give us the follwing:673

▶ Theorem 6.5. Token Jumping Optimization parameterized by ℓ is W[1]-hard on674

2-degenerate graphs.675

7 FPT algorithm for Token Jumping Reachability parameterized by k676

We propose a generalized scheme for solving Token Jumping Reachability parameterized677

by k on graphs having a small k-independence covering family, i.e., a family of size O(f(k) ·678

poly(n)). Degenerate and nowhere dense graphs admit such independence covering families679

as shown in [24].680

We remove all the sets in the covering family of size less than k. We find out if the681

independent sets S and T are a part of the independence covering family. If not, we add682

them to the family. Let the size of the resulting k-independence covering family F(G, k) be q.683

For denoting an independent set in the family, we will use capital letters like, X,Y (⊆ V (G)).684

We construct a graph G with q vertices corresponding to the q sets in the family. Consider685

two independent sets I and I ′ in F(G, k). We add an edge between the vertices i and i′ in686

G if and only if |I ∩ I ′| ≥ k − 1. Note that for any two k-sized independent sets J and J ′
687

we can find a trivial reconfiguration sequence from J to J ′ if both of them are contained in688

some I in F(G, k).689

In the algorithm, we find out if the vertices is and it in G are in the same connected690

component. If yes, then we know that S is reachable from T from the construction of G.691

Otherwise no reconfiguration sequence from S to T exists.692

▶ Lemma 7.1. If there exists a path from is to it in G then there is a reconfiguration sequence693

from S to T in G.694

Proof. Let is = i0, i1, i2, . . . , iℓ = it be the path from is to it. We start the reconfiguration695

sequence with S. For each pair of vertices ij and ij+1 in the path, we have |Ij ∩ Ij+1| ≥ k− 1696

according to the construction. Now, let Xj ⊆ Ij be a k-sized independent set in the697

reconfiguration sequence and Yj ⊆ Ij ∩ Ij+1 be a (k − 1)-sized set. Let uj be a vertex in Xj .698

We can obtain a k-sized independent set Zj = Yj ∪ {uj} from Xj by at most k − 1 token699

jumps. Next we jump the token on uj to a vertex in Ij+1 \Yj to obtain a k-sized independent700

set Xj+1 ⊆ Ij+1. This gives us a reconfiguration sequence from S to T , as needed. ◀701

▶ Lemma 7.2. If there is a reconfiguration sequence S = I0, I1, I2, . . . , Iℓ = T then there702

exists a path from is to it in G.703

Proof. Let I ′
1, I

′
2, . . . , I

′
ℓ−1 be the sets in the covering family such that Ii ⊆ I ′

i for i ∈ [ℓ− 1].704

Since |Ii ∩ Ii+1| = k−1, we have |I ′
i ∩ I ′

i+1| ≥ k−1. If I ′
i and I ′

i+1 are the same set, then they705

correspond to the same vertex in G. Otherwise, they are connected by an edge according to706

18 On finding short reconfiguration sequences between independent sets

the construction of G. We start from the vertex is and following the reconfiguration sequence,707

we reach it. This gives us a walk from is to it and a walk contains a path, as needed. ◀708

The combination of Lemmas 7.1 and 7.2 give us the following:709

▶ Theorem 7.3. Token Jumping Reachability parameterized by k is fixed-parameter710

tractable on any graph class C for which we can, given any n-vertex graph G ∈ C, compute a711

k-independence covering family F(G, k) of size O(f(k) ·nO(1)) in time O(g(k) ·nO(1)), where712

f and g are computable functions.713

References714

1 Noga Alon, Raphael Yuster, and Uri Zwick. Color coding. In Encyclopedia of Algorithms,715

pages 335–338. 2016. doi:10.1007/978-1-4939-2864-4_76.716

2 Valentin Bartier, Nicolas Bousquet, and Amer E. Mouawad. Galactic Token Sliding. CoRR,717

abs/2204.05549, 2022. URL: https://arxiv.org/abs/2204.05549, arXiv:2204.05549.718

3 Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, Yota Otachi, and Florian719

Sikora. Token sliding on split graphs. Theory Comput. Syst., 65(4):662–686, 2021. doi:720

10.1007/s00224-020-09967-8.721

4 Marthe Bonamy and Nicolas Bousquet. Token sliding on chordal graphs. In Hans L. Bodlaender722

and Gerhard J. Woeginger, editors, Graph-Theoretic Concepts in Computer Science - 43rd723

International Workshop, WG 2017, Eindhoven, The Netherlands, June 21-23, 2017, Revised724

Selected Papers, volume 10520 of Lecture Notes in Computer Science, pages 127–139. Springer,725

2017. doi:10.1007/978-3-319-68705-6_10.726

5 Paul S. Bonsma, Marcin Kaminski, and Marcin Wrochna. Reconfiguring independent sets727

in claw-free graphs. In R. Ravi and Inge Li Gørtz, editors, Algorithm Theory - SWAT728

2014 - 14th Scandinavian Symposium and Workshops, Copenhagen, Denmark, July 2-4, 2014.729

Proceedings, volume 8503 of Lecture Notes in Computer Science, pages 86–97. Springer, 2014.730

doi:10.1007/978-3-319-08404-6_8.731

6 Nicolas Bousquet, Arnaud Mary, and Aline Parreau. Token jumping in minor-closed classes.732

In Ralf Klasing and Marc Zeitoun, editors, Fundamentals of Computation Theory - 21st733

International Symposium, FCT 2017, Bordeaux, France, September 11-13, 2017, Proceedings,734

volume 10472 of Lecture Notes in Computer Science, pages 136–149. Springer, 2017. doi:735

10.1007/978-3-662-55751-8_12.736

7 Nicolas Bousquet, Amer E. Mouawad, Naomi Nishimura, and Sebastian Siebertz. A survey737

on the parameterized complexity of the independent set and (connected) dominating set738

reconfiguration problems. CoRR, abs/2204.10526, 2022. arXiv:2204.10526, doi:10.48550/739

arXiv.2204.10526.740

8 Leizhen Cai, Siu Man Chan, and Siu On Chan. Random separation: A new method for solving741

fixed-cardinality optimization problems. In Hans L. Bodlaender and Michael A. Langston,742

editors, Parameterized and Exact Computation, Second International Workshop, IWPEC 2006,743

Zürich, Switzerland, September 13-15, 2006, Proceedings, volume 4169 of Lecture Notes in744

Computer Science, pages 239–250. Springer, 2006. doi:10.1007/11847250_22.745

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin746

Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.747

doi:10.1007/978-3-319-21275-3.748

10 Erik D. Demaine, Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro Ito, Hirotaka749

Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada. Polynomial-time algorithm for sliding750

tokens on trees. In Hee-Kap Ahn and Chan-Su Shin, editors, Algorithms and Computation - 25th751

International Symposium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Proceedings,752

volume 8889 of Lecture Notes in Computer Science, pages 389–400. Springer, 2014. doi:753

10.1007/978-3-319-13075-0_31.754

https://doi.org/10.1007/978-1-4939-2864-4_76
https://arxiv.org/abs/2204.05549
http://arxiv.org/abs/2204.05549
https://doi.org/10.1007/s00224-020-09967-8
https://doi.org/10.1007/s00224-020-09967-8
https://doi.org/10.1007/s00224-020-09967-8
https://doi.org/10.1007/978-3-319-68705-6_10
https://doi.org/10.1007/978-3-319-08404-6_8
https://doi.org/10.1007/978-3-662-55751-8_12
https://doi.org/10.1007/978-3-662-55751-8_12
https://doi.org/10.1007/978-3-662-55751-8_12
http://arxiv.org/abs/2204.10526
https://doi.org/10.48550/arXiv.2204.10526
https://doi.org/10.48550/arXiv.2204.10526
https://doi.org/10.48550/arXiv.2204.10526
https://doi.org/10.1007/11847250_22
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-13075-0_31
https://doi.org/10.1007/978-3-319-13075-0_31
https://doi.org/10.1007/978-3-319-13075-0_31

A. Agrawal, S. Hait, and A. E. Mouawad 19

11 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness I:755

basic results. SIAM J. Comput., 24(4):873–921, 1995. doi:10.1137/S0097539792228228.756

12 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Monographs in757

Computer Science. Springer, 1999. doi:10.1007/978-1-4612-0515-9.758

13 Eli Fox-Epstein, Duc A. Hoang, Yota Otachi, and Ryuhei Uehara. Sliding token on bipartite759

permutation graphs. In Khaled M. Elbassioni and Kazuhisa Makino, editors, Algorithms760

and Computation - 26th International Symposium, ISAAC 2015, Nagoya, Japan, December761

9-11, 2015, Proceedings, volume 9472 of Lecture Notes in Computer Science, pages 237–247.762

Springer, 2015. doi:10.1007/978-3-662-48971-0_21.763

14 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of764

nowhere dense graphs. J. ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.765

15 Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block puzzles and766

other problems through the nondeterministic constraint logic model of computation. Theor.767

Comput. Sci., 343(1-2):72–96, 2005. doi:10.1016/j.tcs.2005.05.008.768

16 Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha769

Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems. Theor.770

Comput. Sci., 412(12-14):1054–1065, 2011. doi:10.1016/j.tcs.2010.12.005.771

17 Takehiro Ito, Marcin Kaminski, Hirotaka Ono, Akira Suzuki, Ryuhei Uehara, and Katsuhisa772

Yamanaka. On the parameterized complexity for token jumping on graphs. In T. V. Gopal,773

Manindra Agrawal, Angsheng Li, and S. Barry Cooper, editors, Theory and Applications774

of Models of Computation - 11th Annual Conference, TAMC 2014, Chennai, India, April775

11-13, 2014. Proceedings, volume 8402 of Lecture Notes in Computer Science, pages 341–351.776

Springer, 2014. doi:10.1007/978-3-319-06089-7_24.777

18 Takehiro Ito and Yota Otachi. Reconfiguration of colorable sets in classes of perfect graphs.778

Theor. Comput. Sci., 772:111–122, 2019. doi:10.1016/j.tcs.2018.11.024.779

19 Marcin Kaminski, Paul Medvedev, and Martin Milanic. Complexity of independent set780

reconfigurability problems. Theor. Comput. Sci., 439:9–15, 2012. doi:10.1016/j.tcs.2012.781

03.004.782

20 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and783

James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer784

Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center,785

Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85–103. Plenum786

Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9.787

21 Stephan Kreutzer, Roman Rabinovich, and Sebastian Siebertz. Polynomial kernels and788

wideness properties of nowhere dense graph classes. In Philip N. Klein, editor, Proceedings789

of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,790

Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1533–1545. SIAM, 2017. doi:791

10.1137/1.9781611974782.100.792

22 Daniel Lokshtanov and Amer E. Mouawad. The complexity of independent set reconfiguration793

on bipartite graphs. ACM Trans. Algorithms, 15(1):7:1–7:19, 2019. doi:10.1145/3280825.794

23 Daniel Lokshtanov, Amer E. Mouawad, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh.795

Reconfiguration on sparse graphs. J. Comput. Syst. Sci., 95:122–131, 2018. doi:10.1016/j.796

jcss.2018.02.004.797

24 Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Roohani Sharma, and Meirav Zehavi.798

Covering small independent sets and separators with applications to parameterized algorithms.799

ACM Trans. Algorithms, 16(3):32:1–32:31, 2020. doi:10.1145/3379698.800

25 Amer E. Mouawad, Naomi Nishimura, Venkatesh Raman, and Sebastian Siebertz. Vertex801

cover reconfiguration and beyond. Algorithms, 11(2):20, 2018. doi:10.3390/a11020020.802

26 Jaroslav Nesetril and Patrice Ossona de Mendez. Grad and classes with bounded expansion i.803

decompositions. Eur. J. Comb., 29(3):760–776, 2008. doi:10.1016/j.ejc.2006.07.013.804

27 Jaroslav Nesetril and Patrice Ossona de Mendez. On nowhere dense graphs. Eur. J. Comb.,805

32(4):600–617, 2011. doi:10.1016/j.ejc.2011.01.006.806

https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-3-662-48971-0_21
https://doi.org/10.1145/3051095
https://doi.org/10.1016/j.tcs.2005.05.008
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1007/978-3-319-06089-7_24
https://doi.org/10.1016/j.tcs.2018.11.024
https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/1.9781611974782.100
https://doi.org/10.1137/1.9781611974782.100
https://doi.org/10.1137/1.9781611974782.100
https://doi.org/10.1145/3280825
https://doi.org/10.1016/j.jcss.2018.02.004
https://doi.org/10.1016/j.jcss.2018.02.004
https://doi.org/10.1016/j.jcss.2018.02.004
https://doi.org/10.1145/3379698
https://doi.org/10.3390/a11020020
https://doi.org/10.1016/j.ejc.2006.07.013
https://doi.org/10.1016/j.ejc.2011.01.006

20 On finding short reconfiguration sequences between independent sets

28 Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. doi:10.3390/807

a11040052.808

29 Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Polynomial kernels for dominating809

set in graphs of bounded degeneracy and beyond. ACM Trans. Algorithms, 9(1):11:1–11:23,810

2012. doi:10.1145/2390176.2390187.811

30 Jan Arne Telle and Yngve Villanger. FPT algorithms for domination in biclique-free graphs.812

In Leah Epstein and Paolo Ferragina, editors, Algorithms - ESA 2012 - 20th Annual European813

Symposium, Ljubljana, Slovenia, September 10-12, 2012. Proceedings, volume 7501 of Lecture814

Notes in Computer Science, pages 802–812. Springer, 2012. doi:10.1007/978-3-642-33090-2\815

_69.816

31 Jan van den Heuvel. The complexity of change. In Simon R. Blackburn, Stefanie Gerke, and817

Mark Wildon, editors, Surveys in Combinatorics 2013, volume 409 of London Mathematical818

Society Lecture Note Series, pages 127–160. Cambridge University Press, 2013. doi:10.1017/819

CBO9781139506748.005.820

32 Tom C. van der Zanden. Parameterized complexity of graph constraint logic. In Thore821

Husfeldt and Iyad A. Kanj, editors, 10th International Symposium on Parameterized and Exact822

Computation, IPEC 2015, September 16-18, 2015, Patras, Greece, volume 43 of LIPIcs, pages823

282–293. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.IPEC.824

2015.282.825

33 Marcin Wrochna. Reconfiguration in bounded bandwidth and tree-depth. J. Comput. Syst.826

Sci., 93:1–10, 2018. doi:10.1016/j.jcss.2017.11.003.827

34 Takeshi Yamada and Ryuhei Uehara. Shortest reconfiguration of sliding tokens on subclasses828

of interval graphs. Theor. Comput. Sci., 863:53–68, 2021. doi:10.1016/j.tcs.2021.02.019.829

https://doi.org/10.3390/a11040052
https://doi.org/10.3390/a11040052
https://doi.org/10.3390/a11040052
https://doi.org/10.1145/2390176.2390187
https://doi.org/10.1007/978-3-642-33090-2_69
https://doi.org/10.1007/978-3-642-33090-2_69
https://doi.org/10.1007/978-3-642-33090-2_69
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.4230/LIPIcs.IPEC.2015.282
https://doi.org/10.4230/LIPIcs.IPEC.2015.282
https://doi.org/10.4230/LIPIcs.IPEC.2015.282
https://doi.org/10.1016/j.jcss.2017.11.003
https://doi.org/10.1016/j.tcs.2021.02.019

	1 Introduction
	2 Preliminaries
	3 FPT algorithm for parameter k + + d
	4 FPT algorithm for parameter |M| + +
	5 Hardness of TSO parameterized by on 2-degenerate graphs
	6 Hardness of TJO parameterized by on 2-degenerate graphs
	7 FPT algorithm for Token Jumping Reachability parameterized by k

